1
0
Fork 0
forked from nuttx/nuttx-update
local-nuttx-update/drivers/mmcsd/mmcsd_spi.c

1879 lines
53 KiB
C
Raw Normal View History

/****************************************************************************
* drivers/mmcsd/mmcsd_spi.c
*
* Copyright (C) 2008-2009 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <spudmonkey@racsa.co.cr>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/arch.h>
#include <nuttx/clock.h>
#include <nuttx/spi.h>
#include <nuttx/fs.h>
#include <nuttx/mmcsd.h>
#include "mmcsd_spi.h"
#include "mmcsd_csd.h"
#include "mmcsd_internal.h"
/****************************************************************************
* Pre-Processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
#ifndef CONFIG_MMCSD_NSLOTS
# ifdef CONFIG_CPP_HAVE_WARNING
# warning "CONFIG_MMCSD_NSLOTS not defined"
# endif
# define CONFIG_MMCSD_NSLOTS 1
#endif
#define MMCSD_IDMODE_CLOCK (400000)
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY)
# define MMCSD_MODE 0666
#else
# define MMCSD_MODE 0444
#endif
#ifndef CONFIG_MMCSD_SPICLOCK
# define CONFIG_MMCSD_SPICLOCK 20000000
#endif
#ifndef CONFIG_MMCSD_SECTOR512
# define CONFIG_MMCSD_SECTOR512 /* Force 512 byte sectors on all cards */
#endif
/* Slot struct info *********************************************************/
/* Slot status definitions */
#define MMCSD_SLOTSTATUS_NOTREADY 0x01 /* Card not initialized */
#define MMCSD_SLOTSTATUS_NODISK 0x02 /* No card in the slot */
#define MMCSD_SLOTSTATUS_WRPROTECT 0x04 /* Card is write protected */
#define MMCSD_SLOTSTATUS_MEDIACHGD 0x08 /* Media changed in slot */
/* Values in the MMC/SD command table ***************************************/
/* These define the value returned by the MMC/SD command */
#define MMCSD_CMDRESP_R1 0
#define MMCSD_CMDRESP_R1B 1
#define MMCSD_CMDRESP_R2 2
#define MMCSD_CMDRESP_R3 3
#define MMCSD_CMDRESP_R7 4
#ifdef CONFIG_MMCSD_SECTOR512
# define SECTORSIZE(s) (512)
#else
# define SECTORSIZE(s) ((s)->sectorsize)
#endif
/* Time delays in units of the system clock. CLK_TCK is the number of clock
* ticks per second.
*/
#define MMCSD_DELAY_10MS (CLK_TCK/100 + 1)
#define MMCSD_DELAY_50MS (CLK_TCK/20 + 1)
#define MMCSD_DELAY_100MS (CLK_TCK/10 + 1)
#define MMCSD_DELAY_250MS (CLK_TCK/4 + 1)
#define MMCSD_DELAY_500MS (CLK_TCK/2 + 1)
#define MMCSD_DELAY_1SEC (CLK_TCK + 1)
#define MMCSD_DELAY_10SEC (10 * CLK_TCK + 1)
#define ELAPSED_TIME(t) (g_system_timer-(t))
#define START_TIME (g_system_timer)
/* SD read timeout: ~100msec, Write Time out ~250ms. Units of clock ticks */
#define SD_READACCESS MMCSD_DELAY_100MS
#define SD_WRITEACCESS MMCSD_DELAY_250MS
/****************************************************************************
* Private Types
****************************************************************************/
/* This structure represents the state of one card slot */
struct mmcsd_slot_s
{
FAR struct spi_dev_s *spi; /* SPI port bound to this slot */
sem_t sem; /* Assures mutually exclusive accesss to card and SPI */
uint8_t state; /* State of the slot (see MMCSD_SLOTSTATUS_* definitions) */
uint8_t type; /* Disk type */
uint8_t csd[16]; /* Copy of card CSD */
#ifndef CONFIG_MMCSD_SECTOR512
uint16_t sectorsize; /* Media block size (in bytes) */
#endif
uint32_t nsectors; /* Number of blocks on the media */
uint32_t taccess; /* Card access time */
uint32_t twrite; /* Card write time */
uint32_t ocr; /* Last 4 bytes of OCR (R3) */
uint32_t r7; /* Last 4 bytes of R7 */
};
struct mmcsd_cmdinfo_s
{
uint8_t cmd;
uint8_t resp;
uint8_t chksum;
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Misc *********************************************************************/
static void mmcsd_semtake(sem_t *sem);
/* Card SPI interface *******************************************************/
static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot);
static uint32_t mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot,
const struct mmcsd_cmdinfo_s *cmd, uint32_t arg);
static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot,
uint32_t length);
static uint32_t mmcsd_nsac(FAR struct mmcsd_slot_s *slot, uint8_t *csd,
uint32_t frequency);
static uint32_t mmcsd_taac(FAR struct mmcsd_slot_s *slot, uint8_t *csd);
static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot, uint8_t *csd);
static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot,
uint8_t *csd);
static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot,
uint8_t *buffer, const struct mmcsd_cmdinfo_s *cmd);
#define mmcsd_getcsd(slot, csd) mmcsd_getcardinfo(slot, csd, &g_cmd9);
#define mmcsd_getcid(slot, cid) mmcsd_getcardinfo(slot, cid, &g_cmd10);
static int mmcsd_recvblock(FAR struct mmcsd_slot_s *slot,
uint8_t *buffer, int nbytes);
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY)
static int mmcsd_xmitblock(FAR struct mmcsd_slot_s *slot,
const uint8_t *buffer, int nbytes, uint8_t token);
#endif
/* Block driver interfaces **************************************************/
static int mmcsd_open(FAR struct inode *inode);
static int mmcsd_close(FAR struct inode *inode);
static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer,
size_t start_sector, unsigned int nsectors);
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY)
static ssize_t mmcsd_write(FAR struct inode *inode,
const unsigned char *buffer, size_t start_sector,
unsigned int nsectors);
#endif
static int mmcsd_geometry(FAR struct inode *inode,
struct geometry *geometry);
/* Initialization ***********************************************************/
static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot);
static void mmcsd_mediachanged(void *arg);
/****************************************************************************
* Private Data
****************************************************************************/
/* Driver state *************************************************************/
/* These are the lock driver methods supported by this file */
static const struct block_operations g_bops =
{
mmcsd_open, /* open */
mmcsd_close, /* close */
mmcsd_read, /* read */
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY)
mmcsd_write, /* write */
#else
NULL, /* write */
#endif
mmcsd_geometry, /* geometry */
NULL /* ioctl */
};
/* A slot structure allocated for each configured slot */
static struct mmcsd_slot_s g_mmcsdslot[CONFIG_MMCSD_NSLOTS];
/* Timing *******************************************************************/
/* We will use the TRAN_SPEED from the CSD to determine the maximum SPI
* clocking (TRAN_SPEED defines the maximum transfer rate per bit per data
* line).
*
* The CSD TRAN_SPEED is provided as a 3 bit rate unit (RU) and a 4 bit time
* value (TU). We need the transfer frequency which is: RU*TU bits/sec
*
* g_transpeedru holds RU/10 and g_transpeedtu holds TU*10 so that the
* correct value is returned in the product
*/
static const uint32_t g_transpeedru[8] =
{
10000, /* 0: 10 Kbit/sec / 10 */
100000, /* 1: 1 Mbit/sec / 10 */
1000000, /* 2: 10 Mbit/sec / 10 */
10000000, /* 3: 100 Mbit/sec / 10*/
0, 0, 0, 0 /* 4-7: Reserved values */
};
static const uint32_t g_transpeedtu[16] =
{
0, 10, 12, 13, /* 0-3: Reserved, 1.0, 1.1, 1.2, 1.3 */
15, 20, 25, 30, /* 4-7: 1.5, 2.0, 2.5, 3.0 */
35, 40, 45, 50, /* 8-11: 3.5, 4.0, 4.5, 5.0 */
55, 60, 70, 80, /* 12-15: 5.5, 6.0, 7.0, 8.0 */
};
/* The TAAC defines the asynchronous part of the data access time. The
* read access time the sum of the TAAC and the NSAC. These define the
* time from the end bit of the read command to start bit of the data block.
*
* The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV).
* TAAC is in units of time; NSAC is in units of SPI clocks.
* The access time we need is then given by:
*
* taccess = TU*TV + NSAC/spifrequency
*
* g_taactu holds TU in units of nanoseconds and microseconds (you have to use
* the index to distiguish). g_taactv holds TV with 8-bits of fraction.
*/
#define MAX_USTUNDX 2
static const uint16_t g_taactu[8] =
{
/* Units of nanoseconds */
1, /* 0: 1 ns */
10, /* 1: 10 ns */
100, /* 2: 100 ns */
/* Units of microseconds */
1, /* 3: 1 us 1,000 ns */
10, /* 4: 10 us 10,000 ns */
100, /* 5: 100 us 100,000 ns */
1000, /* 6: 1 ms 1,000,000 ns*/
10000, /* 7: 10 ms 10,000,000 ns */
};
static const uint16_t g_taactv[] =
{
0x000, 0x100, 0x133, 0x14d, /* 0-3: Reserved, 1.0, 1.2, 1.3 */
0x180, 0x200, 0x280, 0x300, /* 4-7: 1.5, 2.0, 2.5, 3.0 */
0x380, 0x400, 0x480, 0x500, /* 8-11: 3.5, 4.0, 4.5, 5.0 */
0x580, 0x600, 0x700, 0x800 /* 12-15: 5.5, 6.0, 7.0, 8.0 */
};
/* Commands *****************************************************************/
static const struct mmcsd_cmdinfo_s g_cmd0 = {CMD0, MMCSD_CMDRESP_R1, 0x95};
static const struct mmcsd_cmdinfo_s g_cmd1 = {CMD1, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd8 = {CMD8, MMCSD_CMDRESP_R7, 0x87};
static const struct mmcsd_cmdinfo_s g_cmd9 = {CMD9, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd10 = {CMD10, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd12 = {CMD12, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd16 = {CMD16, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd17 = {CMD17, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd18 = {CMD18, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd24 = {CMD24, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd25 = {CMD25, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd55 = {CMD55, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_cmd58 = {CMD58, MMCSD_CMDRESP_R3, 0xff};
static const struct mmcsd_cmdinfo_s g_acmd23 = {ACMD23, MMCSD_CMDRESP_R1, 0xff};
static const struct mmcsd_cmdinfo_s g_acmd41 = {ACMD41, MMCSD_CMDRESP_R1, 0xff};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: mmcsd_semtake
****************************************************************************/
static void mmcsd_semtake(sem_t *sem)
{
while (sem_wait(sem) != 0)
{
/* The only case that an error should occur here is if the wait was
* awakened by a signal.
*/
ASSERT(errno == EINTR);
}
}
#define mmcsd_semgive(sem) sem_post(sem)
/****************************************************************************
* Name: mmcsd_waitready
*
* Description:
* Wait until the card is no longer busy
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static int mmcsd_waitready(FAR struct mmcsd_slot_s *slot)
{
FAR struct spi_dev_s *spi = slot->spi;
uint8_t response;
uint32_t start;
uint32_t elapsed;
/* Wait until the card is no longer busy (up to 500MS) */
start = START_TIME;
do
{
response = SPI_SEND(spi, 0xff);
if (response == 0xff)
{
return OK;
}
elapsed = ELAPSED_TIME(start);
}
while (elapsed < MMCSD_DELAY_500MS);
fdbg("Card still busy, last response: %02x\n", response);
return -EBUSY;
}
/****************************************************************************
* Name: mmcsd_sendcmd
*
* Description:
* Send a command to MMC
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static uint32_t mmcsd_sendcmd(FAR struct mmcsd_slot_s *slot,
const struct mmcsd_cmdinfo_s *cmd, uint32_t arg)
{
FAR struct spi_dev_s *spi = slot->spi;
uint32_t result;
uint8_t response = 0xff;
int ret;
int i;
/* Wait until the card is not busy */
ret = mmcsd_waitready(slot);
if (ret != OK)
{
return ret;
}
/* Send command code */
SPI_SEND(spi, cmd->cmd);
/* Send command's arguments (should be zero if there are no arguements) */
SPI_SEND(spi, (arg >> 24) & 0xff);
SPI_SEND(spi, (arg >> 16) & 0xff);
SPI_SEND(spi, (arg >> 8) & 0xff);
SPI_SEND(spi, arg & 0xff);
/* Send CRC if needed. The SPI interface is initialized in non-protected
* mode. However, the reset command (CMD0) and CMD8 are received by the
* card while it is still in SD mode and, therefore, must have a valid
* CRC field.
*/
SPI_SEND(spi, cmd->chksum);
/* Skip stuff byte on CMD12 */
if (cmd->cmd == CMD12)
{
SPI_SEND(spi, 0xff);
}
/* Get the response to the command. A valid response will have bit7=0.
* Usually, the non-response is 0xff, but I have seen 0xc0 too.
*/
for (i = 0; i < 9 && (response & 0x80) != 0; i++)
{
response = SPI_SEND(spi, 0xff);
}
if ((response & 0x80) != 0)
{
fdbg("Failed: i=%d response=%02x\n", i, response);
return (uint32_t)-1;
}
/* Interpret the response according to the command */
result = response;
switch (cmd->resp)
{
/* The R1B response is two bytes long */
case MMCSD_CMDRESP_R1B:
{
uint32_t busy = 0;
uint32_t start;
uint32_t elapsed;
start = START_TIME;
do
{
busy = SPI_SEND(spi, 0xff);
elapsed = ELAPSED_TIME(start);
}
while (elapsed < slot->twrite && busy != 0xff);
if (busy != 0xff)
{
fdbg("Failed: card still busy (%02x)\n", busy);
return (uint32_t)-1;
}
fvdbg("CMD%d[%08x] R1B=%02x\n",
cmd->cmd & 0x3f, arg, response);
}
break;
/* The R1 response is a single byte */
case MMCSD_CMDRESP_R1:
{
fvdbg("CMD%d[%08x] R1=%02x\n",
cmd->cmd & 0x3f, arg, response);
}
break;
/* The R2 response is two bytes long */
case MMCSD_CMDRESP_R2:
{
result = ((uint32_t)(response & 0xff) << 8);
result |= SPI_SEND(spi, 0xff) & 0xff;
fvdbg("CMD%d[%08x] R2=%04x\n",
cmd->cmd & 0x3f, arg, result);
}
break;
/* The R3 response is 5 bytes long */
case MMCSD_CMDRESP_R3:
{
slot->ocr = ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 24);
slot->ocr |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 16);
slot->ocr |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 8);
slot->ocr |= SPI_SEND(spi, 0xff) & 0xff;
fvdbg("CMD%d[%08x] R1=%02x OCR=%08x\n",
cmd->cmd & 0x3f, arg, response, slot->ocr);
}
/* The R7 response is 5 bytes long */
case MMCSD_CMDRESP_R7:
default:
{
slot->r7 = ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 24);
slot->r7 |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 16);
slot->r7 |= ((uint32_t)(SPI_SEND(spi, 0xff) & 0xff) << 8);
slot->r7 |= SPI_SEND(spi, 0xff) & 0xff;
fvdbg("CMD%d[%08x] R1=%02x R7=%08x\n",
cmd->cmd & 0x3f, arg, response, slot->r7);
}
break;
}
return result;
}
/****************************************************************************
* Name: mmcsd_setblklen
*
* Description:
* Set block length
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static void mmcsd_setblklen(FAR struct mmcsd_slot_s *slot, uint32_t length)
{
uint32_t response;
fvdbg("Set block length to %d\n", length);
response = mmcsd_sendcmd(slot, &g_cmd16, length);
if (response != MMCSD_SPIR1_OK)
{
fdbg("Failed to set block length: %02x\n", response);
}
}
/****************************************************************************
* Name: mmcsd_nsac
*
* Description: Convert the value of the NSAC to microseconds
*
****************************************************************************/
static uint32_t mmcsd_nsac(FAR struct mmcsd_slot_s *slot, uint8_t *csd,
uint32_t frequency)
{
/* NSAC is 8-bits wide and is in units of 100 clock cycles. Therefore, the
* maximum value is 25.5K clock cycles.
*/
uint32_t nsac = MMCSD_CSD_NSAC(csd) * ((uint32_t)100*1000);
uint32_t fhkz = (frequency + 500) / 1000;
return (nsac + (fhkz >> 1)) / fhkz;
}
/****************************************************************************
* Name: mmcsd_taac
*
* Description: Convert the value of the TAAC to microseconds
*
****************************************************************************/
static uint32_t mmcsd_taac(FAR struct mmcsd_slot_s *slot, uint8_t *csd)
{
int tundx;
/*The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV).
* TAAC is in units of time; NSAC is in units of SPI clocks.
* The access time we need is then given by:
*
* taccess = TU*TV + NSAC/spifrequency
*
* g_taactu holds TU in units of nanoseconds and microseconds (you have to use
* the index to distiguish. g_taactv holds TV with 8-bits of fraction.
*/
tundx = MMCSD_CSD_TAAC_TIMEUNIT(csd);
if (tundx <= MAX_USTUNDX)
{
/* The maximum value of the nanosecond TAAC is 800 ns. The rounded
* answer in microseconds will be at most 1.
*/
return 1;
}
else
{
/* Return the answer in microseconds */
return (g_taactu[tundx]*g_taactv[MMCSD_CSD_TAAC_TIMEVALUE(csd)] + 0x80) >> 8;
}
}
/****************************************************************************
* Name: mmcsd_decodecsd
*
* Description:
*
****************************************************************************/
static void mmcsd_decodecsd(FAR struct mmcsd_slot_s *slot, uint8_t *csd)
{
FAR struct spi_dev_s *spi = slot->spi;
uint32_t maxfrequency;
uint32_t frequency;
uint32_t readbllen;
uint32_t csizemult;
uint32_t csize;
/* Calculate SPI max clock */
maxfrequency =
g_transpeedtu[MMCSD_CSD_TRANSPEED_TIMEVALUE(csd)] *
g_transpeedru[MMCSD_CSD_TRANSPEED_TRANSFERRATEUNIT(csd)];
/* Clip the max frequency to account for board limitations */
frequency = maxfrequency;
if (frequency > CONFIG_MMCSD_SPICLOCK)
{
frequency = CONFIG_MMCSD_SPICLOCK;
}
/* Set the actual SPI frequency as close as possible to that value */
frequency = SPI_SETFREQUENCY(spi, frequency);
/* Now determine the delay to access data */
if (slot->type == MMCSD_CARDTYPE_MMC)
{
/* The TAAC consists of a 3-bit time unit (TU) and a 4-bit time value (TV).
* TAAC is in units of time; NSAC is in units of SPI clocks.
* The access time we need is then given by:
*
* taccess = TU*TV + NSAC/spifrequency
*
* Example: TAAC = 1.5 ms, NSAC = 0, r2wfactor = 4, CLK_TCK=100
* taccessus = 1,500uS
* taccess = (1,500 * 100) / 100,000) + 1 = 2 (ideal, 1.5)
* twrite = (1,500 * 4 * 100) / 100,000) + 1 = 7 (ideal 6.0)
*
* First get the access time in microseconds
*/
uint32_t taccessus = mmcsd_taac(slot, csd) + mmcsd_nsac(slot, csd, frequency);
/* Then convert to system clock ticks. The maximum read access is 10 times
* the tacc value: taccess = 10 * (taccessus / 1,000,000) * CLK_TCK, or
*/
slot->taccess = (taccessus * CLK_TCK) / 100000 + 1;
/* NOTE that we add one to taccess to assure that we wait at least this
* time. The write access time is larger by the R2WFACTOR: */
slot->taccess = (taccessus * MMCSD_CSD_R2WFACTOR(csd) * CLK_TCK) / 100000 + 1;
}
else
{
/* For SD, the average is still given by the TAAC+NSAC, but the
* maximum are the constants 100 and 250MS
*/
slot->taccess = SD_READACCESS;
slot->twrite = SD_WRITEACCESS;
}
fvdbg("SPI Frequency\n");
fvdbg(" Maximum: %d Hz\n", maxfrequency);
fvdbg(" Actual: %d Hz\n", frequency);
fvdbg("Read access time: %d ticks\n", slot->taccess);
fvdbg("Write access time: %d ticks\n", slot->twrite);
/* Get the physical geometry of the card: sector size and number of
* sectors. The card's total capacity is computed from
*
* capacity = BLOCKNR * BLOCK_LEN
* BLOCKNR = (C_SIZE+1)*MULT
* MULT = 2**(C_SIZE_MULT+2) (C_SIZE_MULT < 8)
* BLOCK_LEN = 2**READ_BL_LEN (READ_BL_LEN < 12)
*
* Or
*
* capacity = ((C_SIZE+1) << (READD_BL_LEN + C_SIZE_MULT + 2))
*
* In units of the sector size (1 << READ_BL_LEN), then simplifies to
*
* nsectors = ((C_SIZE+1) << (C_SIZE_MULT + 2))
*/
if (MMCSD_CSD_CSDSTRUCT(csd) != 0)
{
/* SDC structure ver 2.xx */
/* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */
readbllen = SD20_CSD_READBLLEN(csd);
csizemult = SD20_CSD_CSIZEMULT(csd) + 2;
csize = SD20_CSD_CSIZE(csd) + 1;
}
else
{
/* MMC or SD structure ver 1.xx */
/* Note: On SD card WRITE_BL_LEN is always the same as READ_BL_LEN */
readbllen = MMCSD_CSD_READBLLEN(csd);
csizemult = MMCSD_CSD_CSIZEMULT(csd) + 2;
csize = MMCSD_CSD_CSIZE(csd) + 1;
}
/* SDHC ver2.x cards have fixed block transfer size of 512 bytes. SDC
* ver1.x cards with capacity less than 1Gb, will have sector size
* 512 byes. SDC ver1.x cards with capacity of 2Gb will report readbllen
* of 1024 but should use 512 bytes for block transfers. SDC ver1.x 4Gb
* cards will report readbllen of 2048 bytes -- are they also 512 bytes?
*/
#ifdef CONFIG_MMCSD_SECTOR512
if (readbllen > 9)
{
csizemult += (readbllen - 9);
}
else
{
DEBUGASSERT(readbllen == 9);
}
#else
if (IS_SDV2(slot->type))
{
if (readbllen > 9)
{
fdbg("Forcing 512 byte sector size\n");
csizemult += (readbllen - 9);
readbllen = 9;
}
}
slot->sectorsize = 1 << readbllen;
#endif
slot->nsectors = csize << csizemult;
fvdbg("Sector size: %d\n", SECTORSIZE(slot));
fvdbg("Number of sectors: %d\n", slot->nsectors);
}
/****************************************************************************
* Name: mmcsd_checkwrprotect
*
* Description:
*
****************************************************************************/
static void mmcsd_checkwrprotect(FAR struct mmcsd_slot_s *slot, uint8_t *csd)
{
FAR struct spi_dev_s *spi = slot->spi;
/* Check if (1) the slot is reporting that reporting that write protection
* is set, (2) the card reports permanent write protect, or (2) the card
* reports temporary write protect.
*/
if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_WRPROTECTED) != 0 ||
MMCSD_CSD_PERMWRITEPROTECT(csd) ||
MMCSD_CSD_TMPWRITEPROTECT(csd))
{
slot->state |= MMCSD_SLOTSTATUS_WRPROTECT;
}
else
{
slot->state &= ~MMCSD_SLOTSTATUS_WRPROTECT;
}
}
/****************************************************************************
* Name: mmcsd_getcardinfo
*
* Description:
* Read CSD or CID registers
*
* Assumptions:
* MMC/SD card already selected
*
****************************************************************************/
static int mmcsd_getcardinfo(FAR struct mmcsd_slot_s *slot, uint8_t *buffer,
const struct mmcsd_cmdinfo_s *cmd)
{
FAR struct spi_dev_s *spi = slot->spi;
uint32_t result;
uint8_t response;
int i;
SPI_SEND(spi, 0xff);
/* Send the CMD9 or CMD10 */
result = mmcsd_sendcmd(slot, cmd, 0);
if (result != MMCSD_SPIR1_OK)
{
fdbg("CMD9/10 failed: R1=%02x\n", result);
return -EIO;
}
/* Try up to 8 times to find the start of block (or until an error occurs) */
for (i = 0; i < 8; i++)
{
response = SPI_SEND(spi, 0xff);
fvdbg("%d. SPI send returned %02x\n", i, response);
/* If a read operation fails and the card cannot provide the requested
* data, it will send a data error token instead. The 4 least
* significant bits are the same as those in the R2 response.
*/
if (response != 0 && (response & MMCSD_SPIDET_UPPER) == 0)
{
fdbg("%d. Data transfer error: %02x\n", i, response);
return -EIO;
}
else if (response == MMCSD_SPIDT_STARTBLKSNGL)
{
for (i = 0; i < 16; ++i)
{
*buffer++ = SPI_SEND(spi, 0xff);
}
/* CRC receive */
SPI_SEND(spi, 0xff);
SPI_SEND(spi, 0xff);
return OK;
}
}
fdbg("%d. Did not find start of block\n");
return -EIO;
}
/****************************************************************************
* Name: mmcsd_recvblock
*
* Description: Receive a data block from the card
*
****************************************************************************/
static int mmcsd_recvblock(FAR struct mmcsd_slot_s *slot, uint8_t *buffer, int nbytes)
{
FAR struct spi_dev_s *spi = slot->spi;
uint32_t start;
uint32_t elapsed;
uint8_t token;
/* Wait up to the maximum to receive a valid data token. taccess is the
* time from when the command is sent until the first byte of data is
* received */
start = START_TIME;
do
{
token = SPI_SEND(spi, 0xff);
elapsed = ELAPSED_TIME(start);
}
while (token == 0xff && elapsed < slot->taccess);
if (token == MMCSD_SPIDT_STARTBLKSNGL)
{
/* Receive the block */
SPI_RECVBLOCK(spi, buffer, nbytes);
/* Discard the CRC */
SPI_SEND(spi, 0xff);
SPI_SEND(spi, 0xff);
return OK;
}
fdbg("Did not receive data token (%02x)\n", token);
return ERROR;
}
/****************************************************************************
* Name: mmcsd_xmitblock
*
* Description: Transmit a data block to the card
*
****************************************************************************/
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY)
static int mmcsd_xmitblock(FAR struct mmcsd_slot_s *slot, const uint8_t *buffer,
int nbytes, uint8_t token)
{
FAR struct spi_dev_s *spi = slot->spi;
uint8_t response;
/* Start the block transfer:
* 1. 0xff (sync)
* 2. 0xfe or 0xfc (start of block token)
* 3. Followed by the block of data and 2 byte CRC
*/
SPI_SEND(spi, 0xff); /* sync */
SPI_SEND(spi, token); /* data token */
/* Transmit the block to the MMC/SD card */
(void)SPI_SNDBLOCK(spi, buffer, nbytes);
/* Add the bogus CRC. By default, the SPI interface is initialized in
* non-protected mode. However, we still have to send bogus CRC values
*/
SPI_SEND(spi, 0xff);
SPI_SEND(spi, 0xff);
/* Now get the data response */
response = SPI_SEND(spi, 0xff);
if ((response & MMCSD_SPIDR_MASK) != MMCSD_SPIDR_ACCEPTED)
{
fdbg("Bad data response: %02x\n", response);
return -EIO;
}
return OK;
}
#endif /* CONFIG_FS_WRITABLE && !CONFIG_MMCSD_READONLY */
/****************************************************************************
* Block Driver Operations
****************************************************************************/
/****************************************************************************
* Name: mmcsd_open
*
* Description: Open the block device
*
****************************************************************************/
static int mmcsd_open(FAR struct inode *inode)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
int ret;
fvdbg("Entry\n");
#ifdef CONFIG_DEBUG
if (!inode || !inode->i_private)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = (FAR struct mmcsd_slot_s *)inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG
if (!spi)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Verify that an MMC/SD card has been inserted */
ret = -ENODEV;
mmcsd_semtake(&slot->sem);
if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_PRESENT) != 0)
{
/* Yes.. a card is present. Has it been initialized? */
if (slot->type == MMCSD_CARDTYPE_UNKNOWN)
{
/* Ininitialize for the media in the slot */
ret = mmcsd_mediainitialize(slot);
if (ret < 0)
{
fvdbg("Failed to initialize card\n");
goto errout_with_sem;
}
}
/* Make sure that the card is ready */
SPI_SELECT(spi, SPIDEV_MMCSD, true);
ret = mmcsd_waitready(slot);
SPI_SELECT(spi, SPIDEV_MMCSD, false);
}
errout_with_sem:
mmcsd_semgive(&slot->sem);
return ret;
}
/****************************************************************************
* Name: mmcsd_close
*
* Description: close the block device
*
****************************************************************************/
static int mmcsd_close(FAR struct inode *inode)
{
fvdbg("Entry\n");
return OK;
}
/****************************************************************************
* Name: mmcsd_read
*
* Description: Read the specified numer of sectors
*
****************************************************************************/
static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer,
size_t start_sector, unsigned int nsectors)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
size_t nbytes;
off_t offset;
uint8_t response;
int i;
fvdbg("start_sector=%d nsectors=%d\n", start_sector, nsectors);
#ifdef CONFIG_DEBUG
if (!buffer)
{
fdbg("Invalid parameters\n");
return -EINVAL;
}
if (!inode || !inode->i_private)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = (FAR struct mmcsd_slot_s *)inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG
if (!spi)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Verify that card is available */
if (slot->state & MMCSD_SLOTSTATUS_NOTREADY)
{
fdbg("Slot not ready\n");
return -ENODEV;
}
/* Do nothing on zero-length transfer */
if (nsectors < 1)
{
return 0;
}
/* Convert sector and nsectors to nbytes and byte offset */
nbytes = nsectors * SECTORSIZE(slot);
if (IS_BLOCK(slot->type))
{
offset = start_sector;
fvdbg("nbytes=%d sector offset=%d\n", nbytes, offset);
}
else
{
offset = start_sector * SECTORSIZE(slot);
fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset);
}
/* Select the slave */
mmcsd_semtake(&slot->sem);
SPI_SELECT(spi, SPIDEV_MMCSD, true);
/* Single or multiple block read? */
if (nsectors == 1)
{
/* Send CMD17: Reads a block of the size selected by the SET_BLOCKLEN
* command and verify that good R1 status is returned
*/
response = mmcsd_sendcmd(slot, &g_cmd17, offset);
if (response != MMCSD_SPIR1_OK)
{
fdbg("CMD17 failed: R1=%02x\n", response);
goto errout_with_eio;
}
/* Receive the block */
if (mmcsd_recvblock(slot, buffer, SECTORSIZE(slot)) != 0)
{
fdbg("Failed: to receive the block\n");
goto errout_with_eio;
}
}
else
{
/* Send CMD18: Reads a block of the size selected by the SET_BLOCKLEN
* command and verify that good R1 status is returned
*/
response = mmcsd_sendcmd(slot, &g_cmd18, offset);
if (response != MMCSD_SPIR1_OK)
{
fdbg("CMD118 failed: R1=%02x\n", response);
goto errout_with_eio;
}
/* Receive each block */
for (i = 0; i < nsectors; i++)
{
if (mmcsd_recvblock(slot, buffer, SECTORSIZE(slot)) != 0)
{
fdbg("Failed: to receive the block\n");
goto errout_with_eio;
}
buffer += SECTORSIZE(slot);
}
/* Send CMD12: Stops transmission */
response = mmcsd_sendcmd(slot, &g_cmd12, 0);
}
/* On success, return the number of sectors transfer */
SPI_SELECT(spi, SPIDEV_MMCSD, false);
SPI_SEND(spi, 0xff);
mmcsd_semgive(&slot->sem);
fvdbg("Read %d bytes:\n", nbytes);
mmcsd_dumpbuffer("Read buffer", buffer, nbytes);
return nsectors;
errout_with_eio:
SPI_SELECT(spi, SPIDEV_MMCSD, false);
mmcsd_semgive(&slot->sem);
return -EIO;
}
/****************************************************************************
* Name: mmcsd_write
*
* Description:
* Write the specified number of sectors
*
****************************************************************************/
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY)
static ssize_t mmcsd_write(FAR struct inode *inode, const unsigned char *buffer,
size_t start_sector, unsigned int nsectors)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
size_t nbytes;
off_t offset;
uint8_t response;
int ret;
int i;
fvdbg("start_sector=%d nsectors=%d\n", start_sector, nsectors);
#ifdef CONFIG_DEBUG
if (!buffer)
{
fdbg("Invalid parameters\n");
return -EINVAL;
}
if (!inode || !inode->i_private)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = (FAR struct mmcsd_slot_s *)inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG
if (!spi)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Verify that card is available */
if (slot->state & MMCSD_SLOTSTATUS_NOTREADY)
{
fdbg("Slot not ready\n");
return -ENODEV;
}
/* Verify that the card is write enabled */
if (slot->state & MMCSD_SLOTSTATUS_WRPROTECT)
{
fdbg("Not write enabled\n");
return -EACCES;
}
/* Do nothing on zero-length transfer */
if (nsectors < 1)
{
return 0;
}
/* Convert sector and nsectors to nbytes and byte offset */
nbytes = nsectors * SECTORSIZE(slot);
if (IS_BLOCK(slot->type))
{
offset = start_sector;
fvdbg("nbytes=%d sector offset=%d\n", nbytes, offset);
}
else
{
offset = start_sector * SECTORSIZE(slot);
fvdbg("nbytes=%d byte offset=%d\n", nbytes, offset);
}
mmcsd_dumpbuffer("Write buffer", buffer, nbytes);
/* Select the slave */
mmcsd_semtake(&slot->sem);
SPI_SELECT(spi, SPIDEV_MMCSD, true);
/* Single or multiple block transfer? */
if (nsectors == 1)
{
/* Send CMD24 (WRITE_BLOCK) and verify that good R1 status is returned */
response = mmcsd_sendcmd(slot, &g_cmd24, offset);
if (response != MMCSD_SPIR1_OK)
{
fdbg("CMD24 failed: R1=%02x\n", response);
goto errout_with_sem;
}
/* Then transfer the sector */
if (mmcsd_xmitblock(slot, buffer, SECTORSIZE(slot), 0xfe) != 0)
{
fdbg("Block transfer failed\n");
goto errout_with_sem;
}
}
else
{
/* Set the number of blocks to be pre-erased (SD only) */
if (IS_SD(slot->type))
{
response = mmcsd_sendcmd(slot, &g_acmd23, nsectors);
if (response != MMCSD_SPIR1_OK)
{
fdbg("ACMD23 failed: R1=%02x\n", response);
goto errout_with_sem;
}
}
/* Send CMD25: Continuously write blocks of data until the
* tranmission is stopped.
*/
response = mmcsd_sendcmd(slot, &g_cmd25, offset);
if (response != MMCSD_SPIR1_OK)
{
fdbg("CMD25 failed: R1=%02x\n", response);
goto errout_with_sem;
}
/* Transmit each block */
for (i = 0; i < nsectors; i++)
{
if (mmcsd_xmitblock(slot, buffer, SECTORSIZE(slot), 0xfc) != 0)
{
fdbg("Failed: to receive the block\n");
goto errout_with_sem;
}
buffer += SECTORSIZE(slot);
}
/* Send the stop transmission token */
SPI_SEND(spi, MMCSD_SPIDT_STOPTRANS);
}
/* Wait until the card is no longer busy */
ret = mmcsd_waitready(slot);
SPI_SELECT(spi, SPIDEV_MMCSD, false);
SPI_SEND(spi, 0xff);
mmcsd_semgive(&slot->sem);
/* The success return value is the number of sectors written */
return nsectors;
errout_with_sem:
SPI_SELECT(spi, SPIDEV_MMCSD, false);
mmcsd_semgive(&slot->sem);
return -EIO;
}
#endif
/****************************************************************************
* Name: mmcsd_geometry
*
* Description:
* Return device geometry
*
****************************************************************************/
static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry)
{
FAR struct mmcsd_slot_s *slot;
FAR struct spi_dev_s *spi;
uint8_t csd[16];
int ret;
#ifdef CONFIG_DEBUG
if (!geometry)
{
fdbg("Invalid parameters\n");
return -EINVAL;
}
if (!inode || !inode->i_private)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Extract our private data from the inode structure */
slot = (FAR struct mmcsd_slot_s *)inode->i_private;
spi = slot->spi;
#ifdef CONFIG_DEBUG
if (!spi)
{
fdbg("Internal confusion\n");
return -EIO;
}
#endif
/* Re-sample the CSD */
mmcsd_semtake(&slot->sem);
SPI_SELECT(spi, SPIDEV_MMCSD, true);
ret = mmcsd_getcsd(slot, csd);
SPI_SELECT(spi, SPIDEV_MMCSD, false);
if (ret < 0)
{
mmcsd_semgive(&slot->sem);
fdbg("mmcsd_getcsd returned %d\n", ret);
return ret;
}
/* Check for changes related to write protection */
mmcsd_checkwrprotect(slot, csd);
/* Then return the card geometry */
geometry->geo_available =
((slot->state & (MMCSD_SLOTSTATUS_NOTREADY|MMCSD_SLOTSTATUS_NODISK)) == 0);
geometry->geo_mediachanged =
((slot->state & MMCSD_SLOTSTATUS_MEDIACHGD) != 0);
#if defined(CONFIG_FS_WRITABLE) && !defined(CONFIG_MMCSD_READONLY)
geometry->geo_writeenabled =
((slot->state & MMCSD_SLOTSTATUS_WRPROTECT) == 0);
#else
geometry->geo_writeenabled = false;
#endif
geometry->geo_nsectors = slot->nsectors;
geometry->geo_sectorsize = SECTORSIZE(slot);
/* After reporting mediachanged, clear the indication so that it is not
* reported again.
*/
slot->state &= ~MMCSD_SLOTSTATUS_MEDIACHGD;
mmcsd_semgive(&slot->sem);
fvdbg("geo_available: %d\n", geometry->geo_available);
fvdbg("geo_mediachanged: %d\n", geometry->geo_mediachanged);
fvdbg("geo_writeenabled: %d\n", geometry->geo_writeenabled);
fvdbg("geo_nsectors: %d\n", geometry->geo_nsectors);
fvdbg("geo_sectorsize: %d\n", geometry->geo_sectorsize);
return OK;
}
/****************************************************************************
* Initialization
****************************************************************************/
/****************************************************************************
* Name: mmcsd_mediainitialize
*
* Description:
* Detect media and initialize
*
****************************************************************************/
static int mmcsd_mediainitialize(FAR struct mmcsd_slot_s *slot)
{
FAR struct spi_dev_s *spi = slot->spi;
uint8_t csd[16];
uint32_t result = MMCSD_SPIR1_IDLESTATE;
uint32_t start;
uint32_t elapsed;
int i, j;
/* Assume that the card is not ready (we'll clear this on successful card
* initialization.
*/
slot->state |= MMCSD_SLOTSTATUS_NOTREADY;
/* Check if there is a card present in the slot. This is normally a matter is
* of GPIO sensing and does not really involve SPI, but by putting this
* functionality in the SPI interface, we encapuslate the SPI MMC/SD
* interface
*/
if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_PRESENT) == 0)
{
fdbg("No card present\n");
slot->state |= MMCSD_SLOTSTATUS_NODISK;
return -ENODEV;
}
/* Clock Freq. Identification Mode < 400kHz */
SPI_SETFREQUENCY(spi, MMCSD_IDMODE_CLOCK);
/* Set the maximum access time out */
slot->taccess = SD_READACCESS;
/* The SD card wakes up in SD mode. It will enter SPI mode if the chip select signal is
* asserted (negative) during the reception of the reset command (CMD0) and the card is in
* IDLE state.
*/
for (i = 0; i < 2; i++)
{
/* After power up at least 74 clock cycles are required prior to
* starting bus communication
*/
for (j = 10; j; j--)
{
SPI_SEND(spi, 0xff);
}
/* Send CMD0 (GO_TO_IDLE) with CS asserted to put MMC/SD in
* IDLE/SPI mode. Return from CMD0 is R1 which should now
* show IDLE STATE
*/
fvdbg("Send CMD0\n");
SPI_SELECT(spi, SPIDEV_MMCSD, true);
result = mmcsd_sendcmd(slot, &g_cmd0, 0);
if (result == MMCSD_SPIR1_IDLESTATE)
{
/* Break out of the loop with card selected */
fvdbg("Card is in IDLE state\n");
break;
}
/* De-select card and try again */
SPI_SELECT(spi, SPIDEV_MMCSD, false);
}
/* Verify that we exit the above loop with the card reporting IDLE state */
if (result != MMCSD_SPIR1_IDLESTATE)
{
fdbg("Send CMD0 failed: R1=%02x\n", result);
SPI_SELECT(spi, SPIDEV_MMCSD, false);
return -EIO;
}
slot->type = MMCSD_CARDTYPE_UNKNOWN;
/* Check for SDHC Version 2.x. CMD 8 is reserved on SD version 1.0 and MMC. */
fvdbg("Send CMD8\n");
result = mmcsd_sendcmd(slot, &g_cmd8, 0x1aa);
if (result == MMCSD_SPIR1_IDLESTATE)
{
/* Verify the operating voltage and that the 0xaa was correctly echoed */
if (((slot->r7 & MMCSD_SPIR7_VOLTAGE_MASK) == MMCSD_SPIR7_VOLTAGE_27) &&
((slot->r7 & MMCSD_SPIR7_ECHO_MASK) == 0xaa))
{
/* Try CMD55/ACMD41 for up to 1 second or until the card exits
* the IDLE state
*/
start = START_TIME;
elapsed = 0;
do
{
fvdbg("%d. Send CMD55/ACMD41\n", elapsed);
result = mmcsd_sendcmd(slot, &g_cmd55, 0);
if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK)
{
result = mmcsd_sendcmd(slot, &g_acmd41, 1 << 30);
if (result == MMCSD_SPIR1_OK)
{
break;
}
}
elapsed = ELAPSED_TIME(start);
}
while (elapsed < MMCSD_DELAY_1SEC);
/* Check if ACMD41 was sent successfully */
if (elapsed < MMCSD_DELAY_1SEC)
{
fvdbg("Send CMD58\n");
SPI_SEND(spi, 0xff);
result = mmcsd_sendcmd(slot, &g_cmd58, 0);
if (result == MMCSD_SPIR1_OK)
{
fvdbg("OCR: %08x\n", slot->ocr);
if ((slot->ocr & MMCSD_OCR_CCS) != 0)
{
fdbg("Identified SD ver2 card/with block access\n");
slot->type = MMCSD_CARDTYPE_SDV2|MMCSD_CARDTYPE_BLOCK;
}
else
{
fdbg("Identified SD ver2 card\n");
slot->type = MMCSD_CARDTYPE_SDV2;
}
}
}
}
}
/* Check for SDC version 1.x or MMC */
else
{
/* Both the MMC card and the SD card support CMD55 */
fvdbg("Send CMD55/ACMD41\n");
result = mmcsd_sendcmd(slot, &g_cmd55, 0);
if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK)
{
/* But ACMD41 is supported only on SD */
result = mmcsd_sendcmd(slot, &g_acmd41, 0);
if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK)
{
fdbg("Identified SD ver1 card\n");
slot->type = MMCSD_CARDTYPE_SDV1;
}
}
/* Make sure that we are out of the Idle state */
start = START_TIME;
elapsed = 0;
do
{
if (IS_SD(slot->type))
{
fvdbg("%d. Send CMD55/ACMD41\n", elapsed);
result = mmcsd_sendcmd(slot, &g_cmd55, 0);
if (result == MMCSD_SPIR1_IDLESTATE || result == MMCSD_SPIR1_OK)
{
result = mmcsd_sendcmd(slot, &g_acmd41, 0);
if (result == MMCSD_SPIR1_OK)
{
break;
}
}
}
else
{
fvdbg("%d. Send CMD1\n", i);
result = mmcsd_sendcmd(slot, &g_cmd1, 0);
if (result == MMCSD_SPIR1_OK)
{
fdbg("%d. Identified MMC card\n", i);
slot->type = MMCSD_CARDTYPE_MMC;
break;
}
}
elapsed = ELAPSED_TIME(start);
}
while (elapsed < MMCSD_DELAY_1SEC);
if (elapsed >= MMCSD_DELAY_1SEC)
{
fdbg("Failed to exit IDLE state\n");
SPI_SELECT(spi, SPIDEV_MMCSD, false);
return -EIO;
}
}
if (slot->type == MMCSD_CARDTYPE_UNKNOWN)
{
fdbg("Failed to identify card\n");
SPI_SELECT(spi, SPIDEV_MMCSD, false);
return -EIO;
}
/* Read CSD. CSD must always be valid */
fvdbg("Get CSD\n");
result = mmcsd_getcsd(slot, csd);
if (result != OK)
{
fdbg("mmcsd_getcsd(CMD9) failed: %d\n", result);
SPI_SELECT(spi, SPIDEV_MMCSD, false);
return -EIO;
}
mmcsd_dmpcsd(csd, slot->type);
/* CSD data and set block size */
mmcsd_decodecsd(slot, csd);
mmcsd_checkwrprotect(slot, csd);
/* SDHC ver2.x cards have fixed block transfer size of 512 bytes. SDC
* ver1.x cards with capacity less than 1Gb, will have sector size
* 512 byes. SDC ver1.x cards with capacity of 2Gb will report readbllen
* of 1024 but should use 512 bytes for block transfers. SDC ver1.x 4Gb
* cards will report readbllen of 2048 bytes -- are they also 512 bytes?
* I think that none of these high capacity cards support setting the
* block length??
*/
#ifdef CONFIG_MMCSD_SECTOR512
/* Using 512 byte sectors, the maximum ver1.x capacity is 4096 x 512 blocks.
* The saved slot->nsectors is converted to 512 byte blocks, so if slot->nsectors
* exceeds 4096 x 512, then we must be dealing with a card with read_bl_len
* of 1024 or 2048.
*/
if (!IS_SDV2(slot->type) && slot->nsectors <= ((uint32_t)4096*12))
{
/* Don't set the block len on high capacity cards (ver1.x or ver2.x) */
mmcsd_setblklen(slot, SECTORSIZE(slot));
}
#else
if (!IS_SDV2(slot->type))
{
/* Don't set the block len on ver2.x cards */
mmcsd_setblklen(slot, SECTORSIZE(slot));
}
#endif
slot->state &= ~MMCSD_SLOTSTATUS_NOTREADY;
SPI_SELECT(spi, SPIDEV_MMCSD, false);
return OK;
}
/****************************************************************************
* Name: mmcsd_mediachanged
*
* Description:
* Handle initialization/media change events
*
****************************************************************************/
static void mmcsd_mediachanged(void *arg)
{
struct mmcsd_slot_s *slot = (struct mmcsd_slot_s*)arg;
FAR struct spi_dev_s *spi;
uint8_t oldstate;
int ret;
#ifdef CONFIG_DEBUG
if (!slot || !slot->spi)
{
fdbg("Internal confusion\n");
return;
}
#endif
spi = slot->spi;
/* Save the current slot state and reassess the new state */
mmcsd_semtake(&slot->sem);
oldstate = slot->state;
/* Check if media was removed or inserted */
slot->state &= ~(MMCSD_SLOTSTATUS_NODISK|MMCSD_SLOTSTATUS_NOTREADY|MMCSD_SLOTSTATUS_MEDIACHGD);
if ((SPI_STATUS(spi, SPIDEV_MMCSD) & SPI_STATUS_PRESENT) == 0)
{
/* Media is not present */
fdbg("No card present\n");
slot->state |= (MMCSD_SLOTSTATUS_NODISK|MMCSD_SLOTSTATUS_NOTREADY);
/* Was media removed? */
if ((oldstate & MMCSD_SLOTSTATUS_NODISK) == 0)
{
slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD;
}
}
/* Media is present, was it just inserted? Or, if it was previously not ready,
* then try re-initializing it
*/
else if ((oldstate & (MMCSD_SLOTSTATUS_NODISK|MMCSD_SLOTSTATUS_NOTREADY)) != 0)
{
/* (Re-)ininitialize for the media in the slot */
ret = mmcsd_mediainitialize(slot);
if (ret == 0)
{
fvdbg("mmcsd_mediainitialize returned OK\n");
slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD;
}
}
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mmcsd_spislotinitialize
*
* Description:
* Initialize one slot for operation using the SPI MMC/SD interface
*
* Input Parameters:
* minor - The MMC/SD minor device number. The MMC/SD device will be
* registered as /dev/mmcsdN where N is the minor number
* slotno - The slot number to use. This is only meaningful for architectures
* that support multiple MMC/SD slots. This value must be in the range
* {0, ..., CONFIG_MMCSD_NSLOTS}.
* spi - And instance of an SPI interface obtained by called
* up_spiinitialize() with the appropriate port number (see spi.h)
*
****************************************************************************/
int mmcsd_spislotinitialize(int minor, int slotno, FAR struct spi_dev_s *spi)
{
struct mmcsd_slot_s *slot;
char devname[16];
int ret;
#ifdef CONFIG_DEBUG
if ((unsigned)slotno >= CONFIG_MMCSD_NSLOTS || (unsigned)minor > 255 || !spi)
{
fdbg("Invalid arguments\n");
return -EINVAL;
}
#endif
/* Select the slot structure */
slot = &g_mmcsdslot[slotno];
memset(slot, 0, sizeof(struct mmcsd_slot_s));
sem_init(&slot->sem, 0, 1);
#ifdef CONFIG_DEBUG
if (slot->spi)
{
fdbg("Already registered\n");
return -EBUSY;
}
#endif
/* Bind the SPI port to the slot */
slot->spi = spi;
/* Ininitialize for the media in the slot (if any) */
ret = mmcsd_mediainitialize(slot);
if (ret == 0)
{
fvdbg("mmcsd_mediainitialize returned OK\n");
slot->state |= MMCSD_SLOTSTATUS_MEDIACHGD;
}
/* Create a MMC/SD device name */
snprintf(devname, 16, "/dev/mmcsd%d", minor);
/* Register the driver, even on a failure condition. A
* card may be inserted later, for example.
*/
ret = register_blockdriver(devname, &g_bops, MMCSD_MODE, slot);
if (ret < 0)
{
fdbg("register_blockdriver failed: %d\n", -ret);
slot->spi = NULL;
return ret;
}
/* Register a media change callback to handler insertion and
* removal of cards.
*/
(void)SPI_REGISTERCALLBACK(spi, mmcsd_mediachanged, (void*)slot);
return OK;
}