1
0
Fork 0
forked from nuttx/nuttx-update

crypto:convert code style form openbsd to nuttx

Signed-off-by: anjiahao <anjiahao@xiaomi.com>
This commit is contained in:
anjiahao 2022-07-27 19:51:53 +08:00 committed by Xiang Xiao
parent acd3350554
commit 82956a2894
48 changed files with 11663 additions and 9236 deletions

File diff suppressed because it is too large Load diff

View file

@ -1,6 +1,7 @@
/* $OpenBSD: blf.c,v 1.8 2021/11/29 01:04:45 djm Exp $ */
/*
/****************************************************************************
* crypto/blf.c
* $OpenBSD: blf.c,v 1.8 2021/11/29 01:04:45 djm Exp $ *
*
* Blowfish block cipher for OpenBSD
* Copyright 1997 Niels Provos <provos@physnet.uni-hamburg.de>
* All rights reserved.
@ -28,15 +29,18 @@
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
****************************************************************************/
/*
* This code is derived from section 14.3 and the given source
/* This code is derived from section 14.3 and the given source
* in section V of Applied Cryptography, second edition.
* Blowfish is an unpatented fast block cipher designed by
* Bruce Schneier.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
@ -45,77 +49,78 @@
#undef inline
#ifdef __GNUC__
#define inline __inline
#else /* !__GNUC__ */
#else
#define inline
#endif /* !__GNUC__ */
#endif
/* Function for Feistel Networks */
#define F(s, x) ((((s)[ (((x)>>24)&0xFF)] \
+ (s)[0x100 + (((x)>>16)&0xFF)]) \
^ (s)[0x200 + (((x)>> 8)&0xFF)]) \
+ (s)[0x300 + ( (x) &0xFF)])
#define F(s, x) ((((s)[(((x) >> 24) & 0xff)] \
+ (s)[0x100 + (((x) >> 16) & 0xff)]) \
^ (s)[0x200 + (((x) >> 8) & 0xff)]) \
+ (s)[0x300 + ((x) & 0xff)])
#define BLFRND(s, p, i, j, n) (i ^= F(s, j) ^ (p)[n])
void
Blowfish_encipher(blf_ctx *c, u_int32_t *x)
/****************************************************************************
* Public Functions
****************************************************************************/
void blowfish_encipher(FAR blf_ctx *c, FAR uint32_t *x)
{
u_int32_t Xl;
u_int32_t Xr;
u_int32_t *s = c->S[0];
u_int32_t *p = c->P;
uint32_t xl;
uint32_t xr;
FAR uint32_t *s = c->S[0];
FAR uint32_t *p = c->P;
Xl = x[0];
Xr = x[1];
xl = x[0];
xr = x[1];
Xl ^= p[0];
BLFRND(s, p, Xr, Xl, 1); BLFRND(s, p, Xl, Xr, 2);
BLFRND(s, p, Xr, Xl, 3); BLFRND(s, p, Xl, Xr, 4);
BLFRND(s, p, Xr, Xl, 5); BLFRND(s, p, Xl, Xr, 6);
BLFRND(s, p, Xr, Xl, 7); BLFRND(s, p, Xl, Xr, 8);
BLFRND(s, p, Xr, Xl, 9); BLFRND(s, p, Xl, Xr, 10);
BLFRND(s, p, Xr, Xl, 11); BLFRND(s, p, Xl, Xr, 12);
BLFRND(s, p, Xr, Xl, 13); BLFRND(s, p, Xl, Xr, 14);
BLFRND(s, p, Xr, Xl, 15); BLFRND(s, p, Xl, Xr, 16);
xl ^= p[0];
BLFRND(s, p, xr, xl, 1); BLFRND(s, p, xl, xr, 2);
BLFRND(s, p, xr, xl, 3); BLFRND(s, p, xl, xr, 4);
BLFRND(s, p, xr, xl, 5); BLFRND(s, p, xl, xr, 6);
BLFRND(s, p, xr, xl, 7); BLFRND(s, p, xl, xr, 8);
BLFRND(s, p, xr, xl, 9); BLFRND(s, p, xl, xr, 10);
BLFRND(s, p, xr, xl, 11); BLFRND(s, p, xl, xr, 12);
BLFRND(s, p, xr, xl, 13); BLFRND(s, p, xl, xr, 14);
BLFRND(s, p, xr, xl, 15); BLFRND(s, p, xl, xr, 16);
x[0] = Xr ^ p[17];
x[1] = Xl;
x[0] = xr ^ p[17];
x[1] = xl;
}
void
Blowfish_decipher(blf_ctx *c, u_int32_t *x)
void blowfish_decipher(FAR blf_ctx *c, FAR uint32_t *x)
{
u_int32_t Xl;
u_int32_t Xr;
u_int32_t *s = c->S[0];
u_int32_t *p = c->P;
uint32_t xl;
uint32_t xr;
FAR uint32_t *s = c->S[0];
FAR uint32_t *p = c->P;
Xl = x[0];
Xr = x[1];
xl = x[0];
xr = x[1];
Xl ^= p[17];
BLFRND(s, p, Xr, Xl, 16); BLFRND(s, p, Xl, Xr, 15);
BLFRND(s, p, Xr, Xl, 14); BLFRND(s, p, Xl, Xr, 13);
BLFRND(s, p, Xr, Xl, 12); BLFRND(s, p, Xl, Xr, 11);
BLFRND(s, p, Xr, Xl, 10); BLFRND(s, p, Xl, Xr, 9);
BLFRND(s, p, Xr, Xl, 8); BLFRND(s, p, Xl, Xr, 7);
BLFRND(s, p, Xr, Xl, 6); BLFRND(s, p, Xl, Xr, 5);
BLFRND(s, p, Xr, Xl, 4); BLFRND(s, p, Xl, Xr, 3);
BLFRND(s, p, Xr, Xl, 2); BLFRND(s, p, Xl, Xr, 1);
xl ^= p[17];
BLFRND(s, p, xr, xl, 16); BLFRND(s, p, xl, xr, 15);
BLFRND(s, p, xr, xl, 14); BLFRND(s, p, xl, xr, 13);
BLFRND(s, p, xr, xl, 12); BLFRND(s, p, xl, xr, 11);
BLFRND(s, p, xr, xl, 10); BLFRND(s, p, xl, xr, 9);
BLFRND(s, p, xr, xl, 8); BLFRND(s, p, xl, xr, 7);
BLFRND(s, p, xr, xl, 6); BLFRND(s, p, xl, xr, 5);
BLFRND(s, p, xr, xl, 4); BLFRND(s, p, xl, xr, 3);
BLFRND(s, p, xr, xl, 2); BLFRND(s, p, xl, xr, 1);
x[0] = Xr ^ p[0];
x[1] = Xl;
x[0] = xr ^ p[0];
x[1] = xl;
}
void
Blowfish_initstate(blf_ctx *c)
void blowfish_initstate(FAR blf_ctx *c)
{
/* P-box and S-box tables initialized with digits of Pi */
static const blf_ctx initstate =
{ {
{
{
{
0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7,
0xb8e1afed, 0x6a267e96, 0xba7c9045, 0xf12c7f99,
@ -180,7 +185,8 @@ Blowfish_initstate(blf_ctx *c)
0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400,
0x08ba6fb5, 0x571be91f, 0xf296ec6b, 0x2a0dd915,
0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664,
0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a},
0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a
},
{
0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623,
0xad6ea6b0, 0x49a7df7d, 0x9cee60b8, 0x8fedb266,
@ -245,7 +251,8 @@ Blowfish_initstate(blf_ctx *c)
0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9,
0xdb73dbd3, 0x105588cd, 0x675fda79, 0xe3674340,
0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20,
0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7},
0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7
},
{
0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934,
0x411520f7, 0x7602d4f7, 0xbcf46b2e, 0xd4a20068,
@ -310,7 +317,8 @@ Blowfish_initstate(blf_ctx *c)
0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4,
0x1e50ef5e, 0xb161e6f8, 0xa28514d9, 0x6c51133c,
0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837,
0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0},
0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0
},
{
0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b,
0x5cb0679e, 0x4fa33742, 0xd3822740, 0x99bc9bbe,
@ -375,7 +383,8 @@ Blowfish_initstate(blf_ctx *c)
0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e,
0x1948c25c, 0x02fb8a8c, 0x01c36ae4, 0xd6ebe1f9,
0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f,
0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6}
0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6
}
},
{
0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344,
@ -383,25 +392,29 @@ Blowfish_initstate(blf_ctx *c)
0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917,
0x9216d5d9, 0x8979fb1b
} };
}
};
*c = initstate;
}
u_int32_t
Blowfish_stream2word(const u_int8_t *data, u_int16_t databytes,
u_int16_t *current)
uint32_t blowfish_stream2word(FAR const uint8_t *data, uint16_t databytes,
FAR uint16_t *current)
{
u_int8_t i;
u_int16_t j;
u_int32_t temp;
uint8_t i;
uint16_t j;
uint32_t temp;
temp = 0x00000000;
j = *current;
for (i = 0; i < 4; i++, j++) {
for (i = 0; i < 4; i++, j++)
{
if (j >= databytes)
{
j = 0;
}
temp = (temp << 8) | data[j];
}
@ -409,35 +422,41 @@ Blowfish_stream2word(const u_int8_t *data, u_int16_t databytes,
return temp;
}
void
Blowfish_expand0state(blf_ctx *c, const u_int8_t *key, u_int16_t keybytes)
void blowfish_expand0state(FAR blf_ctx *c,
FAR const uint8_t *key,
uint16_t keybytes)
{
u_int16_t i;
u_int16_t j;
u_int16_t k;
u_int32_t temp;
u_int32_t data[2];
uint16_t i;
uint16_t j;
uint16_t k;
uint32_t temp;
uint32_t data[2];
j = 0;
for (i = 0; i < BLF_N + 2; i++) {
for (i = 0; i < BLF_N + 2; i++)
{
/* Extract 4 int8 to 1 int32 from keystream */
temp = Blowfish_stream2word(key, keybytes, &j);
temp = blowfish_stream2word(key, keybytes, &j);
c->P[i] = c->P[i] ^ temp;
}
j = 0;
data[0] = 0x00000000;
data[1] = 0x00000000;
for (i = 0; i < BLF_N + 2; i += 2) {
Blowfish_encipher(c, data);
for (i = 0; i < BLF_N + 2; i += 2)
{
blowfish_encipher(c, data);
c->P[i] = data[0];
c->P[i + 1] = data[1];
}
for (i = 0; i < 4; i++) {
for (k = 0; k < 256; k += 2) {
Blowfish_encipher(c, data);
for (i = 0; i < 4; i++)
{
for (k = 0; k < 256; k += 2)
{
blowfish_encipher(c, data);
c->S[i][k] = data[0];
c->S[i][k + 1] = data[1];
@ -445,97 +464,103 @@ Blowfish_expand0state(blf_ctx *c, const u_int8_t *key, u_int16_t keybytes)
}
}
void
Blowfish_expandstate(blf_ctx *c, const u_int8_t *data, u_int16_t databytes,
const u_int8_t *key, u_int16_t keybytes)
void blowfish_expandstate(FAR blf_ctx *c, FAR const uint8_t *data,
uint16_t databytes,
FAR const uint8_t *key, uint16_t keybytes)
{
u_int16_t i;
u_int16_t j;
u_int16_t k;
u_int32_t temp;
u_int32_t d[2];
uint16_t i;
uint16_t j;
uint16_t k;
uint32_t temp;
uint32_t d[2];
j = 0;
for (i = 0; i < BLF_N + 2; i++) {
for (i = 0; i < BLF_N + 2; i++)
{
/* Extract 4 int8 to 1 int32 from keystream */
temp = Blowfish_stream2word(key, keybytes, &j);
temp = blowfish_stream2word(key, keybytes, &j);
c->P[i] = c->P[i] ^ temp;
}
j = 0;
d[0] = 0x00000000;
d[1] = 0x00000000;
for (i = 0; i < BLF_N + 2; i += 2) {
d[0] ^= Blowfish_stream2word(data, databytes, &j);
d[1] ^= Blowfish_stream2word(data, databytes, &j);
Blowfish_encipher(c, d);
for (i = 0; i < BLF_N + 2; i += 2)
{
d[0] ^= blowfish_stream2word(data, databytes, &j);
d[1] ^= blowfish_stream2word(data, databytes, &j);
blowfish_encipher(c, d);
c->P[i] = d[0];
c->P[i + 1] = d[1];
}
for (i = 0; i < 4; i++) {
for (k = 0; k < 256; k += 2) {
d[0]^= Blowfish_stream2word(data, databytes, &j);
d[1] ^= Blowfish_stream2word(data, databytes, &j);
Blowfish_encipher(c, d);
for (i = 0; i < 4; i++)
{
for (k = 0; k < 256; k += 2)
{
d[0] ^= blowfish_stream2word(data, databytes, &j);
d[1] ^= blowfish_stream2word(data, databytes, &j);
blowfish_encipher(c, d);
c->S[i][k] = d[0];
c->S[i][k + 1] = d[1];
}
}
}
void
blf_key(blf_ctx *c, const u_int8_t *k, u_int16_t len)
void blf_key(FAR blf_ctx *c, FAR const uint8_t *k, uint16_t len)
{
/* Initialize S-boxes and subkeys with Pi */
Blowfish_initstate(c);
blowfish_initstate(c);
/* Transform S-boxes and subkeys with key */
Blowfish_expand0state(c, k, len);
blowfish_expand0state(c, k, len);
}
void
blf_enc(blf_ctx *c, u_int32_t *data, u_int16_t blocks)
void blf_enc(FAR blf_ctx *c, FAR uint32_t *data, uint16_t blocks)
{
u_int32_t *d;
u_int16_t i;
FAR uint32_t *d;
uint16_t i;
d = data;
for (i = 0; i < blocks; i++) {
Blowfish_encipher(c, d);
for (i = 0; i < blocks; i++)
{
blowfish_encipher(c, d);
d += 2;
}
}
void
blf_dec(blf_ctx *c, u_int32_t *data, u_int16_t blocks)
void blf_dec(FAR blf_ctx *c, FAR uint32_t *data, uint16_t blocks)
{
u_int32_t *d;
u_int16_t i;
FAR uint32_t *d;
uint16_t i;
d = data;
for (i = 0; i < blocks; i++) {
Blowfish_decipher(c, d);
for (i = 0; i < blocks; i++)
{
blowfish_decipher(c, d);
d += 2;
}
}
void
blf_ecb_encrypt(blf_ctx *c, u_int8_t *data, u_int32_t len)
void blf_ecb_encrypt(FAR blf_ctx *c, FAR uint8_t *data, uint32_t len)
{
u_int32_t l, r, d[2];
u_int32_t i;
uint32_t l;
uint32_t r;
uint32_t d[2];
uint32_t i;
for (i = 0; i < len; i += 8) {
for (i = 0; i < len; i += 8)
{
l = data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3];
r = data[4] << 24 | data[5] << 16 | data[6] << 8 | data[7];
d[0] = l;
d[1] = r;
Blowfish_encipher(c, d);
blowfish_encipher(c, d);
l = d[0];
r = d[1];
data[0] = l >> 24 & 0xff;
@ -550,18 +575,20 @@ blf_ecb_encrypt(blf_ctx *c, u_int8_t *data, u_int32_t len)
}
}
void
blf_ecb_decrypt(blf_ctx *c, u_int8_t *data, u_int32_t len)
void blf_ecb_decrypt(FAR blf_ctx *c, FAR uint8_t *data, uint32_t len)
{
u_int32_t l, r, d[2];
u_int32_t i;
uint32_t l;
uint32_t r;
uint32_t d[2];
uint32_t i;
for (i = 0; i < len; i += 8) {
for (i = 0; i < len; i += 8)
{
l = data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3];
r = data[4] << 24 | data[5] << 16 | data[6] << 8 | data[7];
d[0] = l;
d[1] = r;
Blowfish_decipher(c, d);
blowfish_decipher(c, d);
l = d[0];
r = d[1];
data[0] = l >> 24 & 0xff;
@ -576,20 +603,27 @@ blf_ecb_decrypt(blf_ctx *c, u_int8_t *data, u_int32_t len)
}
}
void
blf_cbc_encrypt(blf_ctx *c, u_int8_t *iv, u_int8_t *data, u_int32_t len)
void blf_cbc_encrypt(FAR blf_ctx *c, FAR uint8_t *iv,
FAR uint8_t *data, uint32_t len)
{
u_int32_t l, r, d[2];
u_int32_t i, j;
uint32_t l;
uint32_t r;
uint32_t d[2];
uint32_t i;
uint32_t j;
for (i = 0; i < len; i += 8) {
for (i = 0; i < len; i += 8)
{
for (j = 0; j < 8; j++)
{
data[j] ^= iv[j];
}
l = data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3];
r = data[4] << 24 | data[5] << 16 | data[6] << 8 | data[7];
d[0] = l;
d[1] = r;
Blowfish_encipher(c, d);
blowfish_encipher(c, d);
l = d[0];
r = d[1];
data[0] = l >> 24 & 0xff;
@ -605,21 +639,25 @@ blf_cbc_encrypt(blf_ctx *c, u_int8_t *iv, u_int8_t *data, u_int32_t len)
}
}
void
blf_cbc_decrypt(blf_ctx *c, u_int8_t *iva, u_int8_t *data, u_int32_t len)
void blf_cbc_decrypt(FAR blf_ctx *c, FAR uint8_t *iva,
FAR uint8_t *data, uint32_t len)
{
u_int32_t l, r, d[2];
u_int8_t *iv;
u_int32_t i, j;
uint32_t l;
uint32_t r;
uint32_t d[2];
FAR uint8_t *iv;
uint32_t i;
uint32_t j;
iv = data + len - 16;
data = data + len - 8;
for (i = len - 8; i >= 8; i -= 8) {
for (i = len - 8; i >= 8; i -= 8)
{
l = data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3];
r = data[4] << 24 | data[5] << 16 | data[6] << 8 | data[7];
d[0] = l;
d[1] = r;
Blowfish_decipher(c, d);
blowfish_decipher(c, d);
l = d[0];
r = d[1];
data[0] = l >> 24 & 0xff;
@ -635,11 +673,12 @@ blf_cbc_decrypt(blf_ctx *c, u_int8_t *iva, u_int8_t *data, u_int32_t len)
iv -= 8;
data -= 8;
}
l = data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3];
r = data[4] << 24 | data[5] << 16 | data[6] << 8 | data[7];
d[0] = l;
d[1] = r;
Blowfish_decipher(c, d);
blowfish_decipher(c, d);
l = d[0];
r = d[1];
data[0] = l >> 24 & 0xff;
@ -651,5 +690,7 @@ blf_cbc_decrypt(blf_ctx *c, u_int8_t *iva, u_int8_t *data, u_int32_t len)
data[6] = r >> 8 & 0xff;
data[7] = r & 0xff;
for (j = 0; j < 8; j++)
{
data[j] ^= iva[j];
}
}

View file

@ -1,11 +1,16 @@
/* $OpenBSD: cast.c,v 1.4 2012/04/25 04:12:27 matthew Exp $ */
/*
/****************************************************************************
* crypto/cast.c
* $OpenBSD: cast.c,v 1.4 2012/04/25 04:12:27 matthew Exp $
*
* CAST-128 in C
* Written by Steve Reid <sreid@sea-to-sky.net>
* 100% Public Domain - no warranty
* Released 1997.10.11
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/types.h>
#include <sys/systm.h>
@ -13,42 +18,61 @@
#include "castsb.h"
/* Macros to access 8-bit bytes out of a 32-bit word */
#define U_INT8_Ta(x) ( (u_int8_t) (x>>24) )
#define U_INT8_Tb(x) ( (u_int8_t) ((x>>16)&255) )
#define U_INT8_Tc(x) ( (u_int8_t) ((x>>8)&255) )
#define U_INT8_Td(x) ( (u_int8_t) ((x)&255) )
#define UINT8_TA(x) ( (uint8_t) (x>>24) )
#define UINT8_TB(x) ( (uint8_t) ((x>>16)&255) )
#define UINT8_TC(x) ( (uint8_t) ((x>>8)&255) )
#define UINT8_TD(x) ( (uint8_t) ((x)&255) )
/* Circular left shift */
#define ROL(x, n) ( ((x)<<(n)) | ((x)>>(32-(n))) )
/* CAST-128 uses three different round functions */
#define F1(l, r, i) \
t = ROL(key->xkey[i] + r, key->xkey[i+16]); \
l ^= ((cast_sbox1[U_INT8_Ta(t)] ^ cast_sbox2[U_INT8_Tb(t)]) - \
cast_sbox3[U_INT8_Tc(t)]) + cast_sbox4[U_INT8_Td(t)];
l ^= ((cast_sbox1[UINT8_TA(t)] ^ cast_sbox2[UINT8_TB(t)]) - \
cast_sbox3[UINT8_TC(t)]) + cast_sbox4[UINT8_TD(t)];
#define F2(l, r, i) \
t = ROL(key->xkey[i] ^ r, key->xkey[i+16]); \
l ^= ((cast_sbox1[U_INT8_Ta(t)] - cast_sbox2[U_INT8_Tb(t)]) + \
cast_sbox3[U_INT8_Tc(t)]) ^ cast_sbox4[U_INT8_Td(t)];
l ^= ((cast_sbox1[UINT8_TA(t)] - cast_sbox2[UINT8_TB(t)]) + \
cast_sbox3[UINT8_TC(t)]) ^ cast_sbox4[UINT8_TD(t)];
#define F3(l, r, i) \
t = ROL(key->xkey[i] - r, key->xkey[i+16]); \
l ^= ((cast_sbox1[U_INT8_Ta(t)] + cast_sbox2[U_INT8_Tb(t)]) ^ \
cast_sbox3[U_INT8_Tc(t)]) - cast_sbox4[U_INT8_Td(t)];
l ^= ((cast_sbox1[UINT8_TA(t)] + cast_sbox2[UINT8_TB(t)]) ^ \
cast_sbox3[UINT8_TC(t)]) - cast_sbox4[UINT8_TD(t)];
/****************************************************************************
* Public Functions
****************************************************************************/
/***** Encryption Function *****/
/* Encryption Function */
void
cast_encrypt(cast_key *key, u_int8_t *inblock, u_int8_t *outblock)
void cast_encrypt(FAR cast_key *key,
FAR uint8_t *inblock,
FAR uint8_t *outblock)
{
u_int32_t t, l, r;
uint32_t t;
uint32_t l;
uint32_t r;
/* Get inblock into l,r */
l = ((u_int32_t)inblock[0] << 24) | ((u_int32_t)inblock[1] << 16) |
((u_int32_t)inblock[2] << 8) | (u_int32_t)inblock[3];
r = ((u_int32_t)inblock[4] << 24) | ((u_int32_t)inblock[5] << 16) |
((u_int32_t)inblock[6] << 8) | (u_int32_t)inblock[7];
l = ((uint32_t)inblock[0] << 24) |
((uint32_t)inblock[1] << 16) |
((uint32_t)inblock[2] << 8) |
(uint32_t)inblock[3];
r = ((uint32_t)inblock[4] << 24) |
((uint32_t)inblock[5] << 16) |
((uint32_t)inblock[6] << 8) |
(uint32_t)inblock[7];
/* Do the work */
F1(l, r, 0);
F2(r, l, 1);
F3(l, r, 2);
@ -61,47 +85,67 @@ cast_encrypt(cast_key *key, u_int8_t *inblock, u_int8_t *outblock)
F1(r, l, 9);
F2(l, r, 10);
F3(r, l, 11);
/* Only do full 16 rounds if key length > 80 bits */
if (key->rounds > 12) {
if (key->rounds > 12)
{
F1(l, r, 12);
F2(r, l, 13);
F3(l, r, 14);
F1(r, l, 15);
}
/* Put l,r into outblock */
outblock[0] = U_INT8_Ta(r);
outblock[1] = U_INT8_Tb(r);
outblock[2] = U_INT8_Tc(r);
outblock[3] = U_INT8_Td(r);
outblock[4] = U_INT8_Ta(l);
outblock[5] = U_INT8_Tb(l);
outblock[6] = U_INT8_Tc(l);
outblock[7] = U_INT8_Td(l);
outblock[0] = UINT8_TA(r);
outblock[1] = UINT8_TB(r);
outblock[2] = UINT8_TC(r);
outblock[3] = UINT8_TD(r);
outblock[4] = UINT8_TA(l);
outblock[5] = UINT8_TB(l);
outblock[6] = UINT8_TC(l);
outblock[7] = UINT8_TD(l);
/* Wipe clean */
t = l = r = 0;
}
/* Decryption Function */
/***** Decryption Function *****/
void
cast_decrypt(cast_key *key, u_int8_t *inblock, u_int8_t *outblock)
void cast_decrypt(FAR cast_key *key,
FAR uint8_t *inblock,
FAR uint8_t *outblock)
{
u_int32_t t, l, r;
uint32_t t;
uint32_t l;
uint32_t r;
/* Get inblock into l,r */
r = ((u_int32_t)inblock[0] << 24) | ((u_int32_t)inblock[1] << 16) |
((u_int32_t)inblock[2] << 8) | (u_int32_t)inblock[3];
l = ((u_int32_t)inblock[4] << 24) | ((u_int32_t)inblock[5] << 16) |
((u_int32_t)inblock[6] << 8) | (u_int32_t)inblock[7];
r = ((uint32_t)inblock[0] << 24) |
((uint32_t)inblock[1] << 16) |
((uint32_t)inblock[2] << 8) |
(uint32_t)inblock[3];
l = ((uint32_t)inblock[4] << 24) |
((uint32_t)inblock[5] << 16) |
((uint32_t)inblock[6] << 8) |
(uint32_t)inblock[7];
/* Do the work */
/* Only do full 16 rounds if key length > 80 bits */
if (key->rounds > 12) {
if (key->rounds > 12)
{
F1(r, l, 15);
F3(l, r, 14);
F2(r, l, 13);
F1(l, r, 12);
}
F3(r, l, 11);
F2(l, r, 10);
F1(r, l, 9);
@ -114,161 +158,195 @@ cast_decrypt(cast_key *key, u_int8_t *inblock, u_int8_t *outblock)
F3(l, r, 2);
F2(r, l, 1);
F1(l, r, 0);
/* Put l,r into outblock */
outblock[0] = U_INT8_Ta(l);
outblock[1] = U_INT8_Tb(l);
outblock[2] = U_INT8_Tc(l);
outblock[3] = U_INT8_Td(l);
outblock[4] = U_INT8_Ta(r);
outblock[5] = U_INT8_Tb(r);
outblock[6] = U_INT8_Tc(r);
outblock[7] = U_INT8_Td(r);
outblock[0] = UINT8_TA(l);
outblock[1] = UINT8_TB(l);
outblock[2] = UINT8_TC(l);
outblock[3] = UINT8_TD(l);
outblock[4] = UINT8_TA(r);
outblock[5] = UINT8_TB(r);
outblock[6] = UINT8_TC(r);
outblock[7] = UINT8_TD(r);
/* Wipe clean */
t = l = r = 0;
}
/* Key Schedule */
/***** Key Schedule *****/
void
cast_setkey(cast_key *key, u_int8_t *rawkey, int keybytes)
void cast_setkey(FAR cast_key *key, FAR uint8_t *rawkey, int keybytes)
{
u_int32_t t[4], z[4], x[4];
uint32_t t[4];
uint32_t z[4];
uint32_t x[4];
int i;
/* Set number of rounds to 12 or 16, depending on key length */
key->rounds = (keybytes <= 10 ? 12 : 16);
/* Copy key to workspace x */
for (i = 0; i < 4; i++) {
for (i = 0; i < 4; i++)
{
x[i] = 0;
if ((i*4+0) < keybytes) x[i] = (u_int32_t)rawkey[i*4+0] << 24;
if ((i*4+1) < keybytes) x[i] |= (u_int32_t)rawkey[i*4+1] << 16;
if ((i*4+2) < keybytes) x[i] |= (u_int32_t)rawkey[i*4+2] << 8;
if ((i*4+3) < keybytes) x[i] |= (u_int32_t)rawkey[i*4+3];
if ((i * 4 + 0) < keybytes)
{
x[i] = (uint32_t)rawkey[i * 4 + 0] << 24;
}
if ((i * 4 + 1) < keybytes)
{
x[i] |= (uint32_t)rawkey[i * 4 + 1] << 16;
}
if ((i * 4 + 2) < keybytes)
{
x[i] |= (uint32_t)rawkey[i * 4 + 2] << 8;
}
if ((i * 4 + 3) < keybytes)
{
x[i] |= (uint32_t)rawkey[i * 4 + 3];
}
}
/* Generate 32 subkeys, four at a time */
for (i = 0; i < 32; i+=4) {
switch (i & 4) {
for (i = 0; i < 32; i += 4)
{
switch (i & 4)
{
case 0:
t[0] = z[0] = x[0] ^ cast_sbox5[U_INT8_Tb(x[3])] ^
cast_sbox6[U_INT8_Td(x[3])] ^
cast_sbox7[U_INT8_Ta(x[3])] ^
cast_sbox8[U_INT8_Tc(x[3])] ^
cast_sbox7[U_INT8_Ta(x[2])];
t[1] = z[1] = x[2] ^ cast_sbox5[U_INT8_Ta(z[0])] ^
cast_sbox6[U_INT8_Tc(z[0])] ^
cast_sbox7[U_INT8_Tb(z[0])] ^
cast_sbox8[U_INT8_Td(z[0])] ^
cast_sbox8[U_INT8_Tc(x[2])];
t[2] = z[2] = x[3] ^ cast_sbox5[U_INT8_Td(z[1])] ^
cast_sbox6[U_INT8_Tc(z[1])] ^
cast_sbox7[U_INT8_Tb(z[1])] ^
cast_sbox8[U_INT8_Ta(z[1])] ^
cast_sbox5[U_INT8_Tb(x[2])];
t[3] = z[3] = x[1] ^ cast_sbox5[U_INT8_Tc(z[2])] ^
cast_sbox6[U_INT8_Tb(z[2])] ^
cast_sbox7[U_INT8_Td(z[2])] ^
cast_sbox8[U_INT8_Ta(z[2])] ^
cast_sbox6[U_INT8_Td(x[2])];
t[0] = z[0] = x[0] ^ cast_sbox5[UINT8_TB(x[3])] ^
cast_sbox6[UINT8_TD(x[3])] ^
cast_sbox7[UINT8_TA(x[3])] ^
cast_sbox8[UINT8_TC(x[3])] ^
cast_sbox7[UINT8_TA(x[2])];
t[1] = z[1] = x[2] ^ cast_sbox5[UINT8_TA(z[0])] ^
cast_sbox6[UINT8_TC(z[0])] ^
cast_sbox7[UINT8_TB(z[0])] ^
cast_sbox8[UINT8_TD(z[0])] ^
cast_sbox8[UINT8_TC(x[2])];
t[2] = z[2] = x[3] ^ cast_sbox5[UINT8_TD(z[1])] ^
cast_sbox6[UINT8_TC(z[1])] ^
cast_sbox7[UINT8_TB(z[1])] ^
cast_sbox8[UINT8_TA(z[1])] ^
cast_sbox5[UINT8_TB(x[2])];
t[3] = z[3] = x[1] ^ cast_sbox5[UINT8_TC(z[2])] ^
cast_sbox6[UINT8_TB(z[2])] ^
cast_sbox7[UINT8_TD(z[2])] ^
cast_sbox8[UINT8_TA(z[2])] ^
cast_sbox6[UINT8_TD(x[2])];
break;
case 4:
t[0] = x[0] = z[2] ^ cast_sbox5[U_INT8_Tb(z[1])] ^
cast_sbox6[U_INT8_Td(z[1])] ^
cast_sbox7[U_INT8_Ta(z[1])] ^
cast_sbox8[U_INT8_Tc(z[1])] ^
cast_sbox7[U_INT8_Ta(z[0])];
t[1] = x[1] = z[0] ^ cast_sbox5[U_INT8_Ta(x[0])] ^
cast_sbox6[U_INT8_Tc(x[0])] ^
cast_sbox7[U_INT8_Tb(x[0])] ^
cast_sbox8[U_INT8_Td(x[0])] ^
cast_sbox8[U_INT8_Tc(z[0])];
t[2] = x[2] = z[1] ^ cast_sbox5[U_INT8_Td(x[1])] ^
cast_sbox6[U_INT8_Tc(x[1])] ^
cast_sbox7[U_INT8_Tb(x[1])] ^
cast_sbox8[U_INT8_Ta(x[1])] ^
cast_sbox5[U_INT8_Tb(z[0])];
t[3] = x[3] = z[3] ^ cast_sbox5[U_INT8_Tc(x[2])] ^
cast_sbox6[U_INT8_Tb(x[2])] ^
cast_sbox7[U_INT8_Td(x[2])] ^
cast_sbox8[U_INT8_Ta(x[2])] ^
cast_sbox6[U_INT8_Td(z[0])];
t[0] = x[0] = z[2] ^ cast_sbox5[UINT8_TB(z[1])] ^
cast_sbox6[UINT8_TD(z[1])] ^
cast_sbox7[UINT8_TA(z[1])] ^
cast_sbox8[UINT8_TC(z[1])] ^
cast_sbox7[UINT8_TA(z[0])];
t[1] = x[1] = z[0] ^ cast_sbox5[UINT8_TA(x[0])] ^
cast_sbox6[UINT8_TC(x[0])] ^
cast_sbox7[UINT8_TB(x[0])] ^
cast_sbox8[UINT8_TD(x[0])] ^
cast_sbox8[UINT8_TC(z[0])];
t[2] = x[2] = z[1] ^ cast_sbox5[UINT8_TD(x[1])] ^
cast_sbox6[UINT8_TC(x[1])] ^
cast_sbox7[UINT8_TB(x[1])] ^
cast_sbox8[UINT8_TA(x[1])] ^
cast_sbox5[UINT8_TB(z[0])];
t[3] = x[3] = z[3] ^ cast_sbox5[UINT8_TC(x[2])] ^
cast_sbox6[UINT8_TB(x[2])] ^
cast_sbox7[UINT8_TD(x[2])] ^
cast_sbox8[UINT8_TA(x[2])] ^
cast_sbox6[UINT8_TD(z[0])];
break;
}
switch (i & 12) {
switch (i & 12)
{
case 0:
case 12:
key->xkey[i+0] = cast_sbox5[U_INT8_Ta(t[2])] ^
cast_sbox6[U_INT8_Tb(t[2])] ^
cast_sbox7[U_INT8_Td(t[1])] ^
cast_sbox8[U_INT8_Tc(t[1])];
key->xkey[i+1] = cast_sbox5[U_INT8_Tc(t[2])] ^
cast_sbox6[U_INT8_Td(t[2])] ^
cast_sbox7[U_INT8_Tb(t[1])] ^
cast_sbox8[U_INT8_Ta(t[1])];
key->xkey[i+2] = cast_sbox5[U_INT8_Ta(t[3])] ^
cast_sbox6[U_INT8_Tb(t[3])] ^
cast_sbox7[U_INT8_Td(t[0])] ^
cast_sbox8[U_INT8_Tc(t[0])];
key->xkey[i+3] = cast_sbox5[U_INT8_Tc(t[3])] ^
cast_sbox6[U_INT8_Td(t[3])] ^
cast_sbox7[U_INT8_Tb(t[0])] ^
cast_sbox8[U_INT8_Ta(t[0])];
key->xkey[i + 0] = cast_sbox5[UINT8_TA(t[2])] ^
cast_sbox6[UINT8_TB(t[2])] ^
cast_sbox7[UINT8_TD(t[1])] ^
cast_sbox8[UINT8_TC(t[1])];
key->xkey[i + 1] = cast_sbox5[UINT8_TC(t[2])] ^
cast_sbox6[UINT8_TD(t[2])] ^
cast_sbox7[UINT8_TB(t[1])] ^
cast_sbox8[UINT8_TA(t[1])];
key->xkey[i + 2] = cast_sbox5[UINT8_TA(t[3])] ^
cast_sbox6[UINT8_TB(t[3])] ^
cast_sbox7[UINT8_TD(t[0])] ^
cast_sbox8[UINT8_TC(t[0])];
key->xkey[i + 3] = cast_sbox5[UINT8_TC(t[3])] ^
cast_sbox6[UINT8_TD(t[3])] ^
cast_sbox7[UINT8_TB(t[0])] ^
cast_sbox8[UINT8_TA(t[0])];
break;
case 4:
case 8:
key->xkey[i+0] = cast_sbox5[U_INT8_Td(t[0])] ^
cast_sbox6[U_INT8_Tc(t[0])] ^
cast_sbox7[U_INT8_Ta(t[3])] ^
cast_sbox8[U_INT8_Tb(t[3])];
key->xkey[i+1] = cast_sbox5[U_INT8_Tb(t[0])] ^
cast_sbox6[U_INT8_Ta(t[0])] ^
cast_sbox7[U_INT8_Tc(t[3])] ^
cast_sbox8[U_INT8_Td(t[3])];
key->xkey[i+2] = cast_sbox5[U_INT8_Td(t[1])] ^
cast_sbox6[U_INT8_Tc(t[1])] ^
cast_sbox7[U_INT8_Ta(t[2])] ^
cast_sbox8[U_INT8_Tb(t[2])];
key->xkey[i+3] = cast_sbox5[U_INT8_Tb(t[1])] ^
cast_sbox6[U_INT8_Ta(t[1])] ^
cast_sbox7[U_INT8_Tc(t[2])] ^
cast_sbox8[U_INT8_Td(t[2])];
key->xkey[i + 0] = cast_sbox5[UINT8_TD(t[0])] ^
cast_sbox6[UINT8_TC(t[0])] ^
cast_sbox7[UINT8_TA(t[3])] ^
cast_sbox8[UINT8_TB(t[3])];
key->xkey[i + 1] = cast_sbox5[UINT8_TB(t[0])] ^
cast_sbox6[UINT8_TA(t[0])] ^
cast_sbox7[UINT8_TC(t[3])] ^
cast_sbox8[UINT8_TD(t[3])];
key->xkey[i + 2] = cast_sbox5[UINT8_TD(t[1])] ^
cast_sbox6[UINT8_TC(t[1])] ^
cast_sbox7[UINT8_TA(t[2])] ^
cast_sbox8[UINT8_TB(t[2])];
key->xkey[i + 3] = cast_sbox5[UINT8_TB(t[1])] ^
cast_sbox6[UINT8_TA(t[1])] ^
cast_sbox7[UINT8_TC(t[2])] ^
cast_sbox8[UINT8_TD(t[2])];
break;
}
switch (i & 12) {
switch (i & 12)
{
case 0:
key->xkey[i+0] ^= cast_sbox5[U_INT8_Tc(z[0])];
key->xkey[i+1] ^= cast_sbox6[U_INT8_Tc(z[1])];
key->xkey[i+2] ^= cast_sbox7[U_INT8_Tb(z[2])];
key->xkey[i+3] ^= cast_sbox8[U_INT8_Ta(z[3])];
key->xkey[i + 0] ^= cast_sbox5[UINT8_TC(z[0])];
key->xkey[i + 1] ^= cast_sbox6[UINT8_TC(z[1])];
key->xkey[i + 2] ^= cast_sbox7[UINT8_TB(z[2])];
key->xkey[i + 3] ^= cast_sbox8[UINT8_TA(z[3])];
break;
case 4:
key->xkey[i+0] ^= cast_sbox5[U_INT8_Ta(x[2])];
key->xkey[i+1] ^= cast_sbox6[U_INT8_Tb(x[3])];
key->xkey[i+2] ^= cast_sbox7[U_INT8_Td(x[0])];
key->xkey[i+3] ^= cast_sbox8[U_INT8_Td(x[1])];
key->xkey[i + 0] ^= cast_sbox5[UINT8_TA(x[2])];
key->xkey[i + 1] ^= cast_sbox6[UINT8_TB(x[3])];
key->xkey[i + 2] ^= cast_sbox7[UINT8_TD(x[0])];
key->xkey[i + 3] ^= cast_sbox8[UINT8_TD(x[1])];
break;
case 8:
key->xkey[i+0] ^= cast_sbox5[U_INT8_Tb(z[2])];
key->xkey[i+1] ^= cast_sbox6[U_INT8_Ta(z[3])];
key->xkey[i+2] ^= cast_sbox7[U_INT8_Tc(z[0])];
key->xkey[i+3] ^= cast_sbox8[U_INT8_Tc(z[1])];
key->xkey[i + 0] ^= cast_sbox5[UINT8_TB(z[2])];
key->xkey[i + 1] ^= cast_sbox6[UINT8_TA(z[3])];
key->xkey[i + 2] ^= cast_sbox7[UINT8_TC(z[0])];
key->xkey[i + 3] ^= cast_sbox8[UINT8_TC(z[1])];
break;
case 12:
key->xkey[i+0] ^= cast_sbox5[U_INT8_Td(x[0])];
key->xkey[i+1] ^= cast_sbox6[U_INT8_Td(x[1])];
key->xkey[i+2] ^= cast_sbox7[U_INT8_Ta(x[2])];
key->xkey[i+3] ^= cast_sbox8[U_INT8_Tb(x[3])];
key->xkey[i + 0] ^= cast_sbox5[UINT8_TD(x[0])];
key->xkey[i + 1] ^= cast_sbox6[UINT8_TD(x[1])];
key->xkey[i + 2] ^= cast_sbox7[UINT8_TA(x[2])];
key->xkey[i + 3] ^= cast_sbox8[UINT8_TB(x[3])];
break;
}
if (i >= 16) {
if (i >= 16)
{
key->xkey[i + 0] &= 31;
key->xkey[i + 1] &= 31;
key->xkey[i + 2] &= 31;
key->xkey[i + 3] &= 31;
}
}
/* Wipe clean */
explicit_bzero(t, sizeof(t));
explicit_bzero(x, sizeof(x));
explicit_bzero(z, sizeof(z));

File diff suppressed because it is too large Load diff

View file

@ -1,34 +1,38 @@
/* $OpenBSD: chacha_private.h,v 1.4 2020/07/22 13:54:30 tobhe Exp $ */
/*
chacha-merged.c version 20080118
D. J. Bernstein
Public domain.
*/
/****************************************************************************
* crypto/chacha_private.h
* $OpenBSD: chacha_private.h,v 1.4 2020/07/22 13:54:30 tobhe Exp $
*
* chacha-merged.c version 20080118
* D. J. Bernstein
* Public domain.
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/systm.h>
typedef unsigned char u8;
typedef unsigned int u32;
typedef struct
{
u32 input[16]; /* could be compressed */
} chacha_ctx;
uint32_t input[16]; /* could be compressed */
}
chacha_ctx;
#define U8C(v) (v##U)
#define U32C(v) (v##U)
#define U8V(v) ((u8)(v) & U8C(0xFF))
#define U32V(v) ((u32)(v) & U32C(0xFFFFFFFF))
#define U8V(v) ((uint8_t)(v) & U8C(0xFF))
#define U32V(v) ((uint32_t)(v) & U32C(0xFFFFFFFF))
#define ROTL32(v, n) \
(U32V((v) << (n)) | ((v) >> (32 - (n))))
#define U8TO32_LITTLE(p) \
(((u32)((p)[0]) ) | \
((u32)((p)[1]) << 8) | \
((u32)((p)[2]) << 16) | \
((u32)((p)[3]) << 24))
(((uint32_t)((p)[0])) | \
((uint32_t)((p)[1]) << 8) | \
((uint32_t)((p)[2]) << 16) | \
((uint32_t)((p)[3]) << 24)) \
#define U32TO8_LITTLE(p, v) \
do { \
@ -44,19 +48,25 @@ typedef struct
#define PLUSONE(v) (PLUS((v), 1))
#define QUARTERROUND(a, b, c, d) \
do \
{ \
a = PLUS(a, b); d = ROTATE(XOR(d, a), 16); \
c = PLUS(c, d); b = ROTATE(XOR(b, c), 12); \
a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \
c = PLUS(c,d); b = ROTATE(XOR(b,c), 7);
c = PLUS(c, d); b = ROTATE(XOR(b, c), 7); \
} \
while (0)
static const char sigma[16] = "expand 32-byte k";
static const char tau[16] = "expand 16-byte k";
static inline void
hchacha20(u32 derived_key[8], const u8 nonce[16], const u8 key[32])
static inline void hchacha20(FAR uint32_t *derived_key,
FAR const uint8_t *nonce,
FAR const uint8_t *key)
{
int i;
uint32_t x[] = {
uint32_t x[] =
{
U8TO32_LITTLE(sigma + 0),
U8TO32_LITTLE(sigma + 4),
U8TO32_LITTLE(sigma + 8),
@ -75,36 +85,46 @@ hchacha20(u32 derived_key[8], const u8 nonce[16], const u8 key[32])
U8TO32_LITTLE(nonce + 12)
};
for (i = 20;i > 0;i -= 2) {
QUARTERROUND( x[0], x[4], x[8],x[12])
QUARTERROUND( x[1], x[5], x[9],x[13])
QUARTERROUND( x[2], x[6],x[10],x[14])
QUARTERROUND( x[3], x[7],x[11],x[15])
QUARTERROUND( x[0], x[5],x[10],x[15])
QUARTERROUND( x[1], x[6],x[11],x[12])
QUARTERROUND( x[2], x[7], x[8],x[13])
QUARTERROUND( x[3], x[4], x[9],x[14])
}
memcpy(derived_key + 0, x + 0, sizeof(u32) * 4);
memcpy(derived_key + 4, x + 12, sizeof(u32) * 4);
}
static void
chacha_keysetup(chacha_ctx *x,const u8 *k,u32 kbits)
for (i = 20; i > 0; i -= 2)
{
const char *constants;
QUARTERROUND(x[0], x[4], x[8], x[12]);
QUARTERROUND(x[1], x[5], x[9], x[13]);
QUARTERROUND(x[2], x[6], x[10], x[14]);
QUARTERROUND(x[3], x[7], x[11], x[15]);
QUARTERROUND(x[0], x[5], x[10], x[15]);
QUARTERROUND(x[1], x[6], x[11], x[12]);
QUARTERROUND(x[2], x[7], x[8], x[13]);
QUARTERROUND(x[3], x[4], x[9], x[14]);
}
memcpy(derived_key + 0, x + 0, sizeof(uint32_t) * 4);
memcpy(derived_key + 4, x + 12, sizeof(uint32_t) * 4);
}
static void chacha_keysetup(FAR chacha_ctx *x,
FAR const uint8_t *k,
FAR uint32_t kbits)
{
FAR const char *constants;
x->input[4] = U8TO32_LITTLE(k + 0);
x->input[5] = U8TO32_LITTLE(k + 4);
x->input[6] = U8TO32_LITTLE(k + 8);
x->input[7] = U8TO32_LITTLE(k + 12);
if (kbits == 256) { /* recommended */
if (kbits == 256)
{
/* recommended */
k += 16;
constants = sigma;
} else { /* kbits == 128 */
}
else
{
/* kbits == 128 */
constants = tau;
}
x->input[8] = U8TO32_LITTLE(k + 0);
x->input[9] = U8TO32_LITTLE(k + 4);
x->input[10] = U8TO32_LITTLE(k + 8);
@ -115,8 +135,9 @@ chacha_keysetup(chacha_ctx *x,const u8 *k,u32 kbits)
x->input[3] = U8TO32_LITTLE(constants + 12);
}
static void
chacha_ivsetup(chacha_ctx *x, const u8 *iv, const u8 *counter)
static void chacha_ivsetup(FAR chacha_ctx *x,
FAR const uint8_t *iv,
FAR const uint8_t *counter)
{
x->input[12] = counter == NULL ? 0 : U8TO32_LITTLE(counter + 0);
x->input[13] = counter == NULL ? 0 : U8TO32_LITTLE(counter + 4);
@ -124,16 +145,51 @@ chacha_ivsetup(chacha_ctx *x, const u8 *iv, const u8 *counter)
x->input[15] = U8TO32_LITTLE(iv + 4);
}
static void
chacha_encrypt_bytes(chacha_ctx *x,const u8 *m,u8 *c,u32 bytes)
static void chacha_encrypt_bytes(FAR chacha_ctx *x,
FAR const uint8_t *m,
FAR uint8_t *c,
uint32_t bytes)
{
u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
u8 *ctarget = NULL;
u8 tmp[64];
uint32_t x0;
uint32_t x1;
uint32_t x2;
uint32_t x3;
uint32_t x4;
uint32_t x5;
uint32_t x6;
uint32_t x7;
uint32_t x8;
uint32_t x9;
uint32_t x10;
uint32_t x11;
uint32_t x12;
uint32_t x13;
uint32_t x14;
uint32_t x15;
uint32_t j0;
uint32_t j1;
uint32_t j2;
uint32_t j3;
uint32_t j4;
uint32_t j5;
uint32_t j6;
uint32_t j7;
uint32_t j8;
uint32_t j9;
uint32_t j10;
uint32_t j11;
uint32_t j12;
uint32_t j13;
uint32_t j14;
uint32_t j15;
FAR uint8_t *ctarget = NULL;
uint8_t tmp[64];
u_int i;
if (!bytes) return;
if (!bytes)
{
return;
}
j0 = x->input[0];
j1 = x->input[1];
@ -152,13 +208,20 @@ chacha_encrypt_bytes(chacha_ctx *x,const u8 *m,u8 *c,u32 bytes)
j14 = x->input[14];
j15 = x->input[15];
for (;;) {
if (bytes < 64) {
for (i = 0;i < bytes;++i) tmp[i] = m[i];
for (; ; )
{
if (bytes < 64)
{
for (i = 0; i < bytes; ++i)
{
tmp[i] = m[i];
}
m = tmp;
ctarget = c;
c = tmp;
}
x0 = j0;
x1 = j1;
x2 = j2;
@ -175,16 +238,18 @@ chacha_encrypt_bytes(chacha_ctx *x,const u8 *m,u8 *c,u32 bytes)
x13 = j13;
x14 = j14;
x15 = j15;
for (i = 20;i > 0;i -= 2) {
QUARTERROUND( x0, x4, x8,x12)
QUARTERROUND( x1, x5, x9,x13)
QUARTERROUND( x2, x6,x10,x14)
QUARTERROUND( x3, x7,x11,x15)
QUARTERROUND( x0, x5,x10,x15)
QUARTERROUND( x1, x6,x11,x12)
QUARTERROUND( x2, x7, x8,x13)
QUARTERROUND( x3, x4, x9,x14)
for (i = 20; i > 0; i -= 2)
{
QUARTERROUND(x0, x4, x8, x12);
QUARTERROUND(x1, x5, x9, x13);
QUARTERROUND(x2, x6, x10, x14);
QUARTERROUND(x3, x7, x11, x15);
QUARTERROUND(x0, x5, x10, x15);
QUARTERROUND(x1, x6, x11, x12);
QUARTERROUND(x2, x7, x8, x13);
QUARTERROUND(x3, x4, x9, x14);
}
x0 = PLUS(x0, j0);
x1 = PLUS(x1, j1);
x2 = PLUS(x2, j2);
@ -222,8 +287,10 @@ chacha_encrypt_bytes(chacha_ctx *x,const u8 *m,u8 *c,u32 bytes)
#endif
j12 = PLUSONE(j12);
if (!j12) {
if (!j12)
{
j13 = PLUSONE(j13);
/* stopping at 2^70 bytes per nonce is user's responsibility */
}
@ -244,14 +311,21 @@ chacha_encrypt_bytes(chacha_ctx *x,const u8 *m,u8 *c,u32 bytes)
U32TO8_LITTLE(c + 56, x14);
U32TO8_LITTLE(c + 60, x15);
if (bytes <= 64) {
if (bytes < 64) {
for (i = 0;i < bytes;++i) ctarget[i] = c[i];
if (bytes <= 64)
{
if (bytes < 64)
{
for (i = 0; i < bytes; ++i)
{
ctarget[i] = c[i];
}
}
x->input[12] = j12;
x->input[13] = j13;
return;
}
bytes -= 64;
c += 64;
#ifndef KEYSTREAM_ONLY

View file

@ -1,5 +1,7 @@
/* $OpenBSD: chachapoly.c,v 1.6 2020/07/22 13:54:30 tobhe Exp $ */
/*
/****************************************************************************
* crypto/chachapoly.c
* $OpenBSD: chachapoly.c,v 1.6 2020/07/22 13:54:30 tobhe Exp $
*
* Copyright (c) 2015 Mike Belopuhov
*
* Permission to use, copy, modify, and distribute this software for any
@ -13,7 +15,11 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
@ -22,132 +28,152 @@
#include <crypto/poly1305.h>
#include <crypto/chachapoly.h>
int
chacha20_setkey(void *sched, u_int8_t *key, int len)
#include "chacha_private.h"
/****************************************************************************
* Private Data
****************************************************************************/
static const uint8_t pad0[16];
/****************************************************************************
* Public Functions
****************************************************************************/
int chacha20_setkey(FAR void *sched, FAR uint8_t *key, int len)
{
struct chacha20_ctx *ctx = (struct chacha20_ctx *)sched;
FAR struct chacha20_ctx *ctx = (FAR struct chacha20_ctx *)sched;
if (len != CHACHA20_KEYSIZE + CHACHA20_SALT)
return (-1);
{
return -1;
}
/* initial counter is 1 */
ctx->nonce[0] = 1;
memcpy(ctx->nonce + CHACHA20_CTR, key + CHACHA20_KEYSIZE,
CHACHA20_SALT);
chacha_keysetup((chacha_ctx *)&ctx->block, key, CHACHA20_KEYSIZE * 8);
return (0);
chacha_keysetup((FAR chacha_ctx *)&ctx->block, key, CHACHA20_KEYSIZE * 8);
return 0;
}
void
chacha20_reinit(caddr_t key, u_int8_t *iv)
void chacha20_reinit(caddr_t key, FAR uint8_t *iv)
{
struct chacha20_ctx *ctx = (struct chacha20_ctx *)key;
FAR struct chacha20_ctx *ctx = (FAR struct chacha20_ctx *)key;
chacha_ivsetup((chacha_ctx *)ctx->block, iv, ctx->nonce);
chacha_ivsetup((FAR chacha_ctx *)ctx->block, iv, ctx->nonce);
}
void
chacha20_crypt(caddr_t key, u_int8_t *data)
void chacha20_crypt(caddr_t key, FAR uint8_t *data)
{
struct chacha20_ctx *ctx = (struct chacha20_ctx *)key;
FAR struct chacha20_ctx *ctx = (FAR struct chacha20_ctx *)key;
chacha_encrypt_bytes((chacha_ctx *)ctx->block, data, data,
chacha_encrypt_bytes((FAR chacha_ctx *)ctx->block, data, data,
CHACHA20_BLOCK_LEN);
}
void
Chacha20_Poly1305_Init(void *xctx)
void chacha20_poly1305_init(FAR void *xctx)
{
CHACHA20_POLY1305_CTX *ctx = xctx;
FAR CHACHA20_POLY1305_CTX *ctx = xctx;
memset(ctx, 0, sizeof(*ctx));
}
void
Chacha20_Poly1305_Setkey(void *xctx, const uint8_t *key, uint16_t klen)
void chacha20_poly1305_setkey(FAR void *xctx, FAR const uint8_t *key,
uint16_t klen)
{
CHACHA20_POLY1305_CTX *ctx = xctx;
FAR CHACHA20_POLY1305_CTX *ctx = xctx;
/* salt is provided with the key material */
memcpy(ctx->nonce + CHACHA20_CTR, key + CHACHA20_KEYSIZE,
CHACHA20_SALT);
chacha_keysetup((chacha_ctx *)&ctx->chacha, key, CHACHA20_KEYSIZE * 8);
chacha_keysetup((FAR chacha_ctx *)&ctx->chacha, key, CHACHA20_KEYSIZE * 8);
}
void
Chacha20_Poly1305_Reinit(void *xctx, const uint8_t *iv, uint16_t ivlen)
void chacha20_poly1305_reinit(FAR void *xctx, FAR const uint8_t *iv,
uint16_t ivlen)
{
CHACHA20_POLY1305_CTX *ctx = xctx;
FAR CHACHA20_POLY1305_CTX *ctx = xctx;
/* initial counter is 0 */
chacha_ivsetup((chacha_ctx *)&ctx->chacha, iv, ctx->nonce);
chacha_encrypt_bytes((chacha_ctx *)&ctx->chacha, ctx->key, ctx->key,
chacha_ivsetup((FAR chacha_ctx *)&ctx->chacha, iv, ctx->nonce);
chacha_encrypt_bytes((FAR chacha_ctx *)&ctx->chacha, ctx->key, ctx->key,
POLY1305_KEYLEN);
poly1305_init((poly1305_state *)&ctx->poly, ctx->key);
poly1305_init((FAR poly1305_state *)&ctx->poly, ctx->key);
}
int
Chacha20_Poly1305_Update(void *xctx, const uint8_t *data, uint16_t len)
int chacha20_poly1305_update(FAR void *xctx, FAR const uint8_t *data,
uint16_t len)
{
static const unsigned char zeroes[POLY1305_BLOCK_LEN];
CHACHA20_POLY1305_CTX *ctx = xctx;
FAR CHACHA20_POLY1305_CTX *ctx = xctx;
size_t rem;
poly1305_update((poly1305_state *)&ctx->poly, data, len);
poly1305_update((FAR poly1305_state *)&ctx->poly, data, len);
/* number of bytes in the last 16 byte block */
rem = (len + POLY1305_BLOCK_LEN) & (POLY1305_BLOCK_LEN - 1);
if (rem > 0)
poly1305_update((poly1305_state *)&ctx->poly, zeroes,
{
poly1305_update((FAR poly1305_state *)&ctx->poly, zeroes,
POLY1305_BLOCK_LEN - rem);
return (0);
}
void
Chacha20_Poly1305_Final(uint8_t tag[POLY1305_TAGLEN], void *xctx)
{
CHACHA20_POLY1305_CTX *ctx = xctx;
return 0;
}
poly1305_finish((poly1305_state *)&ctx->poly, tag);
void chacha20_poly1305_final(FAR uint8_t *tag, FAR void *xctx)
{
FAR CHACHA20_POLY1305_CTX *ctx = xctx;
poly1305_finish((FAR poly1305_state *)&ctx->poly, tag);
explicit_bzero(ctx, sizeof(*ctx));
}
static const uint8_t pad0[16] = { 0 };
void
chacha20poly1305_encrypt(
uint8_t *dst,
const uint8_t *src,
void chacha20poly1305_encrypt(
FAR uint8_t *dst,
FAR const uint8_t *src,
const size_t src_len,
const uint8_t *ad,
FAR const uint8_t *ad,
const size_t ad_len,
const uint64_t nonce,
const uint8_t key[CHACHA20POLY1305_KEY_SIZE]
) {
FAR const uint8_t *key)
{
poly1305_state poly1305_ctx;
chacha_ctx ctx;
union {
union
{
uint8_t b0[CHACHA20POLY1305_KEY_SIZE];
uint64_t lens[2];
} b = { { 0 } };
} b =
{
{
0
}
};
uint64_t le_nonce = htole64(nonce);
chacha_keysetup(&ctx, key, CHACHA20POLY1305_KEY_SIZE * 8);
chacha_ivsetup(&ctx, (uint8_t *) &le_nonce, NULL);
chacha_ivsetup(&ctx, (FAR uint8_t *) &le_nonce, NULL);
chacha_encrypt_bytes(&ctx, b.b0, b.b0, sizeof(b.b0));
poly1305_init(&poly1305_ctx, b.b0);
poly1305_update(&poly1305_ctx, ad, ad_len);
poly1305_update(&poly1305_ctx, pad0, (0x10 - ad_len) & 0xf);
chacha_encrypt_bytes(&ctx, (uint8_t *) src, dst, src_len);
chacha_encrypt_bytes(&ctx, (FAR uint8_t *)src, dst, src_len);
poly1305_update(&poly1305_ctx, dst, src_len);
poly1305_update(&poly1305_ctx, pad0, (0x10 - src_len) & 0xf);
b.lens[0] = htole64(ad_len);
b.lens[1] = htole64(src_len);
poly1305_update(&poly1305_ctx, (uint8_t *)b.lens, sizeof(b.lens));
poly1305_update(&poly1305_ctx, (FAR uint8_t *)b.lens, sizeof(b.lens));
poly1305_finish(&poly1305_ctx, dst + src_len);
@ -155,16 +181,15 @@ chacha20poly1305_encrypt(
explicit_bzero(&b, sizeof(b));
}
int
chacha20poly1305_decrypt(
uint8_t *dst,
const uint8_t *src,
int chacha20poly1305_decrypt(
FAR uint8_t *dst,
FAR const uint8_t *src,
const size_t src_len,
const uint8_t *ad,
FAR const uint8_t *ad,
const size_t ad_len,
const uint64_t nonce,
const uint8_t key[CHACHA20POLY1305_KEY_SIZE]
) {
FAR const uint8_t *key)
{
poly1305_state poly1305_ctx;
chacha_ctx ctx;
int ret;
@ -173,14 +198,22 @@ chacha20poly1305_decrypt(
uint8_t b0[CHACHA20POLY1305_KEY_SIZE];
uint8_t mac[CHACHA20POLY1305_AUTHTAG_SIZE];
uint64_t lens[2];
} b = { { 0 } };
} b =
{
{
0
}
};
uint64_t le_nonce = htole64(nonce);
if (src_len < CHACHA20POLY1305_AUTHTAG_SIZE)
{
return 0;
}
chacha_keysetup(&ctx, key, CHACHA20POLY1305_KEY_SIZE * 8);
chacha_ivsetup(&ctx, (uint8_t *) &le_nonce, NULL);
chacha_ivsetup(&ctx, (FAR uint8_t *) &le_nonce, NULL);
chacha_encrypt_bytes(&ctx, b.b0, b.b0, sizeof(b.b0));
poly1305_init(&poly1305_ctx, b.b0);
@ -193,30 +226,31 @@ chacha20poly1305_decrypt(
b.lens[0] = htole64(ad_len);
b.lens[1] = htole64(dst_len);
poly1305_update(&poly1305_ctx, (uint8_t *)b.lens, sizeof(b.lens));
poly1305_update(&poly1305_ctx, (FAR uint8_t *)b.lens, sizeof(b.lens));
poly1305_finish(&poly1305_ctx, b.mac);
ret = timingsafe_bcmp(b.mac, src + dst_len, CHACHA20POLY1305_AUTHTAG_SIZE);
if (!ret)
chacha_encrypt_bytes(&ctx, (uint8_t *) src, dst, dst_len);
{
chacha_encrypt_bytes(&ctx, (FAR uint8_t *) src, dst, dst_len);
}
explicit_bzero(&ctx, sizeof(ctx));
explicit_bzero(&ctx, sizeof(chacha_ctx));
explicit_bzero(&b, sizeof(b));
return !ret;
}
void
xchacha20poly1305_encrypt(
uint8_t *dst,
const uint8_t *src,
void xchacha20poly1305_encrypt(
FAR uint8_t *dst,
FAR const uint8_t *src,
const size_t src_len,
const uint8_t *ad,
FAR const uint8_t *ad,
const size_t ad_len,
const uint8_t nonce[XCHACHA20POLY1305_NONCE_SIZE],
const uint8_t key[CHACHA20POLY1305_KEY_SIZE]
) {
FAR const uint8_t *nonce,
FAR const uint8_t *key)
{
int i;
uint32_t derived_key[CHACHA20POLY1305_KEY_SIZE / sizeof(uint32_t)];
uint64_t h_nonce;
@ -226,24 +260,26 @@ xchacha20poly1305_encrypt(
hchacha20(derived_key, nonce, key);
for (i = 0; i < (sizeof(derived_key) / sizeof(derived_key[0])); i++)
(derived_key[i]) = htole32((derived_key[i]));
{
derived_key[i] = htole32(derived_key[i]);
}
chacha20poly1305_encrypt(dst, src, src_len, ad, ad_len,
h_nonce, (uint8_t *)derived_key);
h_nonce, (FAR uint8_t *)derived_key);
explicit_bzero(derived_key, CHACHA20POLY1305_KEY_SIZE);
}
int
xchacha20poly1305_decrypt(
uint8_t *dst,
const uint8_t *src,
int xchacha20poly1305_decrypt(
FAR uint8_t *dst,
FAR const uint8_t *src,
const size_t src_len,
const uint8_t *ad,
FAR const uint8_t *ad,
const size_t ad_len,
const uint8_t nonce[XCHACHA20POLY1305_NONCE_SIZE],
const uint8_t key[CHACHA20POLY1305_KEY_SIZE]
) {
int ret, i;
FAR const uint8_t *nonce,
FAR const uint8_t *key)
{
int ret;
int i;
uint32_t derived_key[CHACHA20POLY1305_KEY_SIZE / sizeof(uint32_t)];
uint64_t h_nonce;
@ -251,10 +287,12 @@ xchacha20poly1305_decrypt(
h_nonce = le64toh(h_nonce);
hchacha20(derived_key, nonce, key);
for (i = 0; i < (sizeof(derived_key) / sizeof(derived_key[0])); i++)
(derived_key[i]) = htole32((derived_key[i]));
{
derived_key[i] = htole32(derived_key[i]);
}
ret = chacha20poly1305_decrypt(dst, src, src_len, ad, ad_len,
h_nonce, (uint8_t *)derived_key);
h_nonce, (FAR uint8_t *)derived_key);
explicit_bzero(derived_key, CHACHA20POLY1305_KEY_SIZE);
return ret;

View file

@ -1,6 +1,7 @@
/* $OpenBSD: cmac.c,v 1.3 2017/05/02 17:07:06 mikeb Exp $ */
/*-
/****************************************************************************
* crypto/cmac.c
* $OpenBSD: cmac.c,v 1.3 2017/05/02 17:07:06 mikeb Exp $
*
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,107 +15,145 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
*
****************************************************************************/
/*
* This code implements the CMAC (Cipher-based Message Authentication)
/* This code implements the CMAC (Cipher-based Message Authentication)
* algorithm described in FIPS SP800-38B using the AES-128 cipher.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
#include <crypto/aes.h>
#include <crypto/cmac.h>
#define LSHIFT(v, r) do { \
#define LSHIFT(v, r) do \
{ \
int i; \
for (i = 0; i < 15; i++) \
(r)[i] = (v)[i] << 1 | (v)[i + 1] >> 7; \
(r)[15] = (v)[15] << 1; \
} while (0)
#define XOR(v, r) do { \
#define XOR(v, r) do \
{ \
int i; \
for (i = 0; i < 16; i++) \
(r)[i] ^= (v)[i]; \
} while (0)
void
AES_CMAC_Init(AES_CMAC_CTX *ctx)
/****************************************************************************
* Public Functions
****************************************************************************/
void aes_cmac_init(FAR AES_CMAC_CTX *ctx)
{
memset(ctx->X, 0, sizeof ctx->X);
ctx->M_n = 0;
ctx->m_n = 0;
}
void
AES_CMAC_SetKey(AES_CMAC_CTX *ctx, const u_int8_t key[AES_CMAC_KEY_LENGTH])
void aes_cmac_setkey(FAR AES_CMAC_CTX *ctx,
FAR const uint8_t *key)
{
AES_Setkey(&ctx->aesctx, key, 16);
aes_setkey(&ctx->aesctx, key, 16);
}
void
AES_CMAC_Update(AES_CMAC_CTX *ctx, const u_int8_t *data, u_int len)
void aes_cmac_update(FAR AES_CMAC_CTX *ctx,
FAR const uint8_t *data,
u_int len)
{
u_int mlen;
if (ctx->M_n > 0) {
mlen = MIN(16 - ctx->M_n, len);
memcpy(ctx->M_last + ctx->M_n, data, mlen);
ctx->M_n += mlen;
if (ctx->M_n < 16 || len == mlen)
if (ctx->m_n > 0)
{
mlen = MIN(16 - ctx->m_n, len);
memcpy(ctx->m_last + ctx->m_n, data, mlen);
ctx->m_n += mlen;
if (ctx->m_n < 16 || len == mlen)
{
return;
XOR(ctx->M_last, ctx->X);
AES_Encrypt(&ctx->aesctx, ctx->X, ctx->X);
}
XOR(ctx->m_last, ctx->X);
aes_encrypt(&ctx->aesctx, ctx->X, ctx->X);
data += mlen;
len -= mlen;
}
while (len > 16) { /* not last block */
while (len > 16)
{
/* not last block */
XOR(data, ctx->X);
AES_Encrypt(&ctx->aesctx, ctx->X, ctx->X);
aes_encrypt(&ctx->aesctx, ctx->X, ctx->X);
data += 16;
len -= 16;
}
/* potential last block, save it */
memcpy(ctx->M_last, data, len);
ctx->M_n = len;
memcpy(ctx->m_last, data, len);
ctx->m_n = len;
}
void
AES_CMAC_Final(u_int8_t digest[AES_CMAC_DIGEST_LENGTH], AES_CMAC_CTX *ctx)
void aes_cmac_final(FAR uint8_t *digest,
FAR AES_CMAC_CTX *ctx)
{
u_int8_t K[16];
uint8_t K[16];
/* generate subkey K1 */
memset(K, 0, sizeof K);
AES_Encrypt(&ctx->aesctx, K, K);
aes_encrypt(&ctx->aesctx, K, K);
if (K[0] & 0x80) {
if (K[0] & 0x80)
{
LSHIFT(K, K);
K[15] ^= 0x87;
} else
LSHIFT(K, K);
if (ctx->M_n == 16) {
/* last block was a complete block */
XOR(K, ctx->M_last);
} else {
/* generate subkey K2 */
if (K[0] & 0x80) {
LSHIFT(K, K);
K[15] ^= 0x87;
} else
LSHIFT(K, K);
/* padding(M_last) */
ctx->M_last[ctx->M_n] = 0x80;
while (++ctx->M_n < 16)
ctx->M_last[ctx->M_n] = 0;
XOR(K, ctx->M_last);
}
XOR(ctx->M_last, ctx->X);
AES_Encrypt(&ctx->aesctx, ctx->X, digest);
else
{
LSHIFT(K, K);
}
if (ctx->m_n == 16)
{
/* last block was a complete block */
XOR(K, ctx->m_last);
}
else
{
/* generate subkey K2 */
if (K[0] & 0x80)
{
LSHIFT(K, K);
K[15] ^= 0x87;
}
else
{
LSHIFT(K, K);
}
/* padding(m_last) */
ctx->m_last[ctx->m_n] = 0x80;
while (++ctx->m_n < 16)
{
ctx->m_last[ctx->m_n] = 0;
}
XOR(K, ctx->m_last);
}
XOR(ctx->m_last, ctx->X);
aes_encrypt(&ctx->aesctx, ctx->X, digest);
explicit_bzero(K, sizeof K);
}

View file

@ -1,5 +1,7 @@
/* $OpenBSD: crypto.c,v 1.65 2014/07/13 23:24:47 deraadt Exp $ */
/*
/****************************************************************************
* crypto/crypto.c
* $OpenBSD: crypto.c,v 1.65 2014/07/13 23:24:47 deraadt Exp $
*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
@ -18,7 +20,11 @@
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
@ -28,34 +34,47 @@
#include <crypto/cryptodev.h>
/****************************************************************************
* Public Functions
****************************************************************************/
void crypto_init(void);
struct cryptocap *crypto_drivers = NULL;
/****************************************************************************
* Public Data
****************************************************************************/
FAR static struct cryptocap *crypto_drivers = NULL;
int crypto_drivers_num = 0;
struct pool cryptop_pool;
struct pool cryptodesc_pool;
struct taskq *crypto_taskq;
FAR struct taskq *crypto_taskq;
/*
* Create a new session.
*/
int
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
/* Create a new session. */
int crypto_newsession(FAR uint64_t *sid,
FAR struct cryptoini *cri,
int hard)
{
u_int32_t hid, lid, hid2 = -1;
struct cryptocap *cpc;
struct cryptoini *cr;
int err, s, turn = 0;
uint32_t hid;
uint32_t lid;
uint32_t hid2 = -1;
FAR struct cryptocap *cpc;
FAR struct cryptoini *cr;
int turn = 0;
int err;
int s;
if (crypto_drivers == NULL)
{
return EINVAL;
}
s = splvm();
/*
* The algorithm we use here is pretty stupid; just use the
/* The algorithm we use here is pretty stupid; just use the
* first driver that supports all the algorithms we need. Do
* a double-pass over all the drivers, ignoring software ones
* at first, to deal with cases of drivers that register after
@ -64,102 +83,132 @@ crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
* XXX We need more smarts here (in real life too, but that's
* XXX another story altogether).
*/
do {
for (hid = 0; hid < crypto_drivers_num; hid++) {
do
{
for (hid = 0; hid < crypto_drivers_num; hid++)
{
cpc = &crypto_drivers[hid];
/*
* If it's not initialized or has remaining sessions
/* If it's not initialized or has remaining sessions
* referencing it, skip.
*/
if (cpc->cc_newsession == NULL ||
(cpc->cc_flags & CRYPTOCAP_F_CLEANUP))
{
continue;
}
if (cpc->cc_flags & CRYPTOCAP_F_SOFTWARE) {
/*
* First round of search, ignore
if (cpc->cc_flags & CRYPTOCAP_F_SOFTWARE)
{
/* First round of search, ignore
* software drivers.
*/
if (turn == 0)
{
continue;
} else { /* !CRYPTOCAP_F_SOFTWARE */
/* Second round of search, only software. */
}
}
else
{
/* !CRYPTOCAP_F_SOFTWARE
* Second round of search, only software.
*/
if (turn == 1)
{
continue;
}
}
/* See if all the algorithms are supported. */
for (cr = cri; cr; cr = cr->cri_next) {
for (cr = cri; cr; cr = cr->cri_next)
{
if (cpc->cc_alg[cr->cri_alg] == 0)
{
break;
}
}
/*
* If even one algorithm is not supported,
/* If even one algorithm is not supported,
* keep searching.
*/
if (cr != NULL)
continue;
/*
* If we had a previous match, see how it compares
if (cr != NULL)
{
continue;
}
/* If we had a previous match, see how it compares
* to this one. Keep "remembering" whichever is
* the best of the two.
*/
if (hid2 != -1) {
/*
* Compare session numbers, pick the one
if (hid2 != -1)
{
/* Compare session numbers, pick the one
* with the lowest.
* XXX Need better metrics, this will
* XXX just do un-weighted round-robin.
*/
if (crypto_drivers[hid].cc_sessions <=
crypto_drivers[hid2].cc_sessions)
{
hid2 = hid;
} else {
/*
* Remember this one, for future
}
}
else
{
/* Remember this one, for future
* comparisons.
*/
hid2 = hid;
}
}
/*
* If we found something worth remembering, leave. The
/* If we found something worth remembering, leave. The
* side-effect is that we will always prefer a hardware
* driver over the software one.
*/
if (hid2 != -1)
{
break;
}
turn++;
/* If we only want hardware drivers, don't do second pass. */
} while (turn <= 2 && hard == 0);
}
while (turn <= 2 && hard == 0);
hid = hid2;
/*
* Can't do everything in one session.
*
/* Can't do everything in one session.
* XXX Fix this. We need to inject a "virtual" session
* XXX layer right about here.
*/
if (hid == -1) {
if (hid == -1)
{
splx(s);
return EINVAL;
}
/* Call the driver initialization routine. */
lid = hid; /* Pass the driver ID. */
err = crypto_drivers[hid].cc_newsession(&lid, cri);
if (err == 0) {
(*sid) = hid;
(*sid) <<= 32;
(*sid) |= (lid & 0xffffffff);
if (err == 0)
{
*sid = hid;
*sid <<= 32;
*sid |= (lid & 0xffffffff);
crypto_drivers[hid].cc_sessions++;
}
@ -167,62 +216,76 @@ crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
return err;
}
/*
* Delete an existing session (or a reserved session on an unregistered
/* Delete an existing session (or a reserved session on an unregistered
* driver).
*/
int
crypto_freesession(u_int64_t sid)
int crypto_freesession(uint64_t sid)
{
int err = 0, s;
u_int32_t hid;
int err = 0;
int s;
uint32_t hid;
if (crypto_drivers == NULL)
{
return EINVAL;
}
/* Determine two IDs. */
hid = (sid >> 32) & 0xffffffff;
if (hid >= crypto_drivers_num)
{
return ENOENT;
}
s = splvm();
if (crypto_drivers[hid].cc_sessions)
{
crypto_drivers[hid].cc_sessions--;
}
/* Call the driver cleanup routine, if available. */
if (crypto_drivers[hid].cc_freesession)
err = crypto_drivers[hid].cc_freesession(sid);
/*
* If this was the last session of a driver marked as invalid,
if (crypto_drivers[hid].cc_freesession)
{
err = crypto_drivers[hid].cc_freesession(sid);
}
/* If this was the last session of a driver marked as invalid,
* make the entry available for reuse.
*/
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
crypto_drivers[hid].cc_sessions == 0)
{
explicit_bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
}
splx(s);
return err;
}
/*
* Find an empty slot.
*/
int32_t
crypto_get_driverid(u_int8_t flags)
/* Find an empty slot. */
int crypto_get_driverid(uint8_t flags)
{
struct cryptocap *newdrv;
int i, s;
FAR struct cryptocap *newdrv;
int i;
int s;
s = splvm();
if (crypto_drivers_num == 0) {
if (crypto_drivers_num == 0)
{
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
crypto_drivers = mallocarray(crypto_drivers_num,
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT);
if (crypto_drivers == NULL) {
sizeof(struct cryptocap),
M_CRYPTO_DATA, M_NOWAIT);
if (crypto_drivers == NULL)
{
crypto_drivers_num = 0;
splx(s);
return -1;
@ -232,10 +295,12 @@ crypto_get_driverid(u_int8_t flags)
sizeof(struct cryptocap));
}
for (i = 0; i < crypto_drivers_num; i++) {
for (i = 0; i < crypto_drivers_num; i++)
{
if (crypto_drivers[i].cc_process == NULL &&
!(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) &&
crypto_drivers[i].cc_sessions == 0) {
crypto_drivers[i].cc_sessions == 0)
{
crypto_drivers[i].cc_sessions = 1; /* Mark */
crypto_drivers[i].cc_flags = flags;
splx(s);
@ -244,15 +309,20 @@ crypto_get_driverid(u_int8_t flags)
}
/* Out of entries, allocate some more. */
if (i == crypto_drivers_num) {
if (crypto_drivers_num >= CRYPTO_DRIVERS_MAX) {
if (i == crypto_drivers_num)
{
if (crypto_drivers_num >= CRYPTO_DRIVERS_MAX)
{
splx(s);
return -1;
}
newdrv = mallocarray(crypto_drivers_num,
2 * sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT);
if (newdrv == NULL) {
2 * sizeof(struct cryptocap),
M_CRYPTO_DATA, M_NOWAIT);
if (newdrv == NULL)
{
splx(s);
return -1;
}
@ -273,29 +343,32 @@ crypto_get_driverid(u_int8_t flags)
}
/* Shouldn't really get here... */
splx(s);
return -1;
}
/*
* Register a crypto driver. It should be called once for each algorithm
/* Register a crypto driver. It should be called once for each algorithm
* supported by the driver.
*/
int
crypto_kregister(u_int32_t driverid, int *kalg,
int (*kprocess)(struct cryptkop *))
int crypto_kregister(uint32_t driverid, FAR int *kalg,
CODE int (*kprocess)(FAR struct cryptkop *))
{
int s, i;
int s;
int i;
if (driverid >= crypto_drivers_num || kalg == NULL ||
crypto_drivers == NULL)
{
return EINVAL;
}
s = splvm();
for (i = 0; i <= CRK_ALGORITHM_MAX; i++) {
/*
* XXX Do some performance testing to determine
for (i = 0; i <= CRK_ALGORITHM_MAX; i++)
{
/* XXX Do some performance testing to determine
* placing. We probably need an auxiliary data
* structure that describes relative performances.
*/
@ -310,23 +383,27 @@ crypto_kregister(u_int32_t driverid, int *kalg,
}
/* Register a crypto driver. */
int
crypto_register(u_int32_t driverid, int *alg,
int (*newses)(u_int32_t *, struct cryptoini *),
int (*freeses)(u_int64_t), int (*process)(struct cryptop *))
{
int s, i;
int crypto_register(uint32_t driverid, FAR int *alg,
CODE int (*newses)(FAR uint32_t *,
FAR struct cryptoini *),
CODE int (*freeses)(uint64_t),
CODE int (*process)(FAR struct cryptop *))
{
int s;
int i;
if (driverid >= crypto_drivers_num || alg == NULL ||
crypto_drivers == NULL)
{
return EINVAL;
}
s = splvm();
for (i = 0; i <= CRYPTO_ALGORITHM_MAX; i++) {
/*
* XXX Do some performance testing to determine
for (i = 0; i <= CRYPTO_ALGORITHM_MAX; i++)
{
/* XXX Do some performance testing to determine
* placing. We probably need an auxiliary data
* structure that describes relative performances.
*/
@ -334,7 +411,6 @@ crypto_register(u_int32_t driverid, int *alg,
crypto_drivers[driverid].cc_alg[i] = alg[i];
}
crypto_drivers[driverid].cc_newsession = newses;
crypto_drivers[driverid].cc_process = process;
crypto_drivers[driverid].cc_freesession = freeses;
@ -345,119 +421,144 @@ crypto_register(u_int32_t driverid, int *alg,
return 0;
}
/*
* Unregister a crypto driver. If there are pending sessions using it,
/* Unregister a crypto driver. If there are pending sessions using it,
* leave enough information around so that subsequent calls using those
* sessions will correctly detect the driver being unregistered and reroute
* the request.
*/
int
crypto_unregister(u_int32_t driverid, int alg)
int crypto_unregister(uint32_t driverid, int alg)
{
int i = CRYPTO_ALGORITHM_MAX + 1, s;
u_int32_t ses;
int i = CRYPTO_ALGORITHM_MAX + 1;
int s;
uint32_t ses;
s = splvm();
/* Sanity checks. */
if (driverid >= crypto_drivers_num || crypto_drivers == NULL ||
((alg <= 0 || alg > CRYPTO_ALGORITHM_MAX) &&
alg != CRYPTO_ALGORITHM_MAX + 1) ||
crypto_drivers[driverid].cc_alg[alg] == 0) {
crypto_drivers[driverid].cc_alg[alg] == 0)
{
splx(s);
return EINVAL;
}
if (alg != CRYPTO_ALGORITHM_MAX + 1) {
if (alg != CRYPTO_ALGORITHM_MAX + 1)
{
crypto_drivers[driverid].cc_alg[alg] = 0;
/* Was this the last algorithm ? */
for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
{
if (crypto_drivers[driverid].cc_alg[i] != 0)
{
break;
}
}
}
/*
* If a driver unregistered its last algorithm or all of them
/* If a driver unregistered its last algorithm or all of them
* (alg == CRYPTO_ALGORITHM_MAX + 1), cleanup its entry.
*/
if (i == CRYPTO_ALGORITHM_MAX + 1 || alg == CRYPTO_ALGORITHM_MAX + 1) {
if (i == CRYPTO_ALGORITHM_MAX + 1 || alg == CRYPTO_ALGORITHM_MAX + 1)
{
ses = crypto_drivers[driverid].cc_sessions;
bzero(&crypto_drivers[driverid], sizeof(struct cryptocap));
if (ses != 0) {
/*
* If there are pending sessions, just mark as invalid.
*/
if (ses != 0)
{
/* If there are pending sessions, just mark as invalid. */
crypto_drivers[driverid].cc_flags |= CRYPTOCAP_F_CLEANUP;
crypto_drivers[driverid].cc_sessions = ses;
}
}
splx(s);
return 0;
}
/*
* Add crypto request to a queue, to be processed by a kernel thread.
*/
int
crypto_dispatch(struct cryptop *crp)
/* Add crypto request to a queue, to be processed by a kernel thread. */
int crypto_dispatch(FAR struct cryptop *crp)
{
if (crypto_taskq && !(crp->crp_flags & CRYPTO_F_NOQUEUE))
{
if (crypto_taskq && !(crp->crp_flags & CRYPTO_F_NOQUEUE)) {
task_set(&crp->crp_task, (void (*))crypto_invoke, crp, NULL);
task_add(crypto_taskq, &crp->crp_task);
} else {
}
else
{
crypto_invoke(crp);
}
return 0;
}
int
crypto_kdispatch(struct cryptkop *krp)
int crypto_kdispatch(FAR struct cryptkop *krp)
{
if (crypto_taskq)
{
if (crypto_taskq) {
task_set(&krp->krp_task, (void (*))crypto_kinvoke, krp, NULL);
task_add(crypto_taskq, &krp->krp_task);
} else {
}
else
{
crypto_kinvoke(krp);
}
return 0;
}
/*
* Dispatch an asymmetric crypto request to the appropriate crypto devices.
*/
int
crypto_kinvoke(struct cryptkop *krp)
/* Dispatch an asymmetric crypto request to the appropriate crypto devices. */
int crypto_kinvoke(FAR struct cryptkop *krp)
{
extern int cryptodevallowsoft;
u_int32_t hid;
uint32_t hid;
int error;
int s;
/* Sanity checks. */
if (krp == NULL || krp->krp_callback == NULL)
return (EINVAL);
{
return EINVAL;
}
s = splvm();
for (hid = 0; hid < crypto_drivers_num; hid++) {
for (hid = 0; hid < crypto_drivers_num; hid++)
{
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
cryptodevallowsoft == 0)
{
continue;
}
if (crypto_drivers[hid].cc_kprocess == NULL)
{
continue;
}
if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
CRYPTO_ALG_FLAG_SUPPORTED) == 0)
{
continue;
}
break;
}
if (hid == crypto_drivers_num) {
if (hid == crypto_drivers_num)
{
krp->krp_status = ENODEV;
crypto_kdone(krp);
splx(s);
return (0);
return 0;
}
krp->krp_hid = hid;
@ -465,32 +566,36 @@ crypto_kinvoke(struct cryptkop *krp)
crypto_drivers[hid].cc_koperations++;
error = crypto_drivers[hid].cc_kprocess(krp);
if (error) {
if (error)
{
krp->krp_status = error;
crypto_kdone(krp);
}
splx(s);
return (0);
return 0;
}
/*
* Dispatch a crypto request to the appropriate crypto devices.
*/
int
crypto_invoke(struct cryptop *crp)
/* Dispatch a crypto request to the appropriate crypto devices. */
int crypto_invoke(FAR struct cryptop *crp)
{
struct cryptodesc *crd;
u_int64_t nid;
u_int32_t hid;
FAR struct cryptodesc *crd;
uint64_t nid;
uint32_t hid;
int error;
int s;
/* Sanity checks. */
if (crp == NULL || crp->crp_callback == NULL)
{
return EINVAL;
}
s = splvm();
if (crp->crp_desc == NULL || crypto_drivers == NULL) {
if (crp->crp_desc == NULL || crypto_drivers == NULL)
{
crp->crp_etype = EINVAL;
crypto_done(crp);
splx(s);
@ -499,26 +604,36 @@ crypto_invoke(struct cryptop *crp)
hid = (crp->crp_sid >> 32) & 0xffffffff;
if (hid >= crypto_drivers_num)
{
goto migrate;
}
if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
{
crypto_freesession(crp->crp_sid);
goto migrate;
}
if (crypto_drivers[hid].cc_process == NULL)
{
goto migrate;
}
crypto_drivers[hid].cc_operations++;
crypto_drivers[hid].cc_bytes += crp->crp_ilen;
error = crypto_drivers[hid].cc_process(crp);
if (error) {
if (error == ERESTART) {
if (error)
{
if (error == ERESTART)
{
/* Unregister driver and migrate session. */
crypto_unregister(hid, CRYPTO_ALGORITHM_MAX + 1);
goto migrate;
} else {
}
else
{
crp->crp_etype = error;
}
}
@ -527,12 +642,18 @@ crypto_invoke(struct cryptop *crp)
return 0;
migrate:
/* Migrate session. */
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
{
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
}
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
{
crp->crp_sid = nid;
}
crp->crp_etype = EAGAIN;
crypto_done(crp);
@ -540,21 +661,22 @@ crypto_invoke(struct cryptop *crp)
return 0;
}
/*
* Release a set of crypto descriptors.
*/
void
crypto_freereq(struct cryptop *crp)
/* Release a set of crypto descriptors. */
void crypto_freereq(FAR struct cryptop *crp)
{
struct cryptodesc *crd;
FAR struct cryptodesc *crd;
int s;
if (crp == NULL)
{
return;
}
s = splvm();
while ((crd = crp->crp_desc) != NULL) {
while ((crd = crp->crp_desc) != NULL)
{
crp->crp_desc = crd->crd_next;
pool_put(&cryptodesc_pool, crd);
}
@ -563,28 +685,30 @@ crypto_freereq(struct cryptop *crp)
splx(s);
}
/*
* Acquire a set of crypto descriptors.
*/
struct cryptop *
crypto_getreq(int num)
/* Acquire a set of crypto descriptors. */
FAR struct cryptop *crypto_getreq(int num)
{
struct cryptodesc *crd;
struct cryptop *crp;
FAR struct cryptodesc *crd;
FAR struct cryptop *crp;
int s;
s = splvm();
crp = pool_get(&cryptop_pool, PR_NOWAIT);
if (crp == NULL) {
if (crp == NULL)
{
splx(s);
return NULL;
}
bzero(crp, sizeof(struct cryptop));
while (num--) {
while (num--)
{
crd = pool_get(&cryptodesc_pool, PR_NOWAIT);
if (crd == NULL) {
if (crd == NULL)
{
splx(s);
crypto_freereq(crp);
return NULL;
@ -599,8 +723,7 @@ crypto_getreq(int num)
return crp;
}
void
crypto_init(void)
void crypto_init(void)
{
crypto_taskq = taskq_create("crypto", 1, IPL_HIGH);
@ -610,54 +733,70 @@ crypto_init(void)
0, "cryptodesc", NULL);
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_done(struct cryptop *crp)
/* Invoke the callback on behalf of the driver. */
void crypto_done(FAR struct cryptop *crp)
{
crp->crp_flags |= CRYPTO_F_DONE;
if (crp->crp_flags & CRYPTO_F_NOQUEUE) {
if (crp->crp_flags & CRYPTO_F_NOQUEUE)
{
/* not from the crypto queue, wakeup the userland process */
crp->crp_callback(crp);
} else {
}
else
{
task_set(&crp->crp_task, (void (*))crp->crp_callback,
crp, NULL);
task_add(crypto_taskq, &crp->crp_task);
}
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_kdone(struct cryptkop *krp)
/* Invoke the callback on behalf of the driver. */
void crypto_kdone(FAR struct cryptkop *krp)
{
task_set(&krp->krp_task, (void (*))krp->krp_callback, krp, NULL);
task_add(crypto_taskq, &krp->krp_task);
}
int
crypto_getfeat(int *featp)
int crypto_getfeat(FAR int *featp)
{
extern int cryptodevallowsoft, userasymcrypto;
int hid, kalg, feat = 0;
extern int cryptodevallowsoft;
extern int userasymcrypto;
int hid;
int kalg;
int feat = 0;
if (userasymcrypto == 0)
{
goto out;
for (hid = 0; hid < crypto_drivers_num; hid++) {
}
for (hid = 0; hid < crypto_drivers_num; hid++)
{
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
cryptodevallowsoft == 0) {
cryptodevallowsoft == 0)
{
continue;
}
if (crypto_drivers[hid].cc_kprocess == NULL)
{
continue;
}
for (kalg = 0; kalg <= CRK_ALGORITHM_MAX; kalg++)
{
if ((crypto_drivers[hid].cc_kalg[kalg] &
CRYPTO_ALG_FLAG_SUPPORTED) != 0)
{
feat |= 1 << kalg;
}
}
}
out:
*featp = feat;
return (0);
return 0;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,7 +1,9 @@
/* $OpenBSD: des_locl.h,v 1.7 2015/12/10 21:00:51 naddy Exp $ */
/* lib/des/des_locl.h */
/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
/****************************************************************************
* crypto/des_locl.h
* $OpenBSD: des_locl.h,v 1.7 2015/12/10 21:00:51 naddy Exp $
*
* lib/des/des_locl.h
* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
* All rights reserved.
*
* This file is part of an SSL implementation written
@ -27,7 +29,8 @@
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Eric Young (eay@mincom.oz.au)
* This product includes software developed by
* Eric Young (eay@mincom.oz.au)
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
@ -42,13 +45,18 @@
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* derivative of this code cannot be changed.
* i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
****************************************************************************/
#ifndef HEADER_DES_LOCL_H
#define HEADER_DES_LOCL_H
#ifndef __CRYPTO_DES_LOCL_H
#define __CRYPTO_DES_LOCL_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/types.h>
#include <sys/systm.h>
@ -56,106 +64,126 @@
typedef unsigned char des_cblock[8];
typedef struct des_ks_struct
{
union {
union
{
des_cblock cblock;
/* make sure things are correct size on machines with
* 8 byte longs */
* 8 byte longs
*/
int32_t pad[2];
} ks;
} des_key_schedule[16];
}
des_key_schedule[16];
#define DES_KEY_SZ (sizeof(des_cblock))
#define DES_SCHEDULE_SZ (sizeof(des_key_schedule))
void des_encrypt2(u_int32_t *data,caddr_t ks, int enc);
void des_encrypt2(FAR uint32_t *data, caddr_t ks, int enc);
#define ITERATIONS 16
#define HALF_ITERATIONS 8
#define c2l(c, l) \
do \
{ \
l = ((uint32_t)(*((c)++))); \
l |= ((uint32_t)(*((c)++))) << 8l; \
l |= ((uint32_t)(*((c)++))) << 16l; \
l |= ((uint32_t)(*((c)++))) << 24l; \
} \
while (0)
#define c2l(c,l) (l =((u_int32_t)(*((c)++))) , \
l|=((u_int32_t)(*((c)++)))<< 8L, \
l|=((u_int32_t)(*((c)++)))<<16L, \
l|=((u_int32_t)(*((c)++)))<<24L)
#define l2c(l,c) \
do \
{ \
*((c)++) = (unsigned char)(((l)) & 0xff); \
*((c)++) = (unsigned char)(((l) >> 8L) & 0xff); \
*((c)++) = (unsigned char)(((l) >> 16L) & 0xff); \
*((c)++) = (unsigned char)(((l) >> 24L) & 0xff); \
} \
while (0)
#define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
*((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
*((c)++)=(unsigned char)(((l)>>16L)&0xff), \
*((c)++)=(unsigned char)(((l)>>24L)&0xff))
#define D_ENCRYPT(Q,R,S) {\
#define D_ENCRYPT(Q, R, S) \
do \
{ \
u = (R ^ s[S]); \
t = R ^ s[S + 1]; \
t = ((t >> 4L) + (t << 28L)); \
Q^= des_SPtrans[1][(t )&0x3f]| \
des_SPtrans[3][(t>> 8L)&0x3f]| \
des_SPtrans[5][(t>>16L)&0x3f]| \
des_SPtrans[7][(t>>24L)&0x3f]| \
des_SPtrans[0][(u )&0x3f]| \
des_SPtrans[2][(u>> 8L)&0x3f]| \
des_SPtrans[4][(u>>16L)&0x3f]| \
des_SPtrans[6][(u>>24L)&0x3f]; }
Q ^= des_sptrans[1][(t) & 0x3f]| \
des_sptrans[3][(t >> 8l) & 0x3f]| \
des_sptrans[5][(t >>16l) & 0x3f]| \
des_sptrans[7][(t >>24l) & 0x3f]| \
des_sptrans[0][(u) & 0x3f]| \
des_sptrans[2][(u >> 8l) & 0x3f]| \
des_sptrans[4][(u >>16l) & 0x3f]| \
des_sptrans[6][(u >>24l) & 0x3f]; \
} \
while (0)
/* IP and FP
* The problem is more of a geometric problem that random bit fiddling.
0 1 2 3 4 5 6 7 62 54 46 38 30 22 14 6
8 9 10 11 12 13 14 15 60 52 44 36 28 20 12 4
16 17 18 19 20 21 22 23 58 50 42 34 26 18 10 2
24 25 26 27 28 29 30 31 to 56 48 40 32 24 16 8 0
32 33 34 35 36 37 38 39 63 55 47 39 31 23 15 7
40 41 42 43 44 45 46 47 61 53 45 37 29 21 13 5
48 49 50 51 52 53 54 55 59 51 43 35 27 19 11 3
56 57 58 59 60 61 62 63 57 49 41 33 25 17 9 1
The output has been subject to swaps of the form
0 1 -> 3 1 but the odd and even bits have been put into
2 3 2 0
different words. The main trick is to remember that
t=((l>>size)^r)&(mask);
r^=t;
l^=(t<<size);
can be used to swap and move bits between words.
So l = 0 1 2 3 r = 16 17 18 19
4 5 6 7 20 21 22 23
8 9 10 11 24 25 26 27
12 13 14 15 28 29 30 31
becomes (for size == 2 and mask == 0x3333)
t = 2^16 3^17 -- -- l = 0 1 16 17 r = 2 3 18 19
6^20 7^21 -- -- 4 5 20 21 6 7 22 23
10^24 11^25 -- -- 8 9 24 25 10 11 24 25
14^28 15^29 -- -- 12 13 28 29 14 15 28 29
Thanks for hints from Richard Outerbridge - he told me IP&FP
could be done in 15 xor, 10 shifts and 5 ands.
When I finally started to think of the problem in 2D
I first got ~42 operations without xors. When I remembered
how to use xors :-) I got it to its final state.
* 0 1 2 3 4 5 6 7 62 54 46 38 30 22 14 6
* 8 9 10 11 12 13 14 15 60 52 44 36 28 20 12 4
* 16 17 18 19 20 21 22 23 58 50 42 34 26 18 10 2
* 24 25 26 27 28 29 30 31 to 56 48 40 32 24 16 8 0
*
* 32 33 34 35 36 37 38 39 63 55 47 39 31 23 15 7
* 40 41 42 43 44 45 46 47 61 53 45 37 29 21 13 5
* 48 49 50 51 52 53 54 55 59 51 43 35 27 19 11 3
* 56 57 58 59 60 61 62 63 57 49 41 33 25 17 9 1
*
* The output has been subject to swaps of the form
* 0 1 -> 3 1 but the odd and even bits have been put into
* 2 3 2 0
* different words. The main trick is to remember that
* t=((l>>size)^r)&(mask);
* r^=t;
* l^=(t<<size);
* can be used to swap and move bits between words.
*
* So l = 0 1 2 3 r = 16 17 18 19
* 4 5 6 7 20 21 22 23
* 8 9 10 11 24 25 26 27
* 12 13 14 15 28 29 30 31
* becomes (for size == 2 and mask == 0x3333)
* t = 2^16 3^17 -- -- l = 0 1 16 17 r = 2 3 18 19
* 6^20 7^21 -- -- 4 5 20 21 6 7 22 23
* 10^24 11^25 -- -- 8 9 24 25 10 11 24 25
* 14^28 15^29 -- -- 12 13 28 29 14 15 28 29
*
* Thanks for hints from Richard Outerbridge - he told me IP&FP
* could be done in 15 xor, 10 shifts and 5 ands.
* When I finally started to think of the problem in 2D
* I first got ~42 operations without xors. When I remembered
* how to use xors :-) I got it to its final state.
*/
#define PERM_OP(a, b, t, n, m) ((t) = ((((a) >> (n)) ^ (b)) & (m)),\
(b) ^= (t),\
(a) ^= ((t) << (n)))
#define IP(l, r) \
do \
{ \
register u_int32_t tt; \
PERM_OP(r,l,tt, 4,0x0f0f0f0fL); \
PERM_OP(l,r,tt,16,0x0000ffffL); \
PERM_OP(r,l,tt, 2,0x33333333L); \
PERM_OP(l,r,tt, 8,0x00ff00ffL); \
PERM_OP(r,l,tt, 1,0x55555555L); \
}
register uint32_t tt; \
PERM_OP(r, l, tt, 4, 0x0f0f0f0fl); \
PERM_OP(l, r, tt, 16, 0x0000ffffl); \
PERM_OP(r, l, tt, 2, 0x33333333l); \
PERM_OP(l, r, tt, 8, 0x00ff00ffl); \
PERM_OP(r, l, tt, 1, 0x55555555l); \
} \
while (0)
#define FP(l, r) \
do \
{ \
register u_int32_t tt; \
register uint32_t tt; \
PERM_OP(l, r, tt, 1, 0x55555555L); \
PERM_OP(r, l, tt, 8, 0x00ff00ffL); \
PERM_OP(l, r, tt, 2, 0x33333333L); \
PERM_OP(r, l, tt, 16, 0x0000ffffL); \
PERM_OP(l, r, tt, 4, 0x0f0f0f0fL); \
}
#endif
} \
while (0)
#endif /* __CRYPTO_DES_LOCL_H */

View file

@ -1,7 +1,8 @@
/* $OpenBSD: ecb3_enc.c,v 1.3 2013/11/18 18:49:53 brad Exp $ */
/* lib/des/ecb3_enc.c */
/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
/****************************************************************************
* crypto/ecb3_enc.c
* $OpenBSD: ecb3_enc.c,v 1.3 2013/11/18 18:49:53 brad Exp $
* lib/des/ecb3_enc.c
* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
* All rights reserved.
*
* This file is part of an SSL implementation written
@ -27,7 +28,8 @@
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Eric Young (eay@mincom.oz.au)
* This product includes software developed
* by Eric Young (eay@mincom.oz.au)
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
@ -42,24 +44,33 @@
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* derivative of this code cannot be changed.
* i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include "des_locl.h"
void
des_ecb3_encrypt(caddr_t (*input), caddr_t (*output),
caddr_t ks1, caddr_t ks2, caddr_t ks3,
int encrypt)
{
register u_int32_t l0, l1;
register unsigned char *in, *out;
u_int32_t ll[2];
/****************************************************************************
* Public Functions
****************************************************************************/
in = (unsigned char *) input;
out = (unsigned char *) output;
void des_ecb3_encrypt(FAR des_cblock *input, FAR des_cblock *output,
caddr_t ks1, caddr_t ks2, caddr_t ks3, int encrypt)
{
register uint32_t l0;
register uint32_t l1;
FAR register unsigned char *in;
FAR register unsigned char *out;
uint32_t ll[2];
in = (FAR unsigned char *)input;
out = (FAR unsigned char *)output;
c2l(in, l0);
c2l(in, l1);
IP(l0, l1);

View file

@ -1,7 +1,8 @@
/* $OpenBSD: ecb_enc.c,v 1.6 2015/12/10 21:00:51 naddy Exp $ */
/* lib/des/ecb_enc.c */
/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
/****************************************************************************
* crypto/ecb_enc.c
* $OpenBSD: ecb_enc.c,v 1.6 2015/12/10 21:00:51 naddy Exp $
* lib/des/ecb_enc.c
* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
* All rights reserved.
*
* This file is part of an SSL implementation written
@ -27,7 +28,8 @@
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Eric Young (eay@mincom.oz.au)
* This product includes software developed by
* Eric Young (eay@mincom.oz.au)
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
@ -42,23 +44,34 @@
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* derivative of this code cannot be changed.
* i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include "des_locl.h"
#include "spr.h"
void
des_encrypt2(u_int32_t *data, caddr_t ks, int encrypt)
/****************************************************************************
* Public Functions
****************************************************************************/
void des_encrypt2(FAR uint32_t *data, caddr_t ks, int encrypt)
{
register u_int32_t l, r, t, u;
register uint32_t l;
register uint32_t r;
register uint32_t t;
register uint32_t u;
#ifdef DES_USE_PTR
register unsigned char *des_SP=(unsigned char *)des_SPtrans;
FAR register unsigned char *des_sp = (FAR unsigned char *)des_sptrans;
#endif
register int i;
register u_int32_t *s;
FAR register uint32_t *s;
u = data[0];
r = data[1];
@ -68,33 +81,47 @@ des_encrypt2(u_int32_t *data, caddr_t ks, int encrypt)
* des_SPtrans values in sp.h to be rotated 1 bit to the right.
* One perl script later and things have a 5% speed up on a sparc2.
* Thanks to Richard Outerbridge <71755.204@CompuServe.COM>
* for pointing this out. */
* for pointing this out.
*/
l = (r << 1) | (r >> 31);
r = (u << 1) | (u >> 31);
/* clear the top bits on machines with 8byte longs */
l &= 0xffffffffL;
r &= 0xffffffffL;
s = (u_int32_t *) ks;
l &= 0xffffffffl;
r &= 0xffffffffl;
s = (FAR uint32_t *)ks;
/* I don't know if it is worth the effort of loop unrolling the
* inner loop */
if (encrypt) {
for (i = 0; i < 32; i += 4) {
* inner loop
*/
if (encrypt)
{
for (i = 0; i < 32; i += 4)
{
D_ENCRYPT(l, r, i + 0); /* 1 */
D_ENCRYPT(r, l, i + 2); /* 2 */
}
} else {
for (i = 30; i > 0; i -= 4) {
}
else
{
for (i = 30; i > 0; i -= 4)
{
D_ENCRYPT(l, r, i - 0); /* 16 */
D_ENCRYPT(r, l, i - 2); /* 15 */
}
}
l = (l >> 1) | (l << 31);
r = (r >> 1) | (r << 31);
/* clear the top bits on machines with 8byte longs */
l &= 0xffffffffL;
r &= 0xffffffffL;
l &= 0xffffffffl;
r &= 0xffffffffl;
data[0] = l;
data[1] = r;

View file

@ -1,6 +1,7 @@
/* $OpenBSD: gmac.c,v 1.10 2017/05/02 11:44:32 mikeb Exp $ */
/*
/****************************************************************************
* crypto/gmac.c
* $OpenBSD: gmac.c,v 1.10 2017/05/02 11:44:32 mikeb Exp $
*
* Copyright (c) 2010 Mike Belopuhov
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,13 +15,18 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
*
*
*
* This code implements the Message Authentication part of the
* Galois/Counter Mode (as being described in the RFC 4543) using
* the AES cipher. FIPS SP 800-38D describes the algorithm details.
*/
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
@ -28,19 +34,30 @@
#include <crypto/aes.h>
#include <crypto/gmac.h>
void ghash_gfmul(uint32_t *, uint32_t *, uint32_t *);
void ghash_update_mi(GHASH_CTX *, uint8_t *, size_t);
/****************************************************************************
* Public Functions
****************************************************************************/
void ghash_gfmul(FAR uint32_t *, FAR uint32_t *, FAR uint32_t *);
void ghash_update_mi(FAR GHASH_CTX *, FAR uint8_t *, size_t);
/* Allow overriding with optimized MD function */
void (*ghash_update)(GHASH_CTX *, uint8_t *, size_t) = ghash_update_mi;
CODE void (*ghash_update)(FAR GHASH_CTX *,
FAR uint8_t *,
size_t) = ghash_update_mi;
/* Computes a block multiplication in the GF(2^128) */
void
ghash_gfmul(uint32_t *X, uint32_t *Y, uint32_t *product)
void ghash_gfmul(FAR uint32_t *X, FAR uint32_t *Y, FAR uint32_t *product)
{
uint32_t v[4];
uint32_t z[4] = { 0, 0, 0, 0};
uint8_t *x = (uint8_t *)X;
uint32_t z[4] =
{
0, 0, 0, 0
};
FAR uint8_t *x = (FAR uint8_t *)X;
uint32_t mask;
int i;
@ -49,8 +66,10 @@ ghash_gfmul(uint32_t *X, uint32_t *Y, uint32_t *product)
v[2] = betoh32(Y[2]);
v[3] = betoh32(Y[3]);
for (i = 0; i < GMAC_BLOCK_LEN * 8; i++) {
for (i = 0; i < GMAC_BLOCK_LEN * 8; i++)
{
/* update Z */
mask = !!(x[i >> 3] & (1 << (~i & 7)));
mask = ~(mask - 1);
z[0] ^= v[0] & mask;
@ -59,6 +78,7 @@ ghash_gfmul(uint32_t *X, uint32_t *Y, uint32_t *product)
z[3] ^= v[3] & mask;
/* update V */
mask = ~((v[3] & 1) - 1);
v[3] = (v[2] << 31) | (v[3] >> 1);
v[2] = (v[1] << 31) | (v[2] >> 1);
@ -72,22 +92,22 @@ ghash_gfmul(uint32_t *X, uint32_t *Y, uint32_t *product)
product[3] = htobe32(z[3]);
}
void
ghash_update_mi(GHASH_CTX *ctx, uint8_t *X, size_t len)
void ghash_update_mi(FAR GHASH_CTX *ctx, FAR uint8_t *X, size_t len)
{
uint32_t *x = (uint32_t *)X;
uint32_t *s = (uint32_t *)ctx->S;
uint32_t *y = (uint32_t *)ctx->Z;
FAR uint32_t *x = (FAR uint32_t *)X;
FAR uint32_t *s = (FAR uint32_t *)ctx->S;
FAR uint32_t *y = (FAR uint32_t *)ctx->Z;
int i;
for (i = 0; i < len / GMAC_BLOCK_LEN; i++) {
for (i = 0; i < len / GMAC_BLOCK_LEN; i++)
{
s[0] = y[0] ^ x[0];
s[1] = y[1] ^ x[1];
s[2] = y[2] ^ x[2];
s[3] = y[3] ^ x[3];
ghash_gfmul((uint32_t *)ctx->S, (uint32_t *)ctx->H,
(uint32_t *)ctx->S);
ghash_gfmul((FAR uint32_t *)ctx->S, (FAR uint32_t *)ctx->H,
(FAR uint32_t *)ctx->S);
y = s;
x += 4;
@ -98,10 +118,9 @@ ghash_update_mi(GHASH_CTX *ctx, uint8_t *X, size_t len)
#define AESCTR_NONCESIZE 4
void
AES_GMAC_Init(void *xctx)
void aes_gmac_init(FAR void *xctx)
{
AES_GMAC_CTX *ctx = xctx;
FAR AES_GMAC_CTX *ctx = xctx;
bzero(ctx->ghash.H, GMAC_BLOCK_LEN);
bzero(ctx->ghash.S, GMAC_BLOCK_LEN);
@ -109,60 +128,75 @@ AES_GMAC_Init(void *xctx)
bzero(ctx->J, GMAC_BLOCK_LEN);
}
void
AES_GMAC_Setkey(void *xctx, const uint8_t *key, uint16_t klen)
void aes_gmac_setkey(FAR void *xctx, FAR const uint8_t *key, uint16_t klen)
{
AES_GMAC_CTX *ctx = xctx;
FAR AES_GMAC_CTX *ctx = xctx;
aes_setkey(&ctx->K, key, klen - AESCTR_NONCESIZE);
AES_Setkey(&ctx->K, key, klen - AESCTR_NONCESIZE);
/* copy out salt to the counter block */
bcopy(key + klen - AESCTR_NONCESIZE, ctx->J, AESCTR_NONCESIZE);
/* prepare a hash subkey */
AES_Encrypt(&ctx->K, ctx->ghash.H, ctx->ghash.H);
aes_encrypt(&ctx->K, ctx->ghash.H, ctx->ghash.H);
}
void
AES_GMAC_Reinit(void *xctx, const uint8_t *iv, uint16_t ivlen)
void aes_gmac_reinit(FAR void *xctx, FAR const uint8_t *iv, uint16_t ivlen)
{
AES_GMAC_CTX *ctx = xctx;
FAR AES_GMAC_CTX *ctx = xctx;
/* copy out IV to the counter block */
bcopy(iv, ctx->J + AESCTR_NONCESIZE, ivlen);
}
int
AES_GMAC_Update(void *xctx, const uint8_t *data, uint16_t len)
int aes_gmac_update(FAR void *xctx, FAR const uint8_t *data, uint16_t len)
{
AES_GMAC_CTX *ctx = xctx;
uint32_t blk[4] = { 0, 0, 0, 0 };
FAR AES_GMAC_CTX *ctx = xctx;
uint32_t blk[4] =
{
0, 0, 0, 0
};
int plen;
if (len > 0) {
if (len > 0)
{
plen = len % GMAC_BLOCK_LEN;
if (len >= GMAC_BLOCK_LEN)
(*ghash_update)(&ctx->ghash, (uint8_t *)data,
{
(*ghash_update)(&ctx->ghash, (FAR uint8_t *)data,
len - plen);
if (plen) {
memcpy((uint8_t *)blk, (uint8_t *)data + (len - plen),
}
if (plen)
{
memcpy((FAR uint8_t *)blk, (FAR uint8_t *)data + (len - plen),
plen);
(*ghash_update)(&ctx->ghash, (uint8_t *)blk,
(*ghash_update)(&ctx->ghash, (FAR uint8_t *)blk,
GMAC_BLOCK_LEN);
}
}
return (0);
}
void
AES_GMAC_Final(uint8_t digest[GMAC_DIGEST_LEN], void *xctx)
void aes_gmac_final(FAR uint8_t *digest, FAR void *xctx)
{
AES_GMAC_CTX *ctx = xctx;
FAR AES_GMAC_CTX *ctx = xctx;
uint8_t keystream[GMAC_BLOCK_LEN];
int i;
/* do one round of GCTR */
ctx->J[GMAC_BLOCK_LEN - 1] = 1;
AES_Encrypt(&ctx->K, ctx->J, keystream);
aes_encrypt(&ctx->K, ctx->J, keystream);
for (i = 0; i < GMAC_DIGEST_LEN; i++)
{
digest[i] = ctx->ghash.S[i] ^ keystream[i];
}
explicit_bzero(keystream, sizeof(keystream));
}

View file

@ -1,6 +1,7 @@
/* $OpenBSD: hmac.c,v 1.4 2016/09/19 18:09:40 tedu Exp $ */
/*-
/****************************************************************************
* crypto/hmac.c
* $OpenBSD: hmac.c,v 1.4 2016/09/19 18:09:40 tedu Exp $
*
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,13 +15,17 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
*
****************************************************************************/
/*
* This code implements the HMAC algorithm described in RFC 2104 using
/* This code implements the HMAC algorithm described in RFC 2104 using
* the MD5, SHA1 and SHA-256 hash functions.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
@ -29,18 +34,26 @@
#include <crypto/sha2.h>
#include <crypto/hmac.h>
void
HMAC_MD5_Init(HMAC_MD5_CTX *ctx, const u_int8_t *key, u_int key_len)
/****************************************************************************
* Public Functions
****************************************************************************/
void hmca_md5_init(FAR HMAC_MD5_CTX *ctx,
FAR const uint8_t *key,
u_int key_len)
{
u_int8_t k_ipad[MD5_BLOCK_LENGTH];
uint8_t k_ipad[MD5_BLOCK_LENGTH];
int i;
if (key_len > MD5_BLOCK_LENGTH) {
MD5Init(&ctx->ctx);
MD5Update(&ctx->ctx, key, key_len);
MD5Final(ctx->key, &ctx->ctx);
if (key_len > MD5_BLOCK_LENGTH)
{
md5init(&ctx->ctx);
md5update(&ctx->ctx, key, key_len);
md5final(ctx->key, &ctx->ctx);
ctx->key_len = MD5_DIGEST_LENGTH;
} else {
}
else
{
bcopy(key, ctx->key, key_len);
ctx->key_len = key_len;
}
@ -48,53 +61,61 @@ HMAC_MD5_Init(HMAC_MD5_CTX *ctx, const u_int8_t *key, u_int key_len)
bzero(k_ipad, MD5_BLOCK_LENGTH);
memcpy(k_ipad, ctx->key, ctx->key_len);
for (i = 0; i < MD5_BLOCK_LENGTH; i++)
{
k_ipad[i] ^= 0x36;
}
MD5Init(&ctx->ctx);
MD5Update(&ctx->ctx, k_ipad, MD5_BLOCK_LENGTH);
md5init(&ctx->ctx);
md5update(&ctx->ctx, k_ipad, MD5_BLOCK_LENGTH);
explicit_bzero(k_ipad, sizeof k_ipad);
}
void
HMAC_MD5_Update(HMAC_MD5_CTX *ctx, const u_int8_t *data, u_int len)
void hmac_md5_update(FAR HMAC_MD5_CTX *ctx,
FAR const uint8_t *data,
u_int len)
{
MD5Update(&ctx->ctx, data, len);
md5update(&ctx->ctx, data, len);
}
void
HMAC_MD5_Final(u_int8_t digest[MD5_DIGEST_LENGTH], HMAC_MD5_CTX *ctx)
void hmac_md5_final(FAR uint8_t *digest, FAR HMAC_MD5_CTX *ctx)
{
u_int8_t k_opad[MD5_BLOCK_LENGTH];
uint8_t k_opad[MD5_BLOCK_LENGTH];
int i;
MD5Final(digest, &ctx->ctx);
md5final(digest, &ctx->ctx);
bzero(k_opad, MD5_BLOCK_LENGTH);
memcpy(k_opad, ctx->key, ctx->key_len);
for (i = 0; i < MD5_BLOCK_LENGTH; i++)
{
k_opad[i] ^= 0x5c;
}
MD5Init(&ctx->ctx);
MD5Update(&ctx->ctx, k_opad, MD5_BLOCK_LENGTH);
MD5Update(&ctx->ctx, digest, MD5_DIGEST_LENGTH);
MD5Final(digest, &ctx->ctx);
md5init(&ctx->ctx);
md5update(&ctx->ctx, k_opad, MD5_BLOCK_LENGTH);
md5update(&ctx->ctx, digest, MD5_DIGEST_LENGTH);
md5final(digest, &ctx->ctx);
explicit_bzero(k_opad, sizeof k_opad);
}
void
HMAC_SHA1_Init(HMAC_SHA1_CTX *ctx, const u_int8_t *key, u_int key_len)
void hmac_sha1_init(FAR HMAC_SHA1_CTX *ctx,
FAR const uint8_t *key,
u_int key_len)
{
u_int8_t k_ipad[SHA1_BLOCK_LENGTH];
uint8_t k_ipad[SHA1_BLOCK_LENGTH];
int i;
if (key_len > SHA1_BLOCK_LENGTH) {
SHA1Init(&ctx->ctx);
SHA1Update(&ctx->ctx, key, key_len);
SHA1Final(ctx->key, &ctx->ctx);
if (key_len > SHA1_BLOCK_LENGTH)
{
sha1init(&ctx->ctx);
sha1update(&ctx->ctx, key, key_len);
sha1final(ctx->key, &ctx->ctx);
ctx->key_len = SHA1_DIGEST_LENGTH;
} else {
}
else
{
bcopy(key, ctx->key, key_len);
ctx->key_len = key_len;
}
@ -102,53 +123,61 @@ HMAC_SHA1_Init(HMAC_SHA1_CTX *ctx, const u_int8_t *key, u_int key_len)
bzero(k_ipad, SHA1_BLOCK_LENGTH);
memcpy(k_ipad, ctx->key, ctx->key_len);
for (i = 0; i < SHA1_BLOCK_LENGTH; i++)
{
k_ipad[i] ^= 0x36;
}
SHA1Init(&ctx->ctx);
SHA1Update(&ctx->ctx, k_ipad, SHA1_BLOCK_LENGTH);
sha1init(&ctx->ctx);
sha1update(&ctx->ctx, k_ipad, SHA1_BLOCK_LENGTH);
explicit_bzero(k_ipad, sizeof k_ipad);
}
void
HMAC_SHA1_Update(HMAC_SHA1_CTX *ctx, const u_int8_t *data, u_int len)
void hmac_sha1_update(FAR HMAC_SHA1_CTX *ctx,
FAR const uint8_t *data,
u_int len)
{
SHA1Update(&ctx->ctx, data, len);
sha1update(&ctx->ctx, data, len);
}
void
HMAC_SHA1_Final(u_int8_t digest[SHA1_DIGEST_LENGTH], HMAC_SHA1_CTX *ctx)
void hmca_sha1_final(FAR uint8_t *digest, FAR HMAC_SHA1_CTX *ctx)
{
u_int8_t k_opad[SHA1_BLOCK_LENGTH];
uint8_t k_opad[SHA1_BLOCK_LENGTH];
int i;
SHA1Final(digest, &ctx->ctx);
sha1final(digest, &ctx->ctx);
bzero(k_opad, SHA1_BLOCK_LENGTH);
memcpy(k_opad, ctx->key, ctx->key_len);
for (i = 0; i < SHA1_BLOCK_LENGTH; i++)
{
k_opad[i] ^= 0x5c;
}
SHA1Init(&ctx->ctx);
SHA1Update(&ctx->ctx, k_opad, SHA1_BLOCK_LENGTH);
SHA1Update(&ctx->ctx, digest, SHA1_DIGEST_LENGTH);
SHA1Final(digest, &ctx->ctx);
sha1init(&ctx->ctx);
sha1update(&ctx->ctx, k_opad, SHA1_BLOCK_LENGTH);
sha1update(&ctx->ctx, digest, SHA1_DIGEST_LENGTH);
sha1final(digest, &ctx->ctx);
explicit_bzero(k_opad, sizeof k_opad);
}
void
HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const u_int8_t *key, u_int key_len)
void hmac_sha256_init(FAR HMAC_SHA256_CTX *ctx,
FAR const uint8_t *key,
u_int key_len)
{
u_int8_t k_ipad[SHA256_BLOCK_LENGTH];
uint8_t k_ipad[SHA256_BLOCK_LENGTH];
int i;
if (key_len > SHA256_BLOCK_LENGTH) {
SHA256Init(&ctx->ctx);
SHA256Update(&ctx->ctx, key, key_len);
SHA256Final(ctx->key, &ctx->ctx);
if (key_len > SHA256_BLOCK_LENGTH)
{
sha256init(&ctx->ctx);
sha256update(&ctx->ctx, key, key_len);
sha256final(ctx->key, &ctx->ctx);
ctx->key_len = SHA256_DIGEST_LENGTH;
} else {
}
else
{
bcopy(key, ctx->key, key_len);
ctx->key_len = key_len;
}
@ -156,37 +185,42 @@ HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const u_int8_t *key, u_int key_len)
bzero(k_ipad, SHA256_BLOCK_LENGTH);
memcpy(k_ipad, ctx->key, ctx->key_len);
for (i = 0; i < SHA256_BLOCK_LENGTH; i++)
{
k_ipad[i] ^= 0x36;
}
SHA256Init(&ctx->ctx);
SHA256Update(&ctx->ctx, k_ipad, SHA256_BLOCK_LENGTH);
sha256init(&ctx->ctx);
sha256update(&ctx->ctx, k_ipad, SHA256_BLOCK_LENGTH);
explicit_bzero(k_ipad, sizeof k_ipad);
}
void
HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx, const u_int8_t *data, u_int len)
void hmac_sha256_update(FAR HMAC_SHA256_CTX *ctx,
FAR const uint8_t *data,
u_int len)
{
SHA256Update(&ctx->ctx, data, len);
sha256update(&ctx->ctx, data, len);
}
void
HMAC_SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], HMAC_SHA256_CTX *ctx)
void hmac_sha256_final(FAR uint8_t *digest,
FAR HMAC_SHA256_CTX *ctx)
{
u_int8_t k_opad[SHA256_BLOCK_LENGTH];
uint8_t k_opad[SHA256_BLOCK_LENGTH];
int i;
SHA256Final(digest, &ctx->ctx);
sha256final(digest, &ctx->ctx);
bzero(k_opad, SHA256_BLOCK_LENGTH);
memcpy(k_opad, ctx->key, ctx->key_len);
for (i = 0; i < SHA256_BLOCK_LENGTH; i++)
{
k_opad[i] ^= 0x5c;
}
SHA256Init(&ctx->ctx);
SHA256Update(&ctx->ctx, k_opad, SHA256_BLOCK_LENGTH);
SHA256Update(&ctx->ctx, digest, SHA256_DIGEST_LENGTH);
SHA256Final(digest, &ctx->ctx);
sha256init(&ctx->ctx);
sha256update(&ctx->ctx, k_opad, SHA256_BLOCK_LENGTH);
sha256update(&ctx->ctx, digest, SHA256_DIGEST_LENGTH);
sha256final(digest, &ctx->ctx);
explicit_bzero(k_opad, sizeof k_opad);
}

View file

@ -1,5 +1,7 @@
/* $OpenBSD: idgen.c,v 1.8 2020/07/22 13:54:30 tobhe Exp $ */
/*
/****************************************************************************
* crypto/idgen.c
* $OpenBSD: idgen.c,v 1.8 2020/07/22 13:54:30 tobhe Exp $
*
* Copyright (c) 2008 Damien Miller <djm@mindrot.org>
*
* Permission to use, copy, modify, and distribute this software for any
@ -13,22 +15,25 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
****************************************************************************/
/*
* IDGEN32: non-repeating ID generation covering an almost maximal 32-bit
/* IDGEN32: non-repeating ID generation covering an almost maximal 32-bit
* range.
*
* IDGEN32 is based on public domain SKIP32 by Greg Rose.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <crypto/idgen.h>
static const u_int8_t idgen32_ftable[256] = {
static const uint8_t idgen32_ftable[256] =
{
0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf6, 0xf4,
0xb3, 0x21, 0x15, 0x78, 0x99, 0xb1, 0xaf, 0xf9,
0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
@ -63,10 +68,14 @@ static const u_int8_t idgen32_ftable[256] = {
0xbd, 0xa8, 0x3a, 0x01, 0x05, 0x59, 0x2a, 0x46
};
static u_int16_t
idgen32_g(u_int8_t *key, int k, u_int16_t w)
static uint16_t idgen32_g(FAR uint8_t *key, int k, uint16_t w)
{
u_int8_t g1, g2, g3, g4, g5, g6;
uint8_t g1;
uint8_t g2;
uint8_t g3;
uint8_t g4;
uint8_t g5;
uint8_t g6;
u_int o = k * 4;
g1 = (w >> 8) & 0xff;
@ -80,29 +89,31 @@ idgen32_g(u_int8_t *key, int k, u_int16_t w)
return (g5 << 8) | g6;
}
static u_int32_t
idgen32_permute(struct idgen32_ctx *ctx, u_int32_t in)
static uint32_t idgen32_permute(FAR struct idgen32_ctx *ctx, uint32_t in)
{
u_int i, r;
u_int16_t wl, wr;
uint16_t wl;
uint16_t wr;
wl = (in >> 16) & 0x7fff;
wr = in & 0xffff;
/* Doubled up rounds, with an odd round at the end to swap */
for (i = r = 0; i < IDGEN32_ROUNDS / 2; ++i) {
for (i = r = 0; i < IDGEN32_ROUNDS / 2; ++i)
{
wr ^= (idgen32_g(ctx->id32_key, r, wl) ^ r);
r++;
wl ^= (idgen32_g(ctx->id32_key, r, wr) ^ r) & 0x7fff;
r++;
}
wr ^= (idgen32_g(ctx->id32_key, r, wl) ^ r);
return (wl << 16) | wr;
}
static void
idgen32_rekey(struct idgen32_ctx *ctx)
static void idgen32_rekey(FAR struct idgen32_ctx *ctx)
{
ctx->id32_counter = 0;
ctx->id32_hibit ^= 0x80000000;
@ -111,28 +122,35 @@ idgen32_rekey(struct idgen32_ctx *ctx)
ctx->id32_rekey_time = getuptime() + IDGEN32_REKEY_TIME;
}
void
idgen32_init(struct idgen32_ctx *ctx)
/****************************************************************************
* Public Functions
****************************************************************************/
void idgen32_init(FAR struct idgen32_ctx *ctx)
{
bzero(ctx, sizeof(*ctx));
ctx->id32_hibit = arc4random() & 0x80000000;
idgen32_rekey(ctx);
}
u_int32_t
idgen32(struct idgen32_ctx *ctx)
uint32_t idgen32(FAR struct idgen32_ctx *ctx)
{
u_int32_t ret;
uint32_t ret;
do {
do
{
/* Rekey a little early to avoid "card counting" attack */
if (ctx->id32_counter > IDGEN32_REKEY_LIMIT ||
ctx->id32_rekey_time < getuptime())
{
idgen32_rekey(ctx);
}
ret = ctx->id32_hibit | idgen32_permute(ctx,
(ctx->id32_offset + ctx->id32_counter++) & 0x7fffffff);
} while (ret == 0); /* Zero IDs are often special, so avoid */
}
while (ret == 0); /* Zero IDs are often special, so avoid */
return ret;
}

View file

@ -1,6 +1,7 @@
/* $OpenBSD: key_wrap.c,v 1.5 2017/05/02 17:07:06 mikeb Exp $ */
/*-
/****************************************************************************
* crypto/key_wrap.c
* $OpenBSD: key_wrap.c,v 1.5 2017/05/02 17:07:06 mikeb Exp $
*
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,11 +15,13 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
****************************************************************************/
/*
* This code implements the AES Key Wrap algorithm described in RFC 3394.
*/
/* This code implements the AES Key Wrap algorithm described in RFC 3394. */
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
@ -26,27 +29,37 @@
#include <crypto/aes.h>
#include <crypto/key_wrap.h>
static const u_int8_t IV[8] =
{ 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6 };
void
aes_key_wrap_set_key(aes_key_wrap_ctx *ctx, const u_int8_t *K, size_t K_len)
static const uint8_t IV[8] =
{
AES_Setkey(&ctx->ctx, K, K_len);
0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6
};
/****************************************************************************
* Public Functions
****************************************************************************/
void aes_key_wrap_set_key(FAR aes_key_wrap_ctx *ctx,
FAR const uint8_t *K,
size_t k_len)
{
aes_setkey(&ctx->ctx, K, k_len);
}
void
aes_key_wrap_set_key_wrap_only(aes_key_wrap_ctx *ctx, const u_int8_t *K,
size_t K_len)
void aes_key_wrap_set_key_wrap_only(FAR aes_key_wrap_ctx *ctx,
FAR const uint8_t *K,
size_t k_len)
{
AES_Setkey(&ctx->ctx, K, K_len);
aes_setkey(&ctx->ctx, K, k_len);
}
void
aes_key_wrap(aes_key_wrap_ctx *ctx, const u_int8_t *P, size_t n, u_int8_t *C)
void aes_key_wrap(FAR aes_key_wrap_ctx *ctx,
FAR const uint8_t *P,
size_t n, FAR uint8_t *C)
{
u_int64_t B[2], t;
u_int8_t *A, *R;
uint64_t B[2];
uint64_t t;
FAR uint8_t *A;
FAR uint8_t *R;
size_t i;
int j;
@ -54,59 +67,89 @@ aes_key_wrap(aes_key_wrap_ctx *ctx, const u_int8_t *P, size_t n, u_int8_t *C)
A = C; /* A points to C[0] */
memcpy(A, IV, 8); /* A = IV, an initial value */
for (j = 0, t = 1; j <= 5; j++) {
for (j = 0, t = 1; j <= 5; j++)
{
R = C + 8;
for (i = 1; i <= n; i++, t++) {
for (i = 1; i <= n; i++, t++)
{
/* B = A | R[i] */
memcpy(&B[0], A, 8);
memcpy(&B[1], R, 8);
/* B = AES(K, B) */
AES_Encrypt(&ctx->ctx, (uint8_t *)B, (uint8_t *)B);
aes_encrypt(&ctx->ctx, (FAR uint8_t *)B, (FAR uint8_t *)B);
/* MSB(64, B) = MSB(64, B) ^ t */
B[0] ^= htobe64(t);
/* A = MSB(64, B) */
memcpy(A, &B[0], 8);
/* R[i] = LSB(64, B) */
memcpy(R, &B[1], 8);
R += 8;
}
}
explicit_bzero(B, sizeof B);
}
int
aes_key_unwrap(aes_key_wrap_ctx *ctx, const u_int8_t *C, u_int8_t *P, size_t n)
int aes_key_unwrap(FAR aes_key_wrap_ctx *ctx,
FAR const uint8_t *C,
FAR uint8_t *P, size_t n)
{
u_int64_t B[2], t;
u_int8_t A[8], *R;
uint64_t B[2];
uint64_t t;
uint8_t A[8];
FAR uint8_t *R;
size_t i;
int j;
memcpy(A, C, 8); /* A = C[0] */
memmove(P, C + 8, n * 8); /* P and C may overlap */
for (j = 5, t = 6 * n; j >= 0; j--) {
for (j = 5, t = 6 * n; j >= 0; j--)
{
R = P + (n - 1) * 8;
for (i = n; i >= 1; i--, t--) {
for (i = n; i >= 1; i--, t--)
{
/* MSB(64, B) = A */
memcpy(&B[0], A, 8);
/* MSB(64, B) = MSB(64, B) ^ t */
B[0] ^= htobe64(t);
/* B = MSB(64, B) | R[i] */
memcpy(&B[1], R, 8);
/* B = AES-1(K, B) */
AES_Decrypt(&ctx->ctx, (uint8_t *)B, (uint8_t *)B);
aes_decrypt(&ctx->ctx, (FAR uint8_t *)B, (FAR uint8_t *)B);
/* A = MSB(64, B) */
memcpy(A, &B[0], 8);
/* R[i] = LSB(64, B) */
memcpy(R, &B[1], 8);
R -= 8;
}
}
explicit_bzero(B, sizeof B);
/* check that A is an appropriate initial value */
return timingsafe_bcmp(A, IV, 8) != 0;
}

View file

@ -1,6 +1,7 @@
/* $OpenBSD: md5.c,v 1.4 2014/12/28 10:04:35 tedu Exp $ */
/*
/****************************************************************************
* crypto/md5.c
* $OpenBSD: md5.c,v 1.4 2014/12/28 10:04:35 tedu Exp $
*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
@ -15,13 +16,19 @@
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
#include <crypto/md5.h>
#define PUT_64BIT_LE(cp, value) do { \
#define PUT_64BIT_LE(cp, value) \
do \
{ \
(cp)[7] = (value) >> 56; \
(cp)[6] = (value) >> 48; \
(cp)[5] = (value) >> 40; \
@ -29,26 +36,36 @@
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
(cp)[0] = (value); \
} \
while (0)
#define PUT_32BIT_LE(cp, value) do { \
#define PUT_32BIT_LE(cp, value) \
do \
{ \
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
(cp)[0] = (value); \
} \
while (0)
static u_int8_t PADDING[MD5_BLOCK_LENGTH] = {
static uint8_t PADDING[MD5_BLOCK_LENGTH] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
/****************************************************************************
* Public Functions
****************************************************************************/
/* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void
MD5Init(MD5_CTX *ctx)
void md5init(FAR MD5_CTX *ctx)
{
ctx->count = 0;
ctx->state[0] = 0x67452301;
@ -57,104 +74,127 @@ MD5Init(MD5_CTX *ctx)
ctx->state[3] = 0x10325476;
}
/*
* Update context to reflect the concatenation of another buffer full
/* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void
MD5Update(MD5_CTX *ctx, const void *inputptr, size_t len)
void md5update(FAR MD5_CTX *ctx, FAR const void *inputptr, size_t len)
{
const uint8_t *input = inputptr;
size_t have, need;
FAR const uint8_t *input = inputptr;
size_t have;
size_t need;
/* Check how many bytes we already have and how many more we need. */
have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
need = MD5_BLOCK_LENGTH - have;
/* Update bitcount */
ctx->count += (u_int64_t)len << 3;
if (len >= need) {
if (have != 0) {
ctx->count += (uint64_t)len << 3;
if (len >= need)
{
if (have != 0)
{
memcpy(ctx->buffer + have, input, need);
MD5Transform(ctx->state, ctx->buffer);
md5transform(ctx->state, ctx->buffer);
input += need;
len -= need;
have = 0;
}
/* Process data in MD5_BLOCK_LENGTH-byte chunks. */
while (len >= MD5_BLOCK_LENGTH) {
MD5Transform(ctx->state, input);
while (len >= MD5_BLOCK_LENGTH)
{
md5transform(ctx->state, input);
input += MD5_BLOCK_LENGTH;
len -= MD5_BLOCK_LENGTH;
}
}
/* Handle any remaining bytes of data. */
if (len != 0)
{
memcpy(ctx->buffer + have, input, len);
}
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
/* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void
MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
void md5final(FAR unsigned char *digest, FAR MD5_CTX *ctx)
{
u_int8_t count[8];
uint8_t count[8];
size_t padlen;
int i;
/* Convert count to 8 bytes in little endian order. */
PUT_64BIT_LE(count, ctx->count);
/* Pad out to 56 mod 64. */
padlen = MD5_BLOCK_LENGTH -
((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
if (padlen < 1 + 8)
{
padlen += MD5_BLOCK_LENGTH;
MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
MD5Update(ctx, count, 8);
for (i = 0; i < 4; i++)
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
explicit_bzero(ctx, sizeof(*ctx)); /* in case it's sensitive */
}
md5update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
md5update(ctx, count, 8);
for (i = 0; i < 4; i++)
{
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
}
explicit_bzero(ctx, sizeof(*ctx)); /* in case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
#define F3(x, y, z) ((x) ^ (y) ^ (z))
#define F4(x, y, z) ((y) ^ ((x) | ~(z)))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
#define MD5STEP(f, w, x, y, z, data, s) \
((w) += f(x, y, z) + (data), \
(w) = (w) << (s) | (w) >> (32 - (s)), \
(w) += (x))
/* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
void
MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH])
void md5transform(FAR uint32_t *state, FAR const uint8_t *block)
{
u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
uint32_t in[MD5_BLOCK_LENGTH / 4];
#if BYTE_ORDER == LITTLE_ENDIAN
memcpy(in, block, sizeof(in));
#else
for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
in[a] = (u_int32_t)(
(u_int32_t)(block[a * 4 + 0]) |
(u_int32_t)(block[a * 4 + 1]) << 8 |
(u_int32_t)(block[a * 4 + 2]) << 16 |
(u_int32_t)(block[a * 4 + 3]) << 24);
for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++)
{
in[a] = (uint32_t)(
(uint32_t)(block[a * 4 + 0]) |
(uint32_t)(block[a * 4 + 1]) << 8 |
(uint32_t)(block[a * 4 + 2]) << 16 |
(uint32_t)(block[a * 4 + 3]) << 24);
}
#endif

View file

@ -1,7 +1,8 @@
/* $OpenBSD: podd.h,v 1.1 2000/02/28 23:13:05 deraadt Exp $ */
/* lib/des/podd.h */
/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
/****************************************************************************
* crypto/podd.h
* $OpenBSD: podd.h,v 1.1 2000/02/28 23:13:05 deraadt Exp $
* lib/des/podd.h
* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
* All rights reserved.
*
* This file is part of an SSL implementation written
@ -27,7 +28,8 @@
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Eric Young (eay@mincom.oz.au)
* This product includes software developed
* by Eric Young (eay@mincom.oz.au)
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
@ -42,25 +44,39 @@
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* derivative of this code cannot be changed.
* i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
****************************************************************************/
static const unsigned char odd_parity[256]={
1, 1, 2, 2, 4, 4, 7, 7, 8, 8, 11, 11, 13, 13, 14, 14,
16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31,
32, 32, 35, 35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44, 47, 47,
49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62,
64, 64, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79,
81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94,
97, 97, 98, 98,100,100,103,103,104,104,107,107,109,109,110,110,
112,112,115,115,117,117,118,118,121,121,122,122,124,124,127,127,
128,128,131,131,133,133,134,134,137,137,138,138,140,140,143,143,
145,145,146,146,148,148,151,151,152,152,155,155,157,157,158,158,
161,161,162,162,164,164,167,167,168,168,171,171,173,173,174,174,
176,176,179,179,181,181,182,182,185,185,186,186,188,188,191,191,
193,193,194,194,196,196,199,199,200,200,203,203,205,205,206,206,
208,208,211,211,213,213,214,214,217,217,218,218,220,220,223,223,
224,224,227,227,229,229,230,230,233,233,234,234,236,236,239,239,
241,241,242,242,244,244,247,247,248,248,251,251,253,253,254,254};
static const unsigned char odd_parity[256] =
{
1, 1, 2, 2, 4, 4, 7, 7, 8, 8, 11, 11, 13,
13, 14, 14, 16, 16, 19, 19, 21, 21, 22, 22,
25, 25, 26, 26, 28, 28, 31, 31, 32, 32, 35,
35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44,
47, 47, 49, 49, 50, 50, 52, 52, 55, 55, 56,
56, 59, 59, 61, 61, 62, 62, 64, 64, 67, 67,
69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79,
79, 81, 81, 82, 82, 84, 84, 87, 87, 88, 88,
91, 91, 93, 93, 94, 94, 97, 97, 98, 98, 100,
100, 103, 103, 104, 104, 107, 107, 109, 109,
110, 110, 112, 112, 115, 115, 117, 117, 118,
118, 121, 121, 122, 122, 124, 124, 127, 127,
128, 128, 131, 131, 133, 133, 134, 134, 137,
137, 138, 138, 140, 140, 143, 143, 145, 145,
146, 146, 148, 148, 151, 151, 152, 152, 155,
155, 157, 157, 158, 158, 161, 161, 162, 162,
164, 164, 167, 167, 168, 168, 171, 171, 173,
173, 174, 174, 176, 176, 179, 179, 181, 181,
182, 182, 185, 185, 186, 186, 188, 188, 191,
191, 193, 193, 194, 194, 196, 196, 199, 199,
200, 200, 203, 203, 205, 205, 206, 206, 208,
208, 211, 211, 213, 213, 214, 214, 217, 217,
218, 218, 220, 220, 223, 223, 224, 224, 227,
227, 229, 229, 230, 230, 233, 233, 234, 234,
236, 236, 239, 239, 241, 241, 242, 242, 244,
244, 247, 247, 248, 248, 251, 251, 253, 253,
254, 254
};

View file

@ -1,23 +1,30 @@
/* $OpenBSD: poly1305.c,v 1.2 2020/07/22 13:54:30 tobhe Exp $ */
/*
/****************************************************************************
* crypto/poly1305.c
* $OpenBSD: poly1305.c,v 1.2 2020/07/22 13:54:30 tobhe Exp $
*
* Public Domain poly1305 from Andrew Moon
* Based on poly1305-donna.c, poly1305-donna-32.h and poly1305-donna.h from:
* https://github.com/floodyberry/poly1305-donna
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/types.h>
#include <sys/systm.h>
#include <crypto/poly1305.h>
/*
* poly1305 implementation using 32 bit * 32 bit = 64 bit multiplication
/* poly1305 implementation using 32 bit * 32 bit = 64 bit multiplication
* and 64 bit addition.
*/
/* interpret four 8 bit unsigned integers as a 32 bit unsigned integer in little endian */
static unsigned long
U8TO32(const unsigned char *p)
/* interpret four 8 bit unsigned integers as a
* 32 bit unsigned integer in little endian
*/
static unsigned long U8TO32(FAR const unsigned char *p)
{
return (((unsigned long)(p[0] & 0xff)) |
((unsigned long)(p[1] & 0xff) << 8) |
@ -25,9 +32,11 @@ U8TO32(const unsigned char *p)
((unsigned long)(p[3] & 0xff) << 24));
}
/* store a 32 bit unsigned integer as four 8 bit unsigned integers in little endian */
static void
U32TO8(unsigned char *p, unsigned long v)
/* store a 32 bit unsigned integer as four
* 8 bit unsigned integers in little endian
*/
static void U32TO8(FAR unsigned char *p, unsigned long v)
{
p[0] = (v) & 0xff;
p[1] = (v >> 8) & 0xff;
@ -35,10 +44,14 @@ U32TO8(unsigned char *p, unsigned long v)
p[3] = (v >> 24) & 0xff;
}
void
poly1305_init(poly1305_state *st, const unsigned char key[32])
/****************************************************************************
* Public Functions
****************************************************************************/
void poly1305_init(FAR poly1305_state *st, FAR const unsigned char *key)
{
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
st->r[0] = (U8TO32(&key[0])) & 0x3ffffff;
st->r[1] = (U8TO32(&key[3]) >> 2) & 0x3ffff03;
st->r[2] = (U8TO32(&key[6]) >> 4) & 0x3ffc0ff;
@ -46,6 +59,7 @@ poly1305_init(poly1305_state *st, const unsigned char key[32])
st->r[4] = (U8TO32(&key[12]) >> 8) & 0x00fffff;
/* h = 0 */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;
@ -53,6 +67,7 @@ poly1305_init(poly1305_state *st, const unsigned char key[32])
st->h[4] = 0;
/* save pad for later */
st->pad[0] = U8TO32(&key[16]);
st->pad[1] = U8TO32(&key[20]);
st->pad[2] = U8TO32(&key[24]);
@ -62,14 +77,30 @@ poly1305_init(poly1305_state *st, const unsigned char key[32])
st->final = 0;
}
static void
poly1305_blocks(poly1305_state *st, const unsigned char *m, size_t bytes)
static void poly1305_blocks(FAR poly1305_state *st,
FAR const unsigned char *m,
size_t bytes)
{
const unsigned long hibit = (st->final) ? 0 : (1 << 24); /* 1 << 128 */
unsigned long r0, r1, r2, r3, r4;
unsigned long s1, s2, s3, s4;
unsigned long h0, h1, h2, h3, h4;
unsigned long long d0, d1, d2, d3, d4;
unsigned long r0;
unsigned long r1;
unsigned long r2;
unsigned long r3;
unsigned long r4;
unsigned long s1;
unsigned long s2;
unsigned long s3;
unsigned long s4;
unsigned long h0;
unsigned long h1;
unsigned long h2;
unsigned long h3;
unsigned long h4;
unsigned long long d0;
unsigned long long d1;
unsigned long long d2;
unsigned long long d3;
unsigned long long d4;
unsigned long c;
r0 = st->r[0];
@ -89,8 +120,10 @@ poly1305_blocks(poly1305_state *st, const unsigned char *m, size_t bytes)
h3 = st->h[3];
h4 = st->h[4];
while (bytes >= poly1305_block_size) {
while (bytes >= poly1305_block_size)
{
/* h += m[i] */
h0 += (U8TO32(m + 0)) & 0x3ffffff;
h1 += (U8TO32(m + 3) >> 2) & 0x3ffffff;
h2 += (U8TO32(m + 6) >> 4) & 0x3ffffff;
@ -98,6 +131,7 @@ poly1305_blocks(poly1305_state *st, const unsigned char *m, size_t bytes)
h4 += (U8TO32(m + 12) >> 8) | hibit;
/* h *= r */
d0 = ((unsigned long long)h0 * r0) +
((unsigned long long)h1 * s4) +
((unsigned long long)h2 * s3) +
@ -125,6 +159,7 @@ poly1305_blocks(poly1305_state *st, const unsigned char *m, size_t bytes)
((unsigned long long)h4 * r0);
/* (partial) h %= p */
c = (unsigned long)(d0 >> 26);
h0 = (unsigned long)d0 & 0x3ffffff;
d1 += c;
@ -155,29 +190,43 @@ poly1305_blocks(poly1305_state *st, const unsigned char *m, size_t bytes)
st->h[4] = h4;
}
void
poly1305_update(poly1305_state *st, const unsigned char *m, size_t bytes)
void poly1305_update(FAR poly1305_state *st,
FAR const unsigned char *m,
size_t bytes)
{
size_t i;
/* handle leftover */
if (st->leftover) {
if (st->leftover)
{
size_t want = (poly1305_block_size - st->leftover);
if (want > bytes)
{
want = bytes;
}
for (i = 0; i < want; i++)
{
st->buffer[st->leftover + i] = m[i];
}
bytes -= want;
m += want;
st->leftover += want;
if (st->leftover < poly1305_block_size)
{
return;
}
poly1305_blocks(st, st->buffer, poly1305_block_size);
st->leftover = 0;
}
/* process full blocks */
if (bytes >= poly1305_block_size) {
if (bytes >= poly1305_block_size)
{
size_t want = (bytes & ~(poly1305_block_size - 1));
poly1305_blocks(st, m, want);
m += want;
@ -185,23 +234,38 @@ poly1305_update(poly1305_state *st, const unsigned char *m, size_t bytes)
}
/* store leftover */
if (bytes) {
if (bytes)
{
for (i = 0; i < bytes; i++)
{
st->buffer[st->leftover + i] = m[i];
}
st->leftover += bytes;
}
}
void
poly1305_finish(poly1305_state *st, unsigned char mac[16])
void poly1305_finish(FAR poly1305_state *st, FAR unsigned char *mac)
{
unsigned long h0, h1, h2, h3, h4, c;
unsigned long g0, g1, g2, g3, g4;
unsigned long h0;
unsigned long h1;
unsigned long h2;
unsigned long h3;
unsigned long h4;
unsigned long c;
unsigned long g0;
unsigned long g1;
unsigned long g2;
unsigned long g3;
unsigned long g4;
unsigned long long f;
unsigned long mask;
/* process the remaining block */
if (st->leftover) {
if (st->leftover)
{
size_t i = st->leftover;
st->buffer[i++] = 1;
for (; i < poly1305_block_size; i++)
@ -211,6 +275,7 @@ poly1305_finish(poly1305_state *st, unsigned char mac[16])
}
/* fully carry h */
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
@ -234,6 +299,7 @@ poly1305_finish(poly1305_state *st, unsigned char mac[16])
h1 += c;
/* compute h + -p */
g0 = h0 + 5;
c = g0 >> 26;
g0 &= 0x3ffffff;
@ -249,6 +315,7 @@ poly1305_finish(poly1305_state *st, unsigned char mac[16])
g4 = h4 + c - (1 << 26);
/* select h if h < p, or h + -p if h >= p */
mask = (g4 >> ((sizeof(unsigned long) * 8) - 1)) - 1;
g0 &= mask;
g1 &= mask;
@ -263,12 +330,14 @@ poly1305_finish(poly1305_state *st, unsigned char mac[16])
h4 = (h4 & mask) | g4;
/* h = h % (2^128) */
h0 = ((h0) | (h1 << 26)) & 0xffffffff;
h1 = ((h1 >> 6) | (h2 << 20)) & 0xffffffff;
h2 = ((h2 >> 12) | (h3 << 14)) & 0xffffffff;
h3 = ((h3 >> 18) | (h4 << 8)) & 0xffffffff;
/* mac = (h + pad) % (2^128) */
f = (unsigned long long)h0 + st->pad[0];
h0 = (unsigned long)f;
f = (unsigned long long)h1 + st->pad[1] + (f >> 32);
@ -284,6 +353,7 @@ poly1305_finish(poly1305_state *st, unsigned char mac[16])
U32TO8(mac + 12, h3);
/* zero out the state */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,7 @@
/* $OpenBSD: rmd160.c,v 1.5 2011/01/11 15:42:05 deraadt Exp $ */
/*
/****************************************************************************
* crypto/rmd160.c
* $OpenBSD: rmd160.c,v 1.5 2011/01/11 15:42:05 deraadt Exp $
*
* Copyright (c) 2001 Markus Friedl. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -21,18 +23,25 @@
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Preneel, Bosselaers, Dobbertin, "The Cryptographic Hash Function RIPEMD-160",
*
* Preneel, Bosselaers, Dobbertin,
* "The Cryptographic Hash Function RIPEMD-160",
* RSA Laboratories, CryptoBytes, Volume 3, Number 2, Autumn 1997,
* ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <crypto/rmd160.h>
#define PUT_64BIT_LE(cp, value) do { \
#define PUT_64BIT_LE(cp, value) \
do \
{ \
(cp)[7] = (value) >> 56; \
(cp)[6] = (value) >> 48; \
(cp)[5] = (value) >> 40; \
@ -40,13 +49,19 @@
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
(cp)[0] = (value); \
} \
while (0)
#define PUT_32BIT_LE(cp, value) do { \
#define PUT_32BIT_LE(cp, value) \
do \
{ \
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
(cp)[0] = (value); \
} \
while (0)
#define H0 0x67452301U
#define H1 0xEFCDAB89U
@ -67,30 +82,37 @@
#define KK4 0x00000000U
/* rotate x left n bits. */
#define ROL(n, x) (((x) << (n)) | ((x) >> (32-(n))))
#define F0(x, y, z) ((x) ^ (y) ^ (z))
#define F1(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define F2(x, y, z) (((x) | (~y)) ^ (z))
#define F3(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define F4(x, y, z) ((x) ^ ((y) | (~z)))
#define F1(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define F2(x, y, z) (((x) | ~(y)) ^ (z))
#define F3(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define F4(x, y, z) ((x) ^ ((y) | ~(z)))
#define R(a, b, c, d, e, Fj, Kj, sj, rj) \
do { \
do \
{ \
a = ROL(sj, a + Fj(b,c,d) + X(rj) + Kj) + e; \
c = ROL(10, c); \
} while(0)
} \
while (0)
#define X(i) x[i]
static u_char PADDING[64] = {
static u_char PADDING[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
void
RMD160Init(RMD160_CTX *ctx)
/****************************************************************************
* Public Functions
****************************************************************************/
void rmd160init(FAR RMD160_CTX *ctx)
{
ctx->count = 0;
ctx->state[0] = H0;
@ -100,63 +122,90 @@ RMD160Init(RMD160_CTX *ctx)
ctx->state[4] = H4;
}
void
RMD160Update(RMD160_CTX *ctx, const u_char *input, u_int32_t len)
void rmd160update(FAR RMD160_CTX *ctx,
FAR const u_char *input,
uint32_t len)
{
u_int32_t have, off, need;
uint32_t have;
uint32_t off;
uint32_t need;
have = (ctx->count / 8) % 64;
need = 64 - have;
ctx->count += 8 * len;
off = 0;
if (len >= need) {
if (have) {
if (len >= need)
{
if (have)
{
memcpy(ctx->buffer + have, input, need);
RMD160Transform(ctx->state, ctx->buffer);
rmd160transform(ctx->state, ctx->buffer);
off = need;
have = 0;
}
/* now the buffer is empty */
while (off + 64 <= len) {
RMD160Transform(ctx->state, input+off);
while (off + 64 <= len)
{
rmd160transform(ctx->state, input + off);
off += 64;
}
}
if (off < len)
{
memcpy(ctx->buffer + have, input + off, len - off);
}
}
void
RMD160Final(u_char digest[20], RMD160_CTX *ctx)
void rmd160final(FAR u_char *digest, FAR RMD160_CTX *ctx)
{
int i;
u_char size[8];
u_int32_t padlen;
uint32_t padlen;
PUT_64BIT_LE(size, ctx->count);
/*
* pad to 64 byte blocks, at least one byte from PADDING plus 8 bytes
/* pad to 64 byte blocks, at least one byte from PADDING plus 8 bytes
* for the size
*/
padlen = 64 - ((ctx->count / 8) % 64);
if (padlen < 1 + 8)
{
padlen += 64;
RMD160Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
RMD160Update(ctx, size, 8);
}
rmd160update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
rmd160update(ctx, size, 8);
if (digest != NULL)
{
for (i = 0; i < 5; i++)
{
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
}
}
explicit_bzero(ctx, sizeof (*ctx));
}
void
RMD160Transform(u_int32_t state[5], const u_char block[64])
void rmd160transform(FAR uint32_t *state, FAR const u_char *block)
{
u_int32_t a, b, c, d, e, aa, bb, cc, dd, ee, t, x[16];
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
uint32_t e;
uint32_t aa;
uint32_t bb;
uint32_t cc;
uint32_t dd;
uint32_t ee;
uint32_t t;
uint32_t x[16];
#if BYTE_ORDER == LITTLE_ENDIAN
memcpy(x, block, 64);
@ -164,11 +213,14 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
int i;
for (i = 0; i < 16; i++)
x[i] = (u_int32_t)(
(u_int32_t)(block[i*4 + 0]) |
(u_int32_t)(block[i*4 + 1]) << 8 |
(u_int32_t)(block[i*4 + 2]) << 16 |
(u_int32_t)(block[i*4 + 3]) << 24);
{
x[i] = (uint32_t)(
(uint32_t)(block[i * 4 + 0]) |
(uint32_t)(block[i * 4 + 1]) << 8 |
(uint32_t)(block[i * 4 + 2]) << 16 |
(uint32_t)(block[i * 4 + 3]) << 24);
}
#endif
a = state[0];
@ -178,6 +230,7 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
e = state[4];
/* Round 1 */
R(a, b, c, d, e, F0, K0, 11, 0);
R(e, a, b, c, d, F0, K0, 14, 1);
R(d, e, a, b, c, F0, K0, 15, 2);
@ -194,7 +247,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(c, d, e, a, b, F0, K0, 7, 13);
R(b, c, d, e, a, F0, K0, 9, 14);
R(a, b, c, d, e, F0, K0, 8, 15); /* #15 */
/* Round 2 */
R(e, a, b, c, d, F1, K1, 7, 7);
R(d, e, a, b, c, F1, K1, 6, 4);
R(c, d, e, a, b, F1, K1, 8, 13);
@ -211,7 +266,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(b, c, d, e, a, F1, K1, 7, 14);
R(a, b, c, d, e, F1, K1, 13, 11);
R(e, a, b, c, d, F1, K1, 12, 8); /* #31 */
/* Round 3 */
R(d, e, a, b, c, F2, K2, 11, 3);
R(c, d, e, a, b, F2, K2, 13, 10);
R(b, c, d, e, a, F2, K2, 6, 14);
@ -228,7 +285,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(a, b, c, d, e, F2, K2, 12, 11);
R(e, a, b, c, d, F2, K2, 7, 5);
R(d, e, a, b, c, F2, K2, 5, 12); /* #47 */
/* Round 4 */
R(c, d, e, a, b, F3, K3, 11, 1);
R(b, c, d, e, a, F3, K3, 12, 9);
R(a, b, c, d, e, F3, K3, 14, 11);
@ -245,7 +304,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(e, a, b, c, d, F3, K3, 6, 5);
R(d, e, a, b, c, F3, K3, 5, 6);
R(c, d, e, a, b, F3, K3, 12, 2); /* #63 */
/* Round 5 */
R(b, c, d, e, a, F4, K4, 9, 4);
R(a, b, c, d, e, F4, K4, 15, 0);
R(e, a, b, c, d, F4, K4, 5, 5);
@ -272,6 +333,7 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
e = state[4];
/* Parallel round 1 */
R(a, b, c, d, e, F4, KK0, 8, 5);
R(e, a, b, c, d, F4, KK0, 9, 14);
R(d, e, a, b, c, F4, KK0, 9, 7);
@ -288,7 +350,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(c, d, e, a, b, F4, KK0, 14, 10);
R(b, c, d, e, a, F4, KK0, 12, 3);
R(a, b, c, d, e, F4, KK0, 6, 12); /* #15 */
/* Parallel round 2 */
R(e, a, b, c, d, F3, KK1, 9, 6);
R(d, e, a, b, c, F3, KK1, 13, 11);
R(c, d, e, a, b, F3, KK1, 15, 3);
@ -305,7 +369,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(b, c, d, e, a, F3, KK1, 15, 9);
R(a, b, c, d, e, F3, KK1, 13, 1);
R(e, a, b, c, d, F3, KK1, 11, 2); /* #31 */
/* Parallel round 3 */
R(d, e, a, b, c, F2, KK2, 9, 15);
R(c, d, e, a, b, F2, KK2, 7, 5);
R(b, c, d, e, a, F2, KK2, 15, 1);
@ -322,7 +388,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(a, b, c, d, e, F2, KK2, 13, 0);
R(e, a, b, c, d, F2, KK2, 7, 4);
R(d, e, a, b, c, F2, KK2, 5, 13); /* #47 */
/* Parallel round 4 */
R(c, d, e, a, b, F1, KK3, 15, 8);
R(b, c, d, e, a, F1, KK3, 5, 6);
R(a, b, c, d, e, F1, KK3, 8, 4);
@ -339,7 +407,9 @@ RMD160Transform(u_int32_t state[5], const u_char block[64])
R(e, a, b, c, d, F1, KK3, 5, 7);
R(d, e, a, b, c, F1, KK3, 15, 10);
R(c, d, e, a, b, F1, KK3, 8, 14); /* #63 */
/* Parallel round 5 */
R(b, c, d, e, a, F0, KK4, 8, 12);
R(a, b, c, d, e, F0, KK4, 5, 15);
R(e, a, b, c, d, F0, KK4, 12, 10);

View file

@ -1,7 +1,8 @@
/* $OpenBSD: set_key.c,v 1.5 2021/03/12 10:22:46 jsg Exp $ */
/* lib/des/set_key.c */
/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
/****************************************************************************
* crypto/set_key.c
* $OpenBSD: set_key.c,v 1.5 2021/03/12 10:22:46 jsg Exp $
* lib/des/set_key.c
* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
* All rights reserved.
*
* This file is part of an SSL implementation written
@ -27,7 +28,8 @@
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Eric Young (eay@mincom.oz.au)
* This product includes software developed by
* Eric Young (eay@mincom.oz.au)
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
@ -42,36 +44,43 @@
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* derivative of this code cannot be changed.
* i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* set_key.c v 1.4 eay 24/9/91
*
* set_key.c v 1.4 eay 24/9/91
* 1.4 Speed up by 400% :-)
* 1.3 added register declarations.
* 1.2 unrolled make_key_sched a bit more
* 1.1 added norm_expand_bits
* 1.0 First working version
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include "des_locl.h"
#include "podd.h"
#include "sk.h"
static int check_parity(des_cblock (*key));
static int check_parity(FAR des_cblock *key);
int des_check_key=0;
int des_check_key;
static int
check_parity(des_cblock (*key))
static int check_parity(FAR des_cblock *key)
{
int i;
for (i = 0; i < DES_KEY_SZ; i++) {
if ((*key)[i] != odd_parity[(*key)[i]])
return(0);
for (i = 0; i < DES_KEY_SZ; i++)
{
if (*key[i] != odd_parity[*key[i]])
{
return 0;
}
return (1);
}
return 1;
}
/* Weak and semi week keys as take from
@ -83,41 +92,88 @@ check_parity(des_cblock (*key))
* Many thanks to smb@ulysses.att.com (Steven Bellovin) for the reference
* (and actual cblock values).
*/
#define NUM_WEAK_KEY 16
static des_cblock weak_keys[NUM_WEAK_KEY]={
/* weak keys */
{0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01},
{0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
{0x1F,0x1F,0x1F,0x1F,0x1F,0x1F,0x1F,0x1F},
{0xE0,0xE0,0xE0,0xE0,0xE0,0xE0,0xE0,0xE0},
/* semi-weak keys */
{0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE},
{0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01},
{0x1F,0xE0,0x1F,0xE0,0x0E,0xF1,0x0E,0xF1},
{0xE0,0x1F,0xE0,0x1F,0xF1,0x0E,0xF1,0x0E},
{0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1},
{0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01},
{0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E,0xFE},
{0xFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E},
{0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E},
{0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01},
{0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1,0xFE},
{0xFE,0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1}};
int
des_is_weak_key(des_cblock (*key))
#define NUM_WEAK_KEY 16
static des_cblock weak_keys[NUM_WEAK_KEY] =
{
/* weak keys */
{
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01
},
{
0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe
},
{
0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
},
{
0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0
},
/* semi-weak keys */
{
0x01, 0xfe, 0x01, 0xfe, 0x01, 0xfe, 0x01, 0xfe
},
{
0xfe, 0x01, 0xfe, 0x01, 0xfe, 0x01, 0xfe, 0x01
},
{
0x1f, 0xe0, 0x1f, 0xe0, 0x0e, 0xf1, 0x0e, 0xf1
},
{
0xe0, 0x1f, 0xe0, 0x1f, 0xf1, 0x0e, 0xf1, 0x0e
},
{
0x01, 0xe0, 0x01, 0xe0, 0x01, 0xf1, 0x01, 0xf1
},
{
0xe0, 0x01, 0xe0, 0x01, 0xf1, 0x01, 0xf1, 0x01
},
{
0x1f, 0xfe, 0x1f, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe
},
{
0xfe, 0x1f, 0xfe, 0x1f, 0xfe, 0x0e, 0xfe, 0x0e
},
{
0x01, 0x1f, 0x01, 0x1f, 0x01, 0x0e, 0x01, 0x0e
},
{
0x1f, 0x01, 0x1f, 0x01, 0x0e, 0x01, 0x0e, 0x01
},
{
0xe0, 0xfe, 0xe0, 0xfe, 0xf1, 0xfe, 0xf1, 0xfe
},
{
0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf1, 0xfe, 0xf1
}
};
/****************************************************************************
* Public Functions
****************************************************************************/
int des_is_weak_key(FAR des_cblock *key)
{
int i;
for (i = 0; i < NUM_WEAK_KEY; i++) {
for (i = 0; i < NUM_WEAK_KEY; i++)
{
/* Added == 0 to comparison, I obviously don't run
* this section very often :-(, thanks to
* engineering@MorningStar.Com for the fix
* eay 93/06/29 */
* eay 93/06/29
*/
if (bcmp(weak_keys[i], key, sizeof(des_cblock)) == 0)
return (1);
{
return 1;
}
return (0);
}
return 0;
}
/* NOW DEFINED IN des_local.h
@ -130,85 +186,112 @@ des_is_weak_key(des_cblock (*key))
#define HPERM_OP(a, t, n, m) ((t) = ((((a) << (16 - (n)))^(a)) & (m)),\
(a) = (a)^(t)^(t >> (16 - (n))))
static int shifts2[16]={0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0};
static int shifts2[16] =
{
0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0
};
/* return 0 if key parity is odd (correct),
* return -1 if key parity error,
* return -2 if illegal weak key.
*/
int
des_set_key(des_cblock (*key), des_key_schedule schedule)
int des_set_key(FAR des_cblock *key, des_key_schedule schedule)
{
register u_int32_t c, d, t, s;
register unsigned char *in;
register u_int32_t *k;
register uint32_t c;
register uint32_t d;
register uint32_t t;
register uint32_t s;
FAR register unsigned char *in;
FAR register uint32_t *k;
register int i;
if (des_check_key) {
if (des_check_key)
{
if (!check_parity(key))
{
return(-1);
if (des_is_weak_key(key))
return(-2);
}
k = (u_int32_t *) schedule;
in = (unsigned char *) key;
if (des_is_weak_key(key))
{
return(-2);
}
}
k = (FAR uint32_t *)schedule;
in = (FAR unsigned char *)key;
c2l(in, c);
c2l(in, d);
/* do PC1 in 60 simple operations */
/* PERM_OP(d, c, t, 4, 0x0f0f0f0fL);
HPERM_OP(c, t, -2, 0xcccc0000L);
HPERM_OP(c, t, -1, 0xaaaa0000L);
HPERM_OP(c, t, 8, 0x00ff0000L);
HPERM_OP(c, t, -1, 0xaaaa0000L);
HPERM_OP(d, t, -8, 0xff000000L);
HPERM_OP(d, t, 8, 0x00ff0000L);
HPERM_OP(d, t, 2, 0x33330000L);
d = ((d & 0x00aa00aaL) << 7L) | ((d & 0x55005500L) >> 7L) | (d & 0xaa55aa55L);
d = (d >> 8) | ((c & 0xf0000000L) >> 4);
c &= 0x0fffffffL; */
* HPERM_OP(c, t, -2, 0xcccc0000L);
* HPERM_OP(c, t, -1, 0xaaaa0000L);
* HPERM_OP(c, t, 8, 0x00ff0000L);
* HPERM_OP(c, t, -1, 0xaaaa0000L);
* HPERM_OP(d, t, -8, 0xff000000L);
* HPERM_OP(d, t, 8, 0x00ff0000L);
* HPERM_OP(d, t, 2, 0x33330000L);
* d = ((d & 0x00aa00aaL) << 7L) |
* ((d & 0x55005500L) >> 7L) | (d & 0xaa55aa55L);
* d = (d >> 8) | ((c & 0xf0000000L) >> 4);
* c &= 0x0fffffffL;
*/
/* I now do it in 47 simple operations :-)
* Thanks to John Fletcher (john_fletcher@lccmail.ocf.llnl.gov)
* for the inspiration. :-) */
PERM_OP (d, c, t, 4, 0x0f0f0f0fL);
HPERM_OP(c, t, -2, 0xcccc0000L);
HPERM_OP(d, t, -2, 0xcccc0000L);
PERM_OP (d, c, t, 1, 0x55555555L);
PERM_OP (c, d, t, 8, 0x00ff00ffL);
PERM_OP (d, c, t, 1, 0x55555555L);
d = (((d & 0x000000ffL) << 16L) | (d & 0x0000ff00L) |
((d & 0x00ff0000L) >> 16L) | ((c & 0xf0000000L) >> 4L));
c &= 0x0fffffffL;
* for the inspiration. :-)
*/
for (i = 0; i < ITERATIONS; i++) {
PERM_OP (d, c, t, 4, 0x0f0f0f0fl);
HPERM_OP(c, t, -2, 0xcccc0000l);
HPERM_OP(d, t, -2, 0xcccc0000l);
PERM_OP (d, c, t, 1, 0x55555555l);
PERM_OP (c, d, t, 8, 0x00ff00ffl);
PERM_OP (d, c, t, 1, 0x55555555l);
d = (((d & 0x000000ffl) << 16l) | (d & 0x0000ff00l) |
((d & 0x00ff0000l) >> 16l) | ((c & 0xf0000000l) >> 4l));
c &= 0x0fffffffl;
for (i = 0; i < ITERATIONS; i++)
{
if (shifts2[i])
{ c = ((c >> 2L) | (c << 26L)); d = ((d >> 2L) | (d << 26L)); }
{
c = ((c >> 2l) | (c << 26l)); d = ((d >> 2l) | (d << 26l));
}
else
{ c = ((c >> 1L) | (c << 27L)); d = ((d >> 1L) | (d << 27L)); }
c &= 0x0fffffffL;
d &= 0x0fffffffL;
{
c = ((c >> 1l) | (c << 27l)); d = ((d >> 1l) | (d << 27l));
}
c &= 0x0fffffffl;
d &= 0x0fffffffl;
/* could be a few less shifts but I am to lazy at this
* point in time to investigate */
* point in time to investigate
*/
s = des_skb[0][(c) & 0x3f] |
des_skb[1][((c >> 6) & 0x03) | ((c >> 7L) & 0x3c)]|
des_skb[2][((c >> 13) & 0x0f) | ((c >> 14L) & 0x30)]|
des_skb[3][((c >> 20) & 0x01) | ((c >> 21L) & 0x06) |
((c >> 22L) & 0x38)];
des_skb[1][((c >> 6) & 0x03) | ((c >> 7l) & 0x3c)] |
des_skb[2][((c >> 13) & 0x0f) | ((c >> 14l) & 0x30)] |
des_skb[3][((c >> 20) & 0x01) | ((c >> 21l) & 0x06) |
((c >> 22l) & 0x38)];
t = des_skb[4][(d) & 0x3f] |
des_skb[5][((d >> 7L) & 0x03) | ((d >> 8L) & 0x3c)]|
des_skb[6][ (d >> 15L) & 0x3f ]|
des_skb[7][((d >> 21L) & 0x0f) | ((d >> 22L) & 0x30)];
des_skb[5][((d >> 7l) & 0x03) | ((d >> 8l) & 0x3c)] |
des_skb[6][(d >> 15l) & 0x3f] |
des_skb[7][((d >> 21l) & 0x0f) | ((d >> 22l) & 0x30)];
/* table contained 0213 4657 */
*(k++) = ((t << 16L) | (s & 0x0000ffffL)) & 0xffffffffL;
s = ((s >> 16L) | (t & 0xffff0000L));
s = (s << 4L) | (s >> 28L);
*(k++) = s & 0xffffffffL;
*(k++) = ((t << 16l) | (s & 0x0000ffffl)) & 0xffffffffl;
s = ((s >> 16l) | (t & 0xffff0000l));
s = (s << 4l) | (s >> 28l);
*(k++) = s & 0xffffffffl;
}
return (0);
return 0;
}

View file

@ -1,6 +1,7 @@
/* $OpenBSD: sha1.c,v 1.11 2014/12/28 10:04:35 tedu Exp $ */
/*
/****************************************************************************
* crypto/sha1.c
* $OpenBSD: sha1.c,v 1.11 2014/12/28 10:04:35 tedu Exp $
*
* SHA-1 in C
* By Steve Reid <steve@edmweb.com>
* 100% Public Domain
@ -12,58 +13,120 @@
* 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
* A million repetitions of "a"
* 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
/* #define LITTLE_ENDIAN * This should be #define'd already, if true. */
/* #define SHA1HANDSOFF * Copies data before messing with it. */
****************************************************************************/
#define SHA1HANDSOFF
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
#include <crypto/sha1.h>
/* #define LITTLE_ENDIAN * This should be #define'd already, if true. */
/* #define SHA1HANDSOFF * Copies data before messing with it. */
#define SHA1HANDSOFF
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#if BYTE_ORDER == LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
# define blk0(i) (block->l[i] = (rol(block->l[i] , 24) & 0xff00ff00) \
| (rol(block->l[i], 8) & 0x00ff00ff))
#else
# define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
#define blk(i) (block->l[i & 15] = \
rol(block->l[(i + 13) & 15] ^ block->l[(i + 8) & 15] \
^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
#define R0(v,w,x,y,z,i) \
do \
{ \
z += ((w & (x ^ y)) ^ y) \
+ blk0(i) + 0x5a827999 + rol(v, 5); \
w = rol(w, 30); \
} \
while (0)
#define R1(v,w,x,y,z,i) \
do \
{ \
z += ((w & (x ^ y)) ^y) \
+ blk(i) + 0x5a827999 + rol(v, 5); \
w = rol(w, 30); \
} \
while (0)
#define R2(v,w,x,y,z,i) \
do \
{ \
z += (w ^ x ^ y) \
+ blk(i) + 0x6ed9eba1 + rol(v, 5); \
w = rol(w,30); \
} \
while (0)
#define R3(v,w,x,y,z,i) \
do \
{ \
z += (((w | x) & y) | (w & x)) \
+ blk(i)+ 0x8f1bbcdc + rol(v, 5); \
w = rol(w, 30); \
} \
while (0)
#define R4(v,w,x,y,z,i) \
do \
{ \
z += (w ^ x ^y) \
+ blk(i) + 0xca62c1d6 + rol(v, 5); \
w=rol(w, 30); \
} \
while (0)
/****************************************************************************
* Public Functions
****************************************************************************/
/* Hash a single 512-bit block. This is the core of the algorithm. */
void
SHA1Transform(u_int32_t state[5], const unsigned char buffer[SHA1_BLOCK_LENGTH])
void sha1transform(FAR uint32_t *state,
FAR const unsigned char *buffer)
{
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
uint32_t e;
typedef union
{
u_int32_t a, b, c, d, e;
typedef union {
unsigned char c[64];
unsigned int l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
FAR CHAR64LONG16 *block;
#ifdef SHA1HANDSOFF
unsigned char workspace[SHA1_BLOCK_LENGTH];
block = (CHAR64LONG16 *)workspace;
block = (FAR CHAR64LONG16 *)workspace;
memcpy(block, buffer, SHA1_BLOCK_LENGTH);
#else
block = (CHAR64LONG16 *)buffer;
block = (FAR CHAR64LONG16 *)buffer;
#endif
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
@ -71,99 +134,173 @@ SHA1Transform(u_int32_t state[5], const unsigned char buffer[SHA1_BLOCK_LENGTH])
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
R0(a, b, c, d, e, 0);
R0(e, a, b, c, d, 1);
R0(d, e, a, b, c, 2);
R0(c, d, e, a, b, 3);
R0(b, c, d, e, a, 4);
R0(a, b, c, d, e, 5);
R0(e, a, b, c, d, 6);
R0(d, e, a, b, c, 7);
R0(c, d, e, a, b, 8);
R0(b, c, d, e, a, 9);
R0(a, b, c, d, e, 10);
R0(e, a, b, c, d, 11);
R0(d, e, a, b, c, 12);
R0(c, d, e, a, b, 13);
R0(b, c, d, e, a, 14);
R0(a, b, c, d, e, 15);
R1(e, a, b, c, d, 16);
R1(d, e, a, b, c, 17);
R1(c, d, e, a, b, 18);
R1(b, c, d, e, a, 19);
R2(a, b, c, d, e, 20);
R2(e, a, b, c, d, 21);
R2(d, e, a, b, c, 22);
R2(c, d, e, a, b, 23);
R2(b, c, d, e, a, 24);
R2(a, b, c, d, e, 25);
R2(e, a, b, c, d, 26);
R2(d, e, a, b, c, 27);
R2(c, d, e, a, b, 28);
R2(b, c, d, e, a, 29);
R2(a, b, c, d, e, 30);
R2(e, a, b, c, d, 31);
R2(d, e, a, b, c, 32);
R2(c, d, e, a, b, 33);
R2(b, c, d, e, a, 34);
R2(a, b, c, d, e, 35);
R2(e, a, b, c, d, 36);
R2(d, e, a, b, c, 37);
R2(c, d, e, a, b, 38);
R2(b, c, d, e, a, 39);
R3(a, b, c, d, e, 40);
R3(e, a, b, c, d, 41);
R3(d, e, a, b, c, 42);
R3(c, d, e, a, b, 43);
R3(b, c, d, e, a, 44);
R3(a, b, c, d, e, 45);
R3(e, a, b, c, d, 46);
R3(d, e, a, b, c, 47);
R3(c, d, e, a, b, 48);
R3(b, c, d, e, a, 49);
R3(a, b, c, d, e, 50);
R3(e, a, b, c, d, 51);
R3(d, e, a, b, c, 52);
R3(c, d, e, a, b, 53);
R3(b, c, d, e, a, 54);
R3(a, b, c, d, e, 55);
R3(e, a, b, c, d, 56);
R3(d, e, a, b, c, 57);
R3(c, d, e, a, b, 58);
R3(b, c, d, e, a, 59);
R4(a, b, c, d, e, 60);
R4(e, a, b, c, d, 61);
R4(d, e, a, b, c, 62);
R4(c, d, e, a, b, 63);
R4(b, c, d, e, a, 64);
R4(a, b, c, d, e, 65);
R4(e, a, b, c, d, 66);
R4(d, e, a, b, c, 67);
R4(c, d, e, a, b, 68);
R4(b, c, d, e, a, 69);
R4(a, b, c, d, e, 70);
R4(e, a, b, c, d, 71);
R4(d, e, a, b, c, 72);
R4(c, d, e, a, b, 73);
R4(b, c, d, e, a, 74);
R4(a, b, c, d, e, 75);
R4(e, a, b, c, d, 76);
R4(d, e, a, b, c, 77);
R4(c, d, e, a, b, 78);
R4(b, c, d, e, a, 79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* SHA1Init - Initialize new context */
void
SHA1Init(SHA1_CTX *context)
void sha1init(FAR SHA1_CTX *context)
{
/* SHA1 initialization constants */
context->count = 0;
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->state[4] = 0xc3d2e1f0;
}
/* Run your data through this. */
void
SHA1Update(SHA1_CTX *context, const void *dataptr, unsigned int len)
void sha1update(FAR SHA1_CTX *context,
FAR const void *dataptr,
unsigned int len)
{
const uint8_t *data = dataptr;
FAR const uint8_t *data = dataptr;
unsigned int i;
unsigned int j;
j = (u_int32_t)((context->count >> 3) & 63);
j = (uint32_t)((context->count >> 3) & 63);
context->count += (len << 3);
if ((j + len) > 63) {
if ((j + len) > 63)
{
memcpy(&context->buffer[j], data, (i = 64 - j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64) {
SHA1Transform(context->state, &data[i]);
sha1transform(context->state, context->buffer);
for (; i + 63 < len; i += 64)
{
sha1transform(context->state, &data[i]);
}
j = 0;
}
else i = 0;
else
{
i = 0;
}
memcpy(&context->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
void
SHA1Final(unsigned char digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
void sha1final(FAR unsigned char *digest,
FAR SHA1_CTX *context)
{
unsigned int i;
unsigned char finalcount[8];
for (i = 0; i < 8; i++) {
for (i = 0; i < 8; i++)
{
finalcount[i] = (unsigned char)((context->count >>
((7 - (i & 7)) * 8)) & 255); /* Endian independent */
}
SHA1Update(context, "\200", 1);
while ((context->count & 504) != 448) {
SHA1Update(context, "\0", 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
sha1update(context, "\200", 1);
while ((context->count & 504) != 448)
{
sha1update(context, "\0", 1);
}
sha1update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < SHA1_DIGEST_LENGTH; i++)
{
digest[i] = (unsigned char)((context->state[i >> 2] >>
((3 - (i & 3)) * 8)) & 255);
}
explicit_bzero(&finalcount, sizeof(finalcount));
explicit_bzero(context, sizeof(*context));
}

File diff suppressed because it is too large Load diff

View file

@ -1,6 +1,7 @@
/* $OpenBSD: siphash.c,v 1.5 2018/01/05 19:05:09 mikeb Exp $ */
/*-
/****************************************************************************
* crypto/siphash.c
* $OpenBSD: siphash.c,v 1.5 2018/01/05 19:05:09 mikeb Exp $
*
* Copyright (c) 2013 Andre Oppermann <andre@FreeBSD.org>
* All rights reserved.
*
@ -27,11 +28,11 @@
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
****************************************************************************/
/*
* SipHash is a family of PRFs SipHash-c-d where the integer parameters c and d
* are the number of compression rounds and the number of finalization rounds.
/* SipHash is a family of PRFs SipHash-c-d where the integer parameters
* c and d are the number of compression rounds and the number of
* finalization rounds.
* A compression round is identical to a finalization round and this round
* function is called SipRound. Given a 128-bit key k and a (possibly empty)
* byte string m, SipHash-c-d returns a 64-bit value SipHash-c-d(k; m).
@ -43,36 +44,45 @@
* https://131002.net/siphash/
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
#include <crypto/siphash.h>
static void SipHash_CRounds(SIPHASH_CTX *, int);
static void SipHash_Rounds(SIPHASH_CTX *, int);
static void siphash_crounds(FAR SIPHASH_CTX *, int);
static void siphash_rounds(FAR SIPHASH_CTX *, int);
void
SipHash_Init(SIPHASH_CTX *ctx, const SIPHASH_KEY *key)
/****************************************************************************
* Public Functions
****************************************************************************/
void siphash_init(FAR SIPHASH_CTX *ctx, FAR const SIPHASH_KEY *key)
{
uint64_t k0, k1;
k0 = lemtoh64(&key->k0);
k1 = lemtoh64(&key->k1);
ctx->v[0] = 0x736f6d6570736575ULL ^ k0;
ctx->v[1] = 0x646f72616e646f6dULL ^ k1;
ctx->v[2] = 0x6c7967656e657261ULL ^ k0;
ctx->v[3] = 0x7465646279746573ULL ^ k1;
ctx->v[0] = 0x736f6d6570736575ull ^ k0;
ctx->v[1] = 0x646f72616e646f6dull ^ k1;
ctx->v[2] = 0x6c7967656e657261ull ^ k0;
ctx->v[3] = 0x7465646279746573ull ^ k1;
memset(ctx->buf, 0, sizeof(ctx->buf));
ctx->bytes = 0;
}
void
SipHash_Update(SIPHASH_CTX *ctx, int rc, int rf, const void *src, size_t len)
void siphash_update(FAR SIPHASH_CTX *ctx,
int rc, int rf,
FAR const void *src, size_t len)
{
const uint8_t *ptr = src;
size_t left, used;
FAR const uint8_t *ptr = src;
size_t left;
size_t used;
if (len == 0)
return;
@ -80,76 +90,83 @@ SipHash_Update(SIPHASH_CTX *ctx, int rc, int rf, const void *src, size_t len)
used = ctx->bytes % sizeof(ctx->buf);
ctx->bytes += len;
if (used > 0) {
if (used > 0)
{
left = sizeof(ctx->buf) - used;
if (len >= left) {
if (len >= left)
{
memcpy(&ctx->buf[used], ptr, left);
SipHash_CRounds(ctx, rc);
siphash_crounds(ctx, rc);
len -= left;
ptr += left;
} else {
}
else
{
memcpy(&ctx->buf[used], ptr, len);
return;
}
}
while (len >= sizeof(ctx->buf)) {
while (len >= sizeof(ctx->buf))
{
memcpy(ctx->buf, ptr, sizeof(ctx->buf));
SipHash_CRounds(ctx, rc);
siphash_crounds(ctx, rc);
len -= sizeof(ctx->buf);
ptr += sizeof(ctx->buf);
}
if (len > 0)
{
memcpy(ctx->buf, ptr, len);
}
}
void
SipHash_Final(void *dst, SIPHASH_CTX *ctx, int rc, int rf)
void siphash_final(FAR void *dst, FAR SIPHASH_CTX *ctx, int rc, int rf)
{
uint64_t r;
htolem64(&r, SipHash_End(ctx, rc, rf));
htolem64(&r, siphash_end(ctx, rc, rf));
memcpy(dst, &r, sizeof r);
}
uint64_t
SipHash_End(SIPHASH_CTX *ctx, int rc, int rf)
uint64_t siphash_end(FAR SIPHASH_CTX *ctx, int rc, int rf)
{
uint64_t r;
size_t left, used;
size_t left;
size_t used;
used = ctx->bytes % sizeof(ctx->buf);
left = sizeof(ctx->buf) - used;
memset(&ctx->buf[used], 0, left - 1);
ctx->buf[7] = ctx->bytes;
SipHash_CRounds(ctx, rc);
siphash_crounds(ctx, rc);
ctx->v[2] ^= 0xff;
SipHash_Rounds(ctx, rf);
siphash_rounds(ctx, rf);
r = (ctx->v[0] ^ ctx->v[1]) ^ (ctx->v[2] ^ ctx->v[3]);
explicit_bzero(ctx, sizeof(*ctx));
return (r);
}
uint64_t
SipHash(const SIPHASH_KEY *key, int rc, int rf, const void *src, size_t len)
uint64_t siphash(FAR const SIPHASH_KEY *key,
int rc, int rf,
FAR const void *src, size_t len)
{
SIPHASH_CTX ctx;
SipHash_Init(&ctx, key);
SipHash_Update(&ctx, rc, rf, src, len);
return (SipHash_End(&ctx, rc, rf));
siphash_init(&ctx, key);
siphash_update(&ctx, rc, rf, src, len);
return (siphash_end(&ctx, rc, rf));
}
#define SIP_ROTL(x, b) ((x) << (b)) | ( (x) >> (64 - (b)))
static void
SipHash_Rounds(SIPHASH_CTX *ctx, int rounds)
static void siphash_rounds(FAR SIPHASH_CTX *ctx, int rounds)
{
while (rounds--)
{
while (rounds--) {
ctx->v[0] += ctx->v[1];
ctx->v[2] += ctx->v[3];
ctx->v[1] = SIP_ROTL(ctx->v[1], 13);
@ -170,12 +187,11 @@ SipHash_Rounds(SIPHASH_CTX *ctx, int rounds)
}
}
static void
SipHash_CRounds(SIPHASH_CTX *ctx, int rounds)
static void siphash_crounds(FAR SIPHASH_CTX *ctx, int rounds)
{
uint64_t m = lemtoh64((uint64_t *)ctx->buf);
ctx->v[3] ^= m;
SipHash_Rounds(ctx, rounds);
siphash_rounds(ctx, rounds);
ctx->v[0] ^= m;
}

View file

@ -1,7 +1,8 @@
/* $OpenBSD: sk.h,v 1.2 2002/10/27 13:24:26 miod Exp $ */
/* lib/des/sk.h */
/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
/****************************************************************************
* crypto/sk.h
* $OpenBSD: sk.h,v 1.2 2002/10/27 13:24:26 miod Exp $
* lib/des/sk.h
* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
* All rights reserved.
*
* This file is part of an SSL implementation written
@ -27,13 +28,15 @@
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Eric Young (eay@mincom.oz.au)
* This product includes software developed
* by Eric Young (eay@mincom.oz.au)
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* FOR ANY DIRECT, INDIRECT, INCIDENTAl, SPECIAl,
* EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
@ -41,155 +44,173 @@
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* The licence and distribution terms for any publically
* available version or derivative of this code cannot be changed.
* i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
****************************************************************************/
static const u_int32_t des_skb[8][64]={
static const uint32_t des_skb[8][64] =
{
{
/* for C bits (numbered as per FIPS 46) 1 2 3 4 5 6 */
0x00000000L,0x00000010L,0x20000000L,0x20000010L,
0x00010000L,0x00010010L,0x20010000L,0x20010010L,
0x00000800L,0x00000810L,0x20000800L,0x20000810L,
0x00010800L,0x00010810L,0x20010800L,0x20010810L,
0x00000020L,0x00000030L,0x20000020L,0x20000030L,
0x00010020L,0x00010030L,0x20010020L,0x20010030L,
0x00000820L,0x00000830L,0x20000820L,0x20000830L,
0x00010820L,0x00010830L,0x20010820L,0x20010830L,
0x00080000L,0x00080010L,0x20080000L,0x20080010L,
0x00090000L,0x00090010L,0x20090000L,0x20090010L,
0x00080800L,0x00080810L,0x20080800L,0x20080810L,
0x00090800L,0x00090810L,0x20090800L,0x20090810L,
0x00080020L,0x00080030L,0x20080020L,0x20080030L,
0x00090020L,0x00090030L,0x20090020L,0x20090030L,
0x00080820L,0x00080830L,0x20080820L,0x20080830L,
0x00090820L,0x00090830L,0x20090820L,0x20090830L,
},{
0x00000000l, 0x00000010l, 0x20000000l, 0x20000010l,
0x00010000l, 0x00010010l, 0x20010000l, 0x20010010l,
0x00000800l, 0x00000810l, 0x20000800l, 0x20000810l,
0x00010800l, 0x00010810l, 0x20010800l, 0x20010810l,
0x00000020l, 0x00000030l, 0x20000020l, 0x20000030l,
0x00010020l, 0x00010030l, 0x20010020l, 0x20010030l,
0x00000820l, 0x00000830l, 0x20000820l, 0x20000830l,
0x00010820l, 0x00010830l, 0x20010820l, 0x20010830l,
0x00080000l, 0x00080010l, 0x20080000l, 0x20080010l,
0x00090000l, 0x00090010l, 0x20090000l, 0x20090010l,
0x00080800l, 0x00080810l, 0x20080800l, 0x20080810l,
0x00090800l, 0x00090810l, 0x20090800l, 0x20090810l,
0x00080020l, 0x00080030l, 0x20080020l, 0x20080030l,
0x00090020l, 0x00090030l, 0x20090020l, 0x20090030l,
0x00080820l, 0x00080830l, 0x20080820l, 0x20080830l,
0x00090820l, 0x00090830l, 0x20090820l, 0x20090830l,
},
{
/* for C bits (numbered as per FIPS 46) 7 8 10 11 12 13 */
0x00000000L,0x02000000L,0x00002000L,0x02002000L,
0x00200000L,0x02200000L,0x00202000L,0x02202000L,
0x00000004L,0x02000004L,0x00002004L,0x02002004L,
0x00200004L,0x02200004L,0x00202004L,0x02202004L,
0x00000400L,0x02000400L,0x00002400L,0x02002400L,
0x00200400L,0x02200400L,0x00202400L,0x02202400L,
0x00000404L,0x02000404L,0x00002404L,0x02002404L,
0x00200404L,0x02200404L,0x00202404L,0x02202404L,
0x10000000L,0x12000000L,0x10002000L,0x12002000L,
0x10200000L,0x12200000L,0x10202000L,0x12202000L,
0x10000004L,0x12000004L,0x10002004L,0x12002004L,
0x10200004L,0x12200004L,0x10202004L,0x12202004L,
0x10000400L,0x12000400L,0x10002400L,0x12002400L,
0x10200400L,0x12200400L,0x10202400L,0x12202400L,
0x10000404L,0x12000404L,0x10002404L,0x12002404L,
0x10200404L,0x12200404L,0x10202404L,0x12202404L,
},{
0x00000000l, 0x02000000l, 0x00002000l, 0x02002000l,
0x00200000l, 0x02200000l, 0x00202000l, 0x02202000l,
0x00000004l, 0x02000004l, 0x00002004l, 0x02002004l,
0x00200004l, 0x02200004l, 0x00202004l, 0x02202004l,
0x00000400l, 0x02000400l, 0x00002400l, 0x02002400l,
0x00200400l, 0x02200400l, 0x00202400l, 0x02202400l,
0x00000404l, 0x02000404l, 0x00002404l, 0x02002404l,
0x00200404l, 0x02200404l, 0x00202404l, 0x02202404l,
0x10000000l, 0x12000000l, 0x10002000l, 0x12002000l,
0x10200000l, 0x12200000l, 0x10202000l, 0x12202000l,
0x10000004l, 0x12000004l, 0x10002004l, 0x12002004l,
0x10200004l, 0x12200004l, 0x10202004l, 0x12202004l,
0x10000400l, 0x12000400l, 0x10002400l, 0x12002400l,
0x10200400l, 0x12200400l, 0x10202400l, 0x12202400l,
0x10000404l, 0x12000404l, 0x10002404l, 0x12002404l,
0x10200404l, 0x12200404l, 0x10202404l, 0x12202404l,
},
{
/* for C bits (numbered as per FIPS 46) 14 15 16 17 19 20 */
0x00000000L,0x00000001L,0x00040000L,0x00040001L,
0x01000000L,0x01000001L,0x01040000L,0x01040001L,
0x00000002L,0x00000003L,0x00040002L,0x00040003L,
0x01000002L,0x01000003L,0x01040002L,0x01040003L,
0x00000200L,0x00000201L,0x00040200L,0x00040201L,
0x01000200L,0x01000201L,0x01040200L,0x01040201L,
0x00000202L,0x00000203L,0x00040202L,0x00040203L,
0x01000202L,0x01000203L,0x01040202L,0x01040203L,
0x08000000L,0x08000001L,0x08040000L,0x08040001L,
0x09000000L,0x09000001L,0x09040000L,0x09040001L,
0x08000002L,0x08000003L,0x08040002L,0x08040003L,
0x09000002L,0x09000003L,0x09040002L,0x09040003L,
0x08000200L,0x08000201L,0x08040200L,0x08040201L,
0x09000200L,0x09000201L,0x09040200L,0x09040201L,
0x08000202L,0x08000203L,0x08040202L,0x08040203L,
0x09000202L,0x09000203L,0x09040202L,0x09040203L,
},{
0x00000000l, 0x00000001l, 0x00040000l, 0x00040001l,
0x01000000l, 0x01000001l, 0x01040000l, 0x01040001l,
0x00000002l, 0x00000003l, 0x00040002l, 0x00040003l,
0x01000002l, 0x01000003l, 0x01040002l, 0x01040003l,
0x00000200l, 0x00000201l, 0x00040200l, 0x00040201l,
0x01000200l, 0x01000201l, 0x01040200l, 0x01040201l,
0x00000202l, 0x00000203l, 0x00040202l, 0x00040203l,
0x01000202l, 0x01000203l, 0x01040202l, 0x01040203l,
0x08000000l, 0x08000001l, 0x08040000l, 0x08040001l,
0x09000000l, 0x09000001l, 0x09040000l, 0x09040001l,
0x08000002l, 0x08000003l, 0x08040002l, 0x08040003l,
0x09000002l, 0x09000003l, 0x09040002l, 0x09040003l,
0x08000200l, 0x08000201l, 0x08040200l, 0x08040201l,
0x09000200l, 0x09000201l, 0x09040200l, 0x09040201l,
0x08000202l, 0x08000203l, 0x08040202l, 0x08040203l,
0x09000202l, 0x09000203l, 0x09040202l, 0x09040203l,
},
{
/* for C bits (numbered as per FIPS 46) 21 23 24 26 27 28 */
0x00000000L,0x00100000L,0x00000100L,0x00100100L,
0x00000008L,0x00100008L,0x00000108L,0x00100108L,
0x00001000L,0x00101000L,0x00001100L,0x00101100L,
0x00001008L,0x00101008L,0x00001108L,0x00101108L,
0x04000000L,0x04100000L,0x04000100L,0x04100100L,
0x04000008L,0x04100008L,0x04000108L,0x04100108L,
0x04001000L,0x04101000L,0x04001100L,0x04101100L,
0x04001008L,0x04101008L,0x04001108L,0x04101108L,
0x00020000L,0x00120000L,0x00020100L,0x00120100L,
0x00020008L,0x00120008L,0x00020108L,0x00120108L,
0x00021000L,0x00121000L,0x00021100L,0x00121100L,
0x00021008L,0x00121008L,0x00021108L,0x00121108L,
0x04020000L,0x04120000L,0x04020100L,0x04120100L,
0x04020008L,0x04120008L,0x04020108L,0x04120108L,
0x04021000L,0x04121000L,0x04021100L,0x04121100L,
0x04021008L,0x04121008L,0x04021108L,0x04121108L,
},{
0x00000000l, 0x00100000l, 0x00000100l, 0x00100100l,
0x00000008l, 0x00100008l, 0x00000108l, 0x00100108l,
0x00001000l, 0x00101000l, 0x00001100l, 0x00101100l,
0x00001008l, 0x00101008l, 0x00001108l, 0x00101108l,
0x04000000l, 0x04100000l, 0x04000100l, 0x04100100l,
0x04000008l, 0x04100008l, 0x04000108l, 0x04100108l,
0x04001000l, 0x04101000l, 0x04001100l, 0x04101100l,
0x04001008l, 0x04101008l, 0x04001108l, 0x04101108l,
0x00020000l, 0x00120000l, 0x00020100l, 0x00120100l,
0x00020008l, 0x00120008l, 0x00020108l, 0x00120108l,
0x00021000l, 0x00121000l, 0x00021100l, 0x00121100l,
0x00021008l, 0x00121008l, 0x00021108l, 0x00121108l,
0x04020000l, 0x04120000l, 0x04020100l, 0x04120100l,
0x04020008l, 0x04120008l, 0x04020108l, 0x04120108l,
0x04021000l, 0x04121000l, 0x04021100l, 0x04121100l,
0x04021008l, 0x04121008l, 0x04021108l, 0x04121108l,
},
{
/* for D bits (numbered as per FIPS 46) 1 2 3 4 5 6 */
0x00000000L,0x10000000L,0x00010000L,0x10010000L,
0x00000004L,0x10000004L,0x00010004L,0x10010004L,
0x20000000L,0x30000000L,0x20010000L,0x30010000L,
0x20000004L,0x30000004L,0x20010004L,0x30010004L,
0x00100000L,0x10100000L,0x00110000L,0x10110000L,
0x00100004L,0x10100004L,0x00110004L,0x10110004L,
0x20100000L,0x30100000L,0x20110000L,0x30110000L,
0x20100004L,0x30100004L,0x20110004L,0x30110004L,
0x00001000L,0x10001000L,0x00011000L,0x10011000L,
0x00001004L,0x10001004L,0x00011004L,0x10011004L,
0x20001000L,0x30001000L,0x20011000L,0x30011000L,
0x20001004L,0x30001004L,0x20011004L,0x30011004L,
0x00101000L,0x10101000L,0x00111000L,0x10111000L,
0x00101004L,0x10101004L,0x00111004L,0x10111004L,
0x20101000L,0x30101000L,0x20111000L,0x30111000L,
0x20101004L,0x30101004L,0x20111004L,0x30111004L,
},{
0x00000000l, 0x10000000l, 0x00010000l, 0x10010000l,
0x00000004l, 0x10000004l, 0x00010004l, 0x10010004l,
0x20000000l, 0x30000000l, 0x20010000l, 0x30010000l,
0x20000004l, 0x30000004l, 0x20010004l, 0x30010004l,
0x00100000l, 0x10100000l, 0x00110000l, 0x10110000l,
0x00100004l, 0x10100004l, 0x00110004l, 0x10110004l,
0x20100000l, 0x30100000l, 0x20110000l, 0x30110000l,
0x20100004l, 0x30100004l, 0x20110004l, 0x30110004l,
0x00001000l, 0x10001000l, 0x00011000l, 0x10011000l,
0x00001004l, 0x10001004l, 0x00011004l, 0x10011004l,
0x20001000l, 0x30001000l, 0x20011000l, 0x30011000l,
0x20001004l, 0x30001004l, 0x20011004l, 0x30011004l,
0x00101000l, 0x10101000l, 0x00111000l, 0x10111000l,
0x00101004l, 0x10101004l, 0x00111004l, 0x10111004l,
0x20101000l, 0x30101000l, 0x20111000l, 0x30111000l,
0x20101004l, 0x30101004l, 0x20111004l, 0x30111004l,
},
{
/* for D bits (numbered as per FIPS 46) 8 9 11 12 13 14 */
0x00000000L,0x08000000L,0x00000008L,0x08000008L,
0x00000400L,0x08000400L,0x00000408L,0x08000408L,
0x00020000L,0x08020000L,0x00020008L,0x08020008L,
0x00020400L,0x08020400L,0x00020408L,0x08020408L,
0x00000001L,0x08000001L,0x00000009L,0x08000009L,
0x00000401L,0x08000401L,0x00000409L,0x08000409L,
0x00020001L,0x08020001L,0x00020009L,0x08020009L,
0x00020401L,0x08020401L,0x00020409L,0x08020409L,
0x02000000L,0x0A000000L,0x02000008L,0x0A000008L,
0x02000400L,0x0A000400L,0x02000408L,0x0A000408L,
0x02020000L,0x0A020000L,0x02020008L,0x0A020008L,
0x02020400L,0x0A020400L,0x02020408L,0x0A020408L,
0x02000001L,0x0A000001L,0x02000009L,0x0A000009L,
0x02000401L,0x0A000401L,0x02000409L,0x0A000409L,
0x02020001L,0x0A020001L,0x02020009L,0x0A020009L,
0x02020401L,0x0A020401L,0x02020409L,0x0A020409L,
},{
0x00000000l, 0x08000000l, 0x00000008l, 0x08000008l,
0x00000400l, 0x08000400l, 0x00000408l, 0x08000408l,
0x00020000l, 0x08020000l, 0x00020008l, 0x08020008l,
0x00020400l, 0x08020400l, 0x00020408l, 0x08020408l,
0x00000001l, 0x08000001l, 0x00000009l, 0x08000009l,
0x00000401l, 0x08000401l, 0x00000409l, 0x08000409l,
0x00020001l, 0x08020001l, 0x00020009l, 0x08020009l,
0x00020401l, 0x08020401l, 0x00020409l, 0x08020409l,
0x02000000l, 0x0a000000l, 0x02000008l, 0x0a000008l,
0x02000400l, 0x0a000400l, 0x02000408l, 0x0a000408l,
0x02020000l, 0x0a020000l, 0x02020008l, 0x0a020008l,
0x02020400l, 0x0a020400l, 0x02020408l, 0x0a020408l,
0x02000001l, 0x0a000001l, 0x02000009l, 0x0a000009l,
0x02000401l, 0x0a000401l, 0x02000409l, 0x0a000409l,
0x02020001l, 0x0a020001l, 0x02020009l, 0x0a020009l,
0x02020401l, 0x0a020401l, 0x02020409l, 0x0a020409l,
},
{
/* for D bits (numbered as per FIPS 46) 16 17 18 19 20 21 */
0x00000000L,0x00000100L,0x00080000L,0x00080100L,
0x01000000L,0x01000100L,0x01080000L,0x01080100L,
0x00000010L,0x00000110L,0x00080010L,0x00080110L,
0x01000010L,0x01000110L,0x01080010L,0x01080110L,
0x00200000L,0x00200100L,0x00280000L,0x00280100L,
0x01200000L,0x01200100L,0x01280000L,0x01280100L,
0x00200010L,0x00200110L,0x00280010L,0x00280110L,
0x01200010L,0x01200110L,0x01280010L,0x01280110L,
0x00000200L,0x00000300L,0x00080200L,0x00080300L,
0x01000200L,0x01000300L,0x01080200L,0x01080300L,
0x00000210L,0x00000310L,0x00080210L,0x00080310L,
0x01000210L,0x01000310L,0x01080210L,0x01080310L,
0x00200200L,0x00200300L,0x00280200L,0x00280300L,
0x01200200L,0x01200300L,0x01280200L,0x01280300L,
0x00200210L,0x00200310L,0x00280210L,0x00280310L,
0x01200210L,0x01200310L,0x01280210L,0x01280310L,
},{
0x00000000l, 0x00000100l, 0x00080000l, 0x00080100l,
0x01000000l, 0x01000100l, 0x01080000l, 0x01080100l,
0x00000010l, 0x00000110l, 0x00080010l, 0x00080110l,
0x01000010l, 0x01000110l, 0x01080010l, 0x01080110l,
0x00200000l, 0x00200100l, 0x00280000l, 0x00280100l,
0x01200000l, 0x01200100l, 0x01280000l, 0x01280100l,
0x00200010l, 0x00200110l, 0x00280010l, 0x00280110l,
0x01200010l, 0x01200110l, 0x01280010l, 0x01280110l,
0x00000200l, 0x00000300l, 0x00080200l, 0x00080300l,
0x01000200l, 0x01000300l, 0x01080200l, 0x01080300l,
0x00000210l, 0x00000310l, 0x00080210l, 0x00080310l,
0x01000210l, 0x01000310l, 0x01080210l, 0x01080310l,
0x00200200l, 0x00200300l, 0x00280200l, 0x00280300l,
0x01200200l, 0x01200300l, 0x01280200l, 0x01280300l,
0x00200210l, 0x00200310l, 0x00280210l, 0x00280310l,
0x01200210l, 0x01200310l, 0x01280210l, 0x01280310l,
},
{
/* for D bits (numbered as per FIPS 46) 22 23 24 25 27 28 */
0x00000000L,0x04000000L,0x00040000L,0x04040000L,
0x00000002L,0x04000002L,0x00040002L,0x04040002L,
0x00002000L,0x04002000L,0x00042000L,0x04042000L,
0x00002002L,0x04002002L,0x00042002L,0x04042002L,
0x00000020L,0x04000020L,0x00040020L,0x04040020L,
0x00000022L,0x04000022L,0x00040022L,0x04040022L,
0x00002020L,0x04002020L,0x00042020L,0x04042020L,
0x00002022L,0x04002022L,0x00042022L,0x04042022L,
0x00000800L,0x04000800L,0x00040800L,0x04040800L,
0x00000802L,0x04000802L,0x00040802L,0x04040802L,
0x00002800L,0x04002800L,0x00042800L,0x04042800L,
0x00002802L,0x04002802L,0x00042802L,0x04042802L,
0x00000820L,0x04000820L,0x00040820L,0x04040820L,
0x00000822L,0x04000822L,0x00040822L,0x04040822L,
0x00002820L,0x04002820L,0x00042820L,0x04042820L,
0x00002822L,0x04002822L,0x00042822L,0x04042822L,
}};
0x00000000l, 0x04000000l, 0x00040000l, 0x04040000l,
0x00000002l, 0x04000002l, 0x00040002l, 0x04040002l,
0x00002000l, 0x04002000l, 0x00042000l, 0x04042000l,
0x00002002l, 0x04002002l, 0x00042002l, 0x04042002l,
0x00000020l, 0x04000020l, 0x00040020l, 0x04040020l,
0x00000022l, 0x04000022l, 0x00040022l, 0x04040022l,
0x00002020l, 0x04002020l, 0x00042020l, 0x04042020l,
0x00002022l, 0x04002022l, 0x00042022l, 0x04042022l,
0x00000800l, 0x04000800l, 0x00040800l, 0x04040800l,
0x00000802l, 0x04000802l, 0x00040802l, 0x04040802l,
0x00002800l, 0x04002800l, 0x00042800l, 0x04042800l,
0x00002802l, 0x04002802l, 0x00042802l, 0x04042802l,
0x00000820l, 0x04000820l, 0x00040820l, 0x04040820l,
0x00000822l, 0x04000822l, 0x00040822l, 0x04040822l,
0x00002820l, 0x04002820l, 0x00042820l, 0x04042820l,
0x00002822l, 0x04002822l, 0x00042822l, 0x04042822l,
}
};

View file

@ -1,7 +1,8 @@
/* $OpenBSD: spr.h,v 1.2 2002/10/27 13:24:26 miod Exp $ */
/* lib/des/spr.h */
/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
/****************************************************************************
* crypto/spr.h
* $OpenBSD: spr.h,v 1.2 2002/10/27 13:24:26 miod Exp $
* lib/des/spr.h
* Copyright (C) 1995 Eric Young (eay@mincom.oz.au)
* All rights reserved.
*
* This file is part of an SSL implementation written
@ -27,7 +28,8 @@
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Eric Young (eay@mincom.oz.au)
* This product includes software developed
* by Eric Young (eay@mincom.oz.au)
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
@ -42,154 +44,172 @@
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* derivative of this code cannot be changed.
* i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
****************************************************************************/
static const u_int32_t des_SPtrans[8][64]={
static const uint32_t des_sptrans[8][64] =
{
{
/* nibble 0 */
0x00820200L, 0x00020000L, 0x80800000L, 0x80820200L,
0x00800000L, 0x80020200L, 0x80020000L, 0x80800000L,
0x80020200L, 0x00820200L, 0x00820000L, 0x80000200L,
0x80800200L, 0x00800000L, 0x00000000L, 0x80020000L,
0x00020000L, 0x80000000L, 0x00800200L, 0x00020200L,
0x80820200L, 0x00820000L, 0x80000200L, 0x00800200L,
0x80000000L, 0x00000200L, 0x00020200L, 0x80820000L,
0x00000200L, 0x80800200L, 0x80820000L, 0x00000000L,
0x00000000L, 0x80820200L, 0x00800200L, 0x80020000L,
0x00820200L, 0x00020000L, 0x80000200L, 0x00800200L,
0x80820000L, 0x00000200L, 0x00020200L, 0x80800000L,
0x80020200L, 0x80000000L, 0x80800000L, 0x00820000L,
0x80820200L, 0x00020200L, 0x00820000L, 0x80800200L,
0x00800000L, 0x80000200L, 0x80020000L, 0x00000000L,
0x00020000L, 0x00800000L, 0x80800200L, 0x00820200L,
0x80000000L, 0x80820000L, 0x00000200L, 0x80020200L,
},{
0x00820200l, 0x00020000l, 0x80800000l, 0x80820200l,
0x00800000l, 0x80020200l, 0x80020000l, 0x80800000l,
0x80020200l, 0x00820200l, 0x00820000l, 0x80000200l,
0x80800200l, 0x00800000l, 0x00000000l, 0x80020000l,
0x00020000l, 0x80000000l, 0x00800200l, 0x00020200l,
0x80820200l, 0x00820000l, 0x80000200l, 0x00800200l,
0x80000000l, 0x00000200l, 0x00020200l, 0x80820000l,
0x00000200l, 0x80800200l, 0x80820000l, 0x00000000l,
0x00000000l, 0x80820200l, 0x00800200l, 0x80020000l,
0x00820200l, 0x00020000l, 0x80000200l, 0x00800200l,
0x80820000l, 0x00000200l, 0x00020200l, 0x80800000l,
0x80020200l, 0x80000000l, 0x80800000l, 0x00820000l,
0x80820200l, 0x00020200l, 0x00820000l, 0x80800200l,
0x00800000l, 0x80000200l, 0x80020000l, 0x00000000l,
0x00020000l, 0x00800000l, 0x80800200l, 0x00820200l,
0x80000000l, 0x80820000l, 0x00000200l, 0x80020200l,
},
{
/* nibble 1 */
0x10042004L, 0x00000000L, 0x00042000L, 0x10040000L,
0x10000004L, 0x00002004L, 0x10002000L, 0x00042000L,
0x00002000L, 0x10040004L, 0x00000004L, 0x10002000L,
0x00040004L, 0x10042000L, 0x10040000L, 0x00000004L,
0x00040000L, 0x10002004L, 0x10040004L, 0x00002000L,
0x00042004L, 0x10000000L, 0x00000000L, 0x00040004L,
0x10002004L, 0x00042004L, 0x10042000L, 0x10000004L,
0x10000000L, 0x00040000L, 0x00002004L, 0x10042004L,
0x00040004L, 0x10042000L, 0x10002000L, 0x00042004L,
0x10042004L, 0x00040004L, 0x10000004L, 0x00000000L,
0x10000000L, 0x00002004L, 0x00040000L, 0x10040004L,
0x00002000L, 0x10000000L, 0x00042004L, 0x10002004L,
0x10042000L, 0x00002000L, 0x00000000L, 0x10000004L,
0x00000004L, 0x10042004L, 0x00042000L, 0x10040000L,
0x10040004L, 0x00040000L, 0x00002004L, 0x10002000L,
0x10002004L, 0x00000004L, 0x10040000L, 0x00042000L,
},{
0x10042004l, 0x00000000l, 0x00042000l, 0x10040000l,
0x10000004l, 0x00002004l, 0x10002000l, 0x00042000l,
0x00002000l, 0x10040004l, 0x00000004l, 0x10002000l,
0x00040004l, 0x10042000l, 0x10040000l, 0x00000004l,
0x00040000l, 0x10002004l, 0x10040004l, 0x00002000l,
0x00042004l, 0x10000000l, 0x00000000l, 0x00040004l,
0x10002004l, 0x00042004l, 0x10042000l, 0x10000004l,
0x10000000l, 0x00040000l, 0x00002004l, 0x10042004l,
0x00040004l, 0x10042000l, 0x10002000l, 0x00042004l,
0x10042004l, 0x00040004l, 0x10000004l, 0x00000000l,
0x10000000l, 0x00002004l, 0x00040000l, 0x10040004l,
0x00002000l, 0x10000000l, 0x00042004l, 0x10002004l,
0x10042000l, 0x00002000l, 0x00000000l, 0x10000004l,
0x00000004l, 0x10042004l, 0x00042000l, 0x10040000l,
0x10040004l, 0x00040000l, 0x00002004l, 0x10002000l,
0x10002004l, 0x00000004l, 0x10040000l, 0x00042000l,
},
{
/* nibble 2 */
0x41000000L, 0x01010040L, 0x00000040L, 0x41000040L,
0x40010000L, 0x01000000L, 0x41000040L, 0x00010040L,
0x01000040L, 0x00010000L, 0x01010000L, 0x40000000L,
0x41010040L, 0x40000040L, 0x40000000L, 0x41010000L,
0x00000000L, 0x40010000L, 0x01010040L, 0x00000040L,
0x40000040L, 0x41010040L, 0x00010000L, 0x41000000L,
0x41010000L, 0x01000040L, 0x40010040L, 0x01010000L,
0x00010040L, 0x00000000L, 0x01000000L, 0x40010040L,
0x01010040L, 0x00000040L, 0x40000000L, 0x00010000L,
0x40000040L, 0x40010000L, 0x01010000L, 0x41000040L,
0x00000000L, 0x01010040L, 0x00010040L, 0x41010000L,
0x40010000L, 0x01000000L, 0x41010040L, 0x40000000L,
0x40010040L, 0x41000000L, 0x01000000L, 0x41010040L,
0x00010000L, 0x01000040L, 0x41000040L, 0x00010040L,
0x01000040L, 0x00000000L, 0x41010000L, 0x40000040L,
0x41000000L, 0x40010040L, 0x00000040L, 0x01010000L,
},{
0x41000000l, 0x01010040l, 0x00000040l, 0x41000040l,
0x40010000l, 0x01000000l, 0x41000040l, 0x00010040l,
0x01000040l, 0x00010000l, 0x01010000l, 0x40000000l,
0x41010040l, 0x40000040l, 0x40000000l, 0x41010000l,
0x00000000l, 0x40010000l, 0x01010040l, 0x00000040l,
0x40000040l, 0x41010040l, 0x00010000l, 0x41000000l,
0x41010000l, 0x01000040l, 0x40010040l, 0x01010000l,
0x00010040l, 0x00000000l, 0x01000000l, 0x40010040l,
0x01010040l, 0x00000040l, 0x40000000l, 0x00010000l,
0x40000040l, 0x40010000l, 0x01010000l, 0x41000040l,
0x00000000l, 0x01010040l, 0x00010040l, 0x41010000l,
0x40010000l, 0x01000000l, 0x41010040l, 0x40000000l,
0x40010040l, 0x41000000l, 0x01000000l, 0x41010040l,
0x00010000l, 0x01000040l, 0x41000040l, 0x00010040l,
0x01000040l, 0x00000000l, 0x41010000l, 0x40000040l,
0x41000000l, 0x40010040l, 0x00000040l, 0x01010000l,
},
{
/* nibble 3 */
0x00100402L, 0x04000400L, 0x00000002L, 0x04100402L,
0x00000000L, 0x04100000L, 0x04000402L, 0x00100002L,
0x04100400L, 0x04000002L, 0x04000000L, 0x00000402L,
0x04000002L, 0x00100402L, 0x00100000L, 0x04000000L,
0x04100002L, 0x00100400L, 0x00000400L, 0x00000002L,
0x00100400L, 0x04000402L, 0x04100000L, 0x00000400L,
0x00000402L, 0x00000000L, 0x00100002L, 0x04100400L,
0x04000400L, 0x04100002L, 0x04100402L, 0x00100000L,
0x04100002L, 0x00000402L, 0x00100000L, 0x04000002L,
0x00100400L, 0x04000400L, 0x00000002L, 0x04100000L,
0x04000402L, 0x00000000L, 0x00000400L, 0x00100002L,
0x00000000L, 0x04100002L, 0x04100400L, 0x00000400L,
0x04000000L, 0x04100402L, 0x00100402L, 0x00100000L,
0x04100402L, 0x00000002L, 0x04000400L, 0x00100402L,
0x00100002L, 0x00100400L, 0x04100000L, 0x04000402L,
0x00000402L, 0x04000000L, 0x04000002L, 0x04100400L,
},{
0x00100402l, 0x04000400l, 0x00000002l, 0x04100402l,
0x00000000l, 0x04100000l, 0x04000402l, 0x00100002l,
0x04100400l, 0x04000002l, 0x04000000l, 0x00000402l,
0x04000002l, 0x00100402l, 0x00100000l, 0x04000000l,
0x04100002l, 0x00100400l, 0x00000400l, 0x00000002l,
0x00100400l, 0x04000402l, 0x04100000l, 0x00000400l,
0x00000402l, 0x00000000l, 0x00100002l, 0x04100400l,
0x04000400l, 0x04100002l, 0x04100402l, 0x00100000l,
0x04100002l, 0x00000402l, 0x00100000l, 0x04000002l,
0x00100400l, 0x04000400l, 0x00000002l, 0x04100000l,
0x04000402l, 0x00000000l, 0x00000400l, 0x00100002l,
0x00000000l, 0x04100002l, 0x04100400l, 0x00000400l,
0x04000000l, 0x04100402l, 0x00100402l, 0x00100000l,
0x04100402l, 0x00000002l, 0x04000400l, 0x00100402l,
0x00100002l, 0x00100400l, 0x04100000l, 0x04000402l,
0x00000402l, 0x04000000l, 0x04000002l, 0x04100400l,
},
{
/* nibble 4 */
0x02000000L, 0x00004000L, 0x00000100L, 0x02004108L,
0x02004008L, 0x02000100L, 0x00004108L, 0x02004000L,
0x00004000L, 0x00000008L, 0x02000008L, 0x00004100L,
0x02000108L, 0x02004008L, 0x02004100L, 0x00000000L,
0x00004100L, 0x02000000L, 0x00004008L, 0x00000108L,
0x02000100L, 0x00004108L, 0x00000000L, 0x02000008L,
0x00000008L, 0x02000108L, 0x02004108L, 0x00004008L,
0x02004000L, 0x00000100L, 0x00000108L, 0x02004100L,
0x02004100L, 0x02000108L, 0x00004008L, 0x02004000L,
0x00004000L, 0x00000008L, 0x02000008L, 0x02000100L,
0x02000000L, 0x00004100L, 0x02004108L, 0x00000000L,
0x00004108L, 0x02000000L, 0x00000100L, 0x00004008L,
0x02000108L, 0x00000100L, 0x00000000L, 0x02004108L,
0x02004008L, 0x02004100L, 0x00000108L, 0x00004000L,
0x00004100L, 0x02004008L, 0x02000100L, 0x00000108L,
0x00000008L, 0x00004108L, 0x02004000L, 0x02000008L,
},{
0x02000000l, 0x00004000l, 0x00000100l, 0x02004108l,
0x02004008l, 0x02000100l, 0x00004108l, 0x02004000l,
0x00004000l, 0x00000008l, 0x02000008l, 0x00004100l,
0x02000108l, 0x02004008l, 0x02004100l, 0x00000000l,
0x00004100l, 0x02000000l, 0x00004008l, 0x00000108l,
0x02000100l, 0x00004108l, 0x00000000l, 0x02000008l,
0x00000008l, 0x02000108l, 0x02004108l, 0x00004008l,
0x02004000l, 0x00000100l, 0x00000108l, 0x02004100l,
0x02004100l, 0x02000108l, 0x00004008l, 0x02004000l,
0x00004000l, 0x00000008l, 0x02000008l, 0x02000100l,
0x02000000l, 0x00004100l, 0x02004108l, 0x00000000l,
0x00004108l, 0x02000000l, 0x00000100l, 0x00004008l,
0x02000108l, 0x00000100l, 0x00000000l, 0x02004108l,
0x02004008l, 0x02004100l, 0x00000108l, 0x00004000l,
0x00004100l, 0x02004008l, 0x02000100l, 0x00000108l,
0x00000008l, 0x00004108l, 0x02004000l, 0x02000008l,
},
{
/* nibble 5 */
0x20000010L, 0x00080010L, 0x00000000L, 0x20080800L,
0x00080010L, 0x00000800L, 0x20000810L, 0x00080000L,
0x00000810L, 0x20080810L, 0x00080800L, 0x20000000L,
0x20000800L, 0x20000010L, 0x20080000L, 0x00080810L,
0x00080000L, 0x20000810L, 0x20080010L, 0x00000000L,
0x00000800L, 0x00000010L, 0x20080800L, 0x20080010L,
0x20080810L, 0x20080000L, 0x20000000L, 0x00000810L,
0x00000010L, 0x00080800L, 0x00080810L, 0x20000800L,
0x00000810L, 0x20000000L, 0x20000800L, 0x00080810L,
0x20080800L, 0x00080010L, 0x00000000L, 0x20000800L,
0x20000000L, 0x00000800L, 0x20080010L, 0x00080000L,
0x00080010L, 0x20080810L, 0x00080800L, 0x00000010L,
0x20080810L, 0x00080800L, 0x00080000L, 0x20000810L,
0x20000010L, 0x20080000L, 0x00080810L, 0x00000000L,
0x00000800L, 0x20000010L, 0x20000810L, 0x20080800L,
0x20080000L, 0x00000810L, 0x00000010L, 0x20080010L,
},{
0x20000010l, 0x00080010l, 0x00000000l, 0x20080800l,
0x00080010l, 0x00000800l, 0x20000810l, 0x00080000l,
0x00000810l, 0x20080810l, 0x00080800l, 0x20000000l,
0x20000800l, 0x20000010l, 0x20080000l, 0x00080810l,
0x00080000l, 0x20000810l, 0x20080010l, 0x00000000l,
0x00000800l, 0x00000010l, 0x20080800l, 0x20080010l,
0x20080810l, 0x20080000l, 0x20000000l, 0x00000810l,
0x00000010l, 0x00080800l, 0x00080810l, 0x20000800l,
0x00000810l, 0x20000000l, 0x20000800l, 0x00080810l,
0x20080800l, 0x00080010l, 0x00000000l, 0x20000800l,
0x20000000l, 0x00000800l, 0x20080010l, 0x00080000l,
0x00080010l, 0x20080810l, 0x00080800l, 0x00000010l,
0x20080810l, 0x00080800l, 0x00080000l, 0x20000810l,
0x20000010l, 0x20080000l, 0x00080810l, 0x00000000l,
0x00000800l, 0x20000010l, 0x20000810l, 0x20080800l,
0x20080000l, 0x00000810l, 0x00000010l, 0x20080010l,
},
{
/* nibble 6 */
0x00001000L, 0x00000080L, 0x00400080L, 0x00400001L,
0x00401081L, 0x00001001L, 0x00001080L, 0x00000000L,
0x00400000L, 0x00400081L, 0x00000081L, 0x00401000L,
0x00000001L, 0x00401080L, 0x00401000L, 0x00000081L,
0x00400081L, 0x00001000L, 0x00001001L, 0x00401081L,
0x00000000L, 0x00400080L, 0x00400001L, 0x00001080L,
0x00401001L, 0x00001081L, 0x00401080L, 0x00000001L,
0x00001081L, 0x00401001L, 0x00000080L, 0x00400000L,
0x00001081L, 0x00401000L, 0x00401001L, 0x00000081L,
0x00001000L, 0x00000080L, 0x00400000L, 0x00401001L,
0x00400081L, 0x00001081L, 0x00001080L, 0x00000000L,
0x00000080L, 0x00400001L, 0x00000001L, 0x00400080L,
0x00000000L, 0x00400081L, 0x00400080L, 0x00001080L,
0x00000081L, 0x00001000L, 0x00401081L, 0x00400000L,
0x00401080L, 0x00000001L, 0x00001001L, 0x00401081L,
0x00400001L, 0x00401080L, 0x00401000L, 0x00001001L,
},{
0x00001000l, 0x00000080l, 0x00400080l, 0x00400001l,
0x00401081l, 0x00001001l, 0x00001080l, 0x00000000l,
0x00400000l, 0x00400081l, 0x00000081l, 0x00401000l,
0x00000001l, 0x00401080l, 0x00401000l, 0x00000081l,
0x00400081l, 0x00001000l, 0x00001001l, 0x00401081l,
0x00000000l, 0x00400080l, 0x00400001l, 0x00001080l,
0x00401001l, 0x00001081l, 0x00401080l, 0x00000001l,
0x00001081l, 0x00401001l, 0x00000080l, 0x00400000l,
0x00001081l, 0x00401000l, 0x00401001l, 0x00000081l,
0x00001000l, 0x00000080l, 0x00400000l, 0x00401001l,
0x00400081l, 0x00001081l, 0x00001080l, 0x00000000l,
0x00000080l, 0x00400001l, 0x00000001l, 0x00400080l,
0x00000000l, 0x00400081l, 0x00400080l, 0x00001080l,
0x00000081l, 0x00001000l, 0x00401081l, 0x00400000l,
0x00401080l, 0x00000001l, 0x00001001l, 0x00401081l,
0x00400001l, 0x00401080l, 0x00401000l, 0x00001001l,
},
{
/* nibble 7 */
0x08200020L, 0x08208000L, 0x00008020L, 0x00000000L,
0x08008000L, 0x00200020L, 0x08200000L, 0x08208020L,
0x00000020L, 0x08000000L, 0x00208000L, 0x00008020L,
0x00208020L, 0x08008020L, 0x08000020L, 0x08200000L,
0x00008000L, 0x00208020L, 0x00200020L, 0x08008000L,
0x08208020L, 0x08000020L, 0x00000000L, 0x00208000L,
0x08000000L, 0x00200000L, 0x08008020L, 0x08200020L,
0x00200000L, 0x00008000L, 0x08208000L, 0x00000020L,
0x00200000L, 0x00008000L, 0x08000020L, 0x08208020L,
0x00008020L, 0x08000000L, 0x00000000L, 0x00208000L,
0x08200020L, 0x08008020L, 0x08008000L, 0x00200020L,
0x08208000L, 0x00000020L, 0x00200020L, 0x08008000L,
0x08208020L, 0x00200000L, 0x08200000L, 0x08000020L,
0x00208000L, 0x00008020L, 0x08008020L, 0x08200000L,
0x00000020L, 0x08208000L, 0x00208020L, 0x00000000L,
0x08000000L, 0x08200020L, 0x00008000L, 0x00208020L,
}};
0x08200020l, 0x08208000l, 0x00008020l, 0x00000000l,
0x08008000l, 0x00200020l, 0x08200000l, 0x08208020l,
0x00000020l, 0x08000000l, 0x00208000l, 0x00008020l,
0x00208020l, 0x08008020l, 0x08000020l, 0x08200000l,
0x00008000l, 0x00208020l, 0x00200020l, 0x08008000l,
0x08208020l, 0x08000020l, 0x00000000l, 0x00208000l,
0x08000000l, 0x00200000l, 0x08008020l, 0x08200020l,
0x00200000l, 0x00008000l, 0x08208000l, 0x00000020l,
0x00200000l, 0x00008000l, 0x08000020l, 0x08208020l,
0x00008020l, 0x08000000l, 0x00000000l, 0x00208000l,
0x08200020l, 0x08008020l, 0x08008000l, 0x00200020l,
0x08208000l, 0x00000020l, 0x00200020l, 0x08008000l,
0x08208020l, 0x00200000l, 0x08200000l, 0x08000020l,
0x00208000l, 0x00008020l, 0x08008020l, 0x08200000l,
0x00000020l, 0x08208000l, 0x00208020l, 0x00000000l,
0x08000000l, 0x08200020l, 0x00008000l, 0x00208020l,
}
};

View file

@ -1,5 +1,7 @@
/* $OpenBSD: xform.c,v 1.61 2021/10/22 12:30:53 bluhm Exp $ */
/*
/****************************************************************************
* crypto/xform.c
* $OpenBSD: xform.c,v 1.61 2021/10/22 12:30:53 bluhm Exp $
*
* The authors of this code are John Ioannidis (ji@tla.org),
* Angelos D. Keromytis (kermit@csd.uch.gr),
* Niels Provos (provos@physnet.uni-hamburg.de),
@ -9,11 +11,12 @@
* This code was written by John Ioannidis for BSD/OS in Athens, Greece,
* in November 1995.
*
* Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
* Ported to OpenBSD and NetBSD, with additional transforms,
* in December 1996,
* by Angelos D. Keromytis.
*
* Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
* and Niels Provos.
* Additional transforms and features in 1997 and 1998 by
* Angelos D. Keromytis and Niels Provos.
*
* Additional features in 1999 by Angelos D. Keromytis.
*
@ -44,7 +47,11 @@
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/param.h>
#include <sys/systm.h>
@ -68,63 +75,73 @@
#include "des_locl.h"
extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int);
/****************************************************************************
* Public Functions
****************************************************************************/
int des_set_key(void *, caddr_t);
int des3_setkey(void *, u_int8_t *, int);
int blf_setkey(void *, u_int8_t *, int);
int cast5_setkey(void *, u_int8_t *, int);
int aes_setkey(void *, u_int8_t *, int);
int aes_ctr_setkey(void *, u_int8_t *, int);
int aes_xts_setkey(void *, u_int8_t *, int);
int null_setkey(void *, u_int8_t *, int);
extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t,
caddr_t, caddr_t, int);
void des3_encrypt(caddr_t, u_int8_t *);
void blf_encrypt(caddr_t, u_int8_t *);
void cast5_encrypt(caddr_t, u_int8_t *);
void aes_encrypt(caddr_t, u_int8_t *);
void null_encrypt(caddr_t, u_int8_t *);
void aes_xts_encrypt(caddr_t, u_int8_t *);
int des_set_key(FAR void *, caddr_t);
int des3_setkey(FAR void *, FAR uint8_t *, int);
int blf_setkey(FAR void *, FAR uint8_t *, int);
int cast5_setkey(FAR void *, FAR uint8_t *, int);
int aes_setkey_xform(FAR void *, FAR uint8_t *, int);
int aes_ctr_setkey(FAR void *, FAR uint8_t *, int);
int aes_xts_setkey(FAR void *, FAR uint8_t *, int);
int null_setkey(FAR void *, FAR uint8_t *, int);
void des3_decrypt(caddr_t, u_int8_t *);
void blf_decrypt(caddr_t, u_int8_t *);
void cast5_decrypt(caddr_t, u_int8_t *);
void aes_decrypt(caddr_t, u_int8_t *);
void null_decrypt(caddr_t, u_int8_t *);
void aes_xts_decrypt(caddr_t, u_int8_t *);
void des3_encrypt(caddr_t, FAR uint8_t *);
void blf_encrypt(caddr_t, FAR uint8_t *);
void cast5_encrypt(caddr_t, FAR uint8_t *);
void aes_encrypt_xform(caddr_t, FAR uint8_t *);
void null_encrypt(caddr_t, FAR uint8_t *);
void aes_xts_encrypt(caddr_t, FAR uint8_t *);
void aes_ctr_crypt(caddr_t, u_int8_t *);
void des3_decrypt(caddr_t, FAR uint8_t *);
void blf_decrypt(caddr_t, FAR uint8_t *);
void cast5_decrypt(caddr_t, FAR uint8_t *);
void aes_decrypt_xform(caddr_t, FAR uint8_t *);
void null_decrypt(caddr_t, FAR uint8_t *);
void aes_xts_decrypt(caddr_t, FAR uint8_t *);
void aes_ctr_reinit(caddr_t, u_int8_t *);
void aes_xts_reinit(caddr_t, u_int8_t *);
void aes_gcm_reinit(caddr_t, u_int8_t *);
void aes_ctr_crypt(caddr_t, FAR uint8_t *);
int MD5Update_int(void *, const u_int8_t *, u_int16_t);
int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
void aes_ctr_reinit(caddr_t, FAR uint8_t *);
void aes_xts_reinit(caddr_t, FAR uint8_t *);
void aes_gcm_reinit(caddr_t, FAR uint8_t *);
u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
int md5update_int(FAR void *, FAR const uint8_t *, uint16_t);
int sha1update_int(FAR void *, FAR const uint8_t *, uint16_t);
int rmd160update_int(FAR void *, FAR const uint8_t *, uint16_t);
int sha256update_int(FAR void *, FAR const uint8_t *, uint16_t);
int sha384update_int(FAR void *, FAR const uint8_t *, uint16_t);
int sha512update_int(FAR void *, FAR const uint8_t *, uint16_t);
struct aes_ctr_ctx {
uint32_t deflate_compress(FAR uint8_t *, uint32_t, FAR uint8_t **);
uint32_t deflate_decompress(FAR uint8_t *, uint32_t, FAR uint8_t **);
struct aes_ctr_ctx
{
AES_CTX ac_key;
u_int8_t ac_block[AESCTR_BLOCKSIZE];
uint8_t ac_block[AESCTR_BLOCKSIZE];
};
struct aes_xts_ctx {
struct aes_xts_ctx
{
rijndael_ctx key1;
rijndael_ctx key2;
u_int8_t tweak[AES_XTS_BLOCKSIZE];
uint8_t tweak[AES_XTS_BLOCKSIZE];
};
/* Helper */
void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int);
void aes_xts_crypt(FAR struct aes_xts_ctx *, FAR uint8_t *, u_int);
/* Encryption instances */
const struct enc_xform enc_xform_3des = {
const struct enc_xform enc_xform_3des =
{
CRYPTO_3DES_CBC, "3DES",
8, 8, 24, 24, 384,
des3_encrypt,
@ -133,7 +150,8 @@ const struct enc_xform enc_xform_3des = {
NULL
};
const struct enc_xform enc_xform_blf = {
const struct enc_xform enc_xform_blf =
{
CRYPTO_BLF_CBC, "Blowfish",
8, 8, 5, 56 /* 448 bits, max key */,
sizeof(blf_ctx),
@ -143,7 +161,8 @@ const struct enc_xform enc_xform_blf = {
NULL
};
const struct enc_xform enc_xform_cast5 = {
const struct enc_xform enc_xform_cast5 =
{
CRYPTO_CAST_CBC, "CAST-128",
8, 8, 5, 16,
sizeof(cast_key),
@ -153,17 +172,19 @@ const struct enc_xform enc_xform_cast5 = {
NULL
};
const struct enc_xform enc_xform_aes = {
const struct enc_xform enc_xform_aes =
{
CRYPTO_AES_CBC, "AES",
16, 16, 16, 32,
sizeof(AES_CTX),
aes_encrypt,
aes_decrypt,
aes_setkey,
aes_encrypt_xform,
aes_decrypt_xform,
aes_setkey_xform,
NULL
};
const struct enc_xform enc_xform_aes_ctr = {
const struct enc_xform enc_xform_aes_ctr =
{
CRYPTO_AES_CTR, "AES-CTR",
16, 8, 16 + 4, 32 + 4,
sizeof(struct aes_ctr_ctx),
@ -173,7 +194,8 @@ const struct enc_xform enc_xform_aes_ctr = {
aes_ctr_reinit
};
const struct enc_xform enc_xform_aes_gcm = {
const struct enc_xform enc_xform_aes_gcm =
{
CRYPTO_AES_GCM_16, "AES-GCM",
1, 8, 16 + 4, 32 + 4,
sizeof(struct aes_ctr_ctx),
@ -183,7 +205,8 @@ const struct enc_xform enc_xform_aes_gcm = {
aes_gcm_reinit
};
const struct enc_xform enc_xform_aes_gmac = {
const struct enc_xform enc_xform_aes_gmac =
{
CRYPTO_AES_GMAC, "AES-GMAC",
1, 8, 16 + 4, 32 + 4, 0,
NULL,
@ -192,7 +215,8 @@ const struct enc_xform enc_xform_aes_gmac = {
NULL
};
const struct enc_xform enc_xform_aes_xts = {
const struct enc_xform enc_xform_aes_xts =
{
CRYPTO_AES_XTS, "AES-XTS",
16, 8, 32, 64,
sizeof(struct aes_xts_ctx),
@ -202,7 +226,8 @@ const struct enc_xform enc_xform_aes_xts = {
aes_xts_reinit
};
const struct enc_xform enc_xform_chacha20_poly1305 = {
const struct enc_xform enc_xform_chacha20_poly1305 =
{
CRYPTO_CHACHA20_POLY1305, "CHACHA20-POLY1305",
1, 8, 32 + 4, 32 + 4,
sizeof(struct chacha20_ctx),
@ -212,7 +237,8 @@ const struct enc_xform enc_xform_chacha20_poly1305 = {
chacha20_reinit
};
const struct enc_xform enc_xform_null = {
const struct enc_xform enc_xform_null =
{
CRYPTO_NULL, "NULL",
4, 0, 0, 256, 0,
null_encrypt,
@ -222,320 +248,347 @@ const struct enc_xform enc_xform_null = {
};
/* Authentication instances */
const struct auth_hash auth_hash_hmac_md5_96 = {
const struct auth_hash auth_hash_hmac_md5_96 =
{
CRYPTO_MD5_HMAC, "HMAC-MD5",
16, 16, 12, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN,
(void (*) (void *)) MD5Init, NULL, NULL,
MD5Update_int,
(void (*) (u_int8_t *, void *)) MD5Final
(void (*) (FAR void *)) md5init, NULL, NULL,
md5update_int,
(void (*) (FAR uint8_t *, FAR void *)) md5final
};
const struct auth_hash auth_hash_hmac_sha1_96 = {
const struct auth_hash auth_hash_hmac_sha1_96 =
{
CRYPTO_SHA1_HMAC, "HMAC-SHA1",
20, 20, 12, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN,
(void (*) (void *)) SHA1Init, NULL, NULL,
SHA1Update_int,
(void (*) (u_int8_t *, void *)) SHA1Final
(void (*) (FAR void *)) sha1init, NULL, NULL,
sha1update_int,
(void (*) (FAR uint8_t *, FAR void *)) sha1final
};
const struct auth_hash auth_hash_hmac_ripemd_160_96 = {
const struct auth_hash auth_hash_hmac_ripemd_160_96 =
{
CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
20, 20, 12, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN,
(void (*)(void *)) RMD160Init, NULL, NULL,
RMD160Update_int,
(void (*)(u_int8_t *, void *)) RMD160Final
(void (*)(FAR void *)) rmd160init, NULL, NULL,
rmd160update_int,
(void (*)(FAR uint8_t *, FAR void *)) rmd160final
};
const struct auth_hash auth_hash_hmac_sha2_256_128 = {
const struct auth_hash auth_hash_hmac_sha2_256_128 =
{
CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
32, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN,
(void (*)(void *)) SHA256Init, NULL, NULL,
SHA256Update_int,
(void (*)(u_int8_t *, void *)) SHA256Final
(void (*)(FAR void *)) sha256init, NULL, NULL,
sha256update_int,
(void (*)(FAR uint8_t *, FAR void *)) sha256final
};
const struct auth_hash auth_hash_hmac_sha2_384_192 = {
const struct auth_hash auth_hash_hmac_sha2_384_192 =
{
CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
48, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN,
(void (*)(void *)) SHA384Init, NULL, NULL,
SHA384Update_int,
(void (*)(u_int8_t *, void *)) SHA384Final
(void (*)(FAR void *)) sha384init, NULL, NULL,
sha384update_int,
(void (*)(FAR uint8_t *, FAR void *)) sha384final
};
const struct auth_hash auth_hash_hmac_sha2_512_256 = {
const struct auth_hash auth_hash_hmac_sha2_512_256 =
{
CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
64, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN,
(void (*)(void *)) SHA512Init, NULL, NULL,
SHA512Update_int,
(void (*)(u_int8_t *, void *)) SHA512Final
(void (*)(FAR void *)) sha512init, NULL, NULL,
sha512update_int,
(void (*)(FAR uint8_t *, FAR void *)) sha512final
};
const struct auth_hash auth_hash_gmac_aes_128 = {
const struct auth_hash auth_hash_gmac_aes_128 =
{
CRYPTO_AES_128_GMAC, "GMAC-AES-128",
16 + 4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
AES_GMAC_Update, AES_GMAC_Final
AESCTR_BLOCKSIZE, aes_gmac_init, aes_gmac_setkey, aes_gmac_reinit,
aes_gmac_update, aes_gmac_final
};
const struct auth_hash auth_hash_gmac_aes_192 = {
const struct auth_hash auth_hash_gmac_aes_192 =
{
CRYPTO_AES_192_GMAC, "GMAC-AES-192",
24 + 4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
AES_GMAC_Update, AES_GMAC_Final
AESCTR_BLOCKSIZE, aes_gmac_init, aes_gmac_setkey, aes_gmac_reinit,
aes_gmac_update, aes_gmac_final
};
const struct auth_hash auth_hash_gmac_aes_256 = {
const struct auth_hash auth_hash_gmac_aes_256 =
{
CRYPTO_AES_256_GMAC, "GMAC-AES-256",
32 + 4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
AES_GMAC_Update, AES_GMAC_Final
AESCTR_BLOCKSIZE, aes_gmac_init, aes_gmac_setkey, aes_gmac_reinit,
aes_gmac_update, aes_gmac_final
};
const struct auth_hash auth_hash_chacha20_poly1305 = {
const struct auth_hash auth_hash_chacha20_poly1305 =
{
CRYPTO_CHACHA20_POLY1305_MAC, "CHACHA20-POLY1305",
CHACHA20_KEYSIZE + CHACHA20_SALT, POLY1305_BLOCK_LEN, POLY1305_TAGLEN,
sizeof(CHACHA20_POLY1305_CTX), CHACHA20_BLOCK_LEN,
Chacha20_Poly1305_Init, Chacha20_Poly1305_Setkey,
Chacha20_Poly1305_Reinit, Chacha20_Poly1305_Update,
Chacha20_Poly1305_Final
chacha20_poly1305_init, chacha20_poly1305_setkey,
chacha20_poly1305_reinit, chacha20_poly1305_update,
chacha20_poly1305_final
};
/* Compression instance */
const struct comp_algo comp_algo_deflate = {
const struct comp_algo comp_algo_deflate =
{
CRYPTO_DEFLATE_COMP, "Deflate",
90, deflate_compress,
deflate_decompress
};
/*
* Encryption wrapper routines.
*/
void
des3_encrypt(caddr_t key, u_int8_t *blk)
/* Encryption wrapper routines. */
void des3_encrypt(caddr_t key, FAR uint8_t *blk)
{
des_ecb3_encrypt((caddr_t)blk, (caddr_t)blk, key, key + 128, key + 256, 1);
}
void
des3_decrypt(caddr_t key, u_int8_t *blk)
void des3_decrypt(caddr_t key, FAR uint8_t *blk)
{
des_ecb3_encrypt((caddr_t)blk, (caddr_t)blk, key + 256, key + 128, key, 0);
}
int
des3_setkey(void *sched, u_int8_t *key, int len)
int des3_setkey(FAR void *sched, FAR uint8_t *key, int len)
{
if (des_set_key(key, sched) < 0 || des_set_key(key + 8, sched + 128)
< 0 || des_set_key(key + 16, sched + 256) < 0)
{
return -1;
}
return 0;
}
void
blf_encrypt(caddr_t key, u_int8_t *blk)
void blf_encrypt(caddr_t key, FAR uint8_t *blk)
{
blf_ecb_encrypt((blf_ctx *) key, blk, 8);
blf_ecb_encrypt((FAR blf_ctx *) key, blk, 8);
}
void
blf_decrypt(caddr_t key, u_int8_t *blk)
void blf_decrypt(caddr_t key, FAR uint8_t *blk)
{
blf_ecb_decrypt((blf_ctx *) key, blk, 8);
blf_ecb_decrypt((FAR blf_ctx *) key, blk, 8);
}
int
blf_setkey(void *sched, u_int8_t *key, int len)
int blf_setkey(FAR void *sched, FAR uint8_t *key, int len)
{
blf_key((blf_ctx *)sched, key, len);
blf_key((FAR blf_ctx *)sched, key, len);
return 0;
}
int
null_setkey(void *sched, u_int8_t *key, int len)
int null_setkey(FAR void *sched, FAR uint8_t *key, int len)
{
return 0;
}
void
null_encrypt(caddr_t key, u_int8_t *blk)
void null_encrypt(caddr_t key, FAR uint8_t *blk)
{
}
void
null_decrypt(caddr_t key, u_int8_t *blk)
void null_decrypt(caddr_t key, FAR uint8_t *blk)
{
}
void
cast5_encrypt(caddr_t key, u_int8_t *blk)
void cast5_encrypt(caddr_t key, FAR uint8_t *blk)
{
cast_encrypt((cast_key *) key, blk, blk);
cast_encrypt((FAR cast_key *) key, blk, blk);
}
void
cast5_decrypt(caddr_t key, u_int8_t *blk)
void cast5_decrypt(caddr_t key, FAR uint8_t *blk)
{
cast_decrypt((cast_key *) key, blk, blk);
cast_decrypt((FAR cast_key *) key, blk, blk);
}
int
cast5_setkey(void *sched, u_int8_t *key, int len)
int cast5_setkey(FAR void *sched, FAR uint8_t *key, int len)
{
cast_setkey((cast_key *)sched, key, len);
cast_setkey((FAR cast_key *)sched, key, len);
return 0;
}
void
aes_encrypt(caddr_t key, u_int8_t *blk)
void aes_encrypt_xform(caddr_t key, FAR uint8_t *blk)
{
AES_Encrypt((AES_CTX *)key, blk, blk);
aes_encrypt((FAR AES_CTX *)key, blk, blk);
}
void
aes_decrypt(caddr_t key, u_int8_t *blk)
void aes_decrypt_xform(caddr_t key, FAR uint8_t *blk)
{
AES_Decrypt((AES_CTX *)key, blk, blk);
aes_decrypt((FAR AES_CTX *)key, blk, blk);
}
int
aes_setkey(void *sched, u_int8_t *key, int len)
int aes_setkey_xform(FAR void *sched, FAR uint8_t *key, int len)
{
return AES_Setkey((AES_CTX *)sched, key, len);
return aes_setkey((FAR AES_CTX *)sched, key, len);
}
void
aes_ctr_reinit(caddr_t key, u_int8_t *iv)
void aes_ctr_reinit(caddr_t key, FAR uint8_t *iv)
{
struct aes_ctr_ctx *ctx;
FAR struct aes_ctr_ctx *ctx;
ctx = (struct aes_ctr_ctx *)key;
ctx = (FAR struct aes_ctr_ctx *)key;
bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
/* reset counter */
bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
}
void
aes_gcm_reinit(caddr_t key, u_int8_t *iv)
void aes_gcm_reinit(caddr_t key, FAR uint8_t *iv)
{
struct aes_ctr_ctx *ctx;
FAR struct aes_ctr_ctx *ctx;
ctx = (struct aes_ctr_ctx *)key;
ctx = (FAR struct aes_ctr_ctx *)key;
bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
/* reset counter */
bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */
}
void
aes_ctr_crypt(caddr_t key, u_int8_t *data)
void aes_ctr_crypt(caddr_t key, FAR uint8_t *data)
{
struct aes_ctr_ctx *ctx;
u_int8_t keystream[AESCTR_BLOCKSIZE];
FAR struct aes_ctr_ctx *ctx;
uint8_t keystream[AESCTR_BLOCKSIZE];
int i;
ctx = (struct aes_ctr_ctx *)key;
ctx = (FAR struct aes_ctr_ctx *)key;
/* increment counter */
for (i = AESCTR_BLOCKSIZE - 1;
i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
{
if (++ctx->ac_block[i]) /* continue on overflow */
{
break;
AES_Encrypt(&ctx->ac_key, ctx->ac_block, keystream);
}
}
aes_encrypt(&ctx->ac_key, ctx->ac_block, keystream);
for (i = 0; i < AESCTR_BLOCKSIZE; i++)
{
data[i] ^= keystream[i];
}
explicit_bzero(keystream, sizeof(keystream));
}
int
aes_ctr_setkey(void *sched, u_int8_t *key, int len)
int aes_ctr_setkey(FAR void *sched, FAR uint8_t *key, int len)
{
struct aes_ctr_ctx *ctx;
FAR struct aes_ctr_ctx *ctx;
if (len < AESCTR_NONCESIZE)
{
return -1;
}
ctx = (struct aes_ctr_ctx *)sched;
if (AES_Setkey(&ctx->ac_key, key, len - AESCTR_NONCESIZE) != 0)
ctx = (FAR struct aes_ctr_ctx *)sched;
if (aes_setkey(&ctx->ac_key, key, len - AESCTR_NONCESIZE) != 0)
{
return -1;
}
bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
return 0;
}
void
aes_xts_reinit(caddr_t key, u_int8_t *iv)
void aes_xts_reinit(caddr_t key, FAR uint8_t *iv)
{
struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
u_int64_t blocknum;
FAR struct aes_xts_ctx *ctx = (FAR struct aes_xts_ctx *)key;
uint64_t blocknum;
u_int i;
/*
* Prepare tweak as E_k2(IV). IV is specified as LE representation
/* Prepare tweak as E_k2(IV). IV is specified as LE representation
* of a 64-bit block number which we allow to be passed in directly.
*/
memcpy(&blocknum, iv, AES_XTS_IVSIZE);
for (i = 0; i < AES_XTS_IVSIZE; i++) {
for (i = 0; i < AES_XTS_IVSIZE; i++)
{
ctx->tweak[i] = blocknum & 0xff;
blocknum >>= 8;
}
/* Last 64 bits of IV are always zero */
bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
}
void
aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
void aes_xts_crypt(FAR struct aes_xts_ctx *ctx,
FAR uint8_t *data,
u_int do_encrypt)
{
u_int8_t block[AES_XTS_BLOCKSIZE];
u_int i, carry_in, carry_out;
uint8_t block[AES_XTS_BLOCKSIZE];
u_int i;
u_int carry_in;
u_int carry_out;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
{
block[i] = data[i] ^ ctx->tweak[i];
}
if (do_encrypt)
{
rijndael_encrypt(&ctx->key1, block, data);
}
else
{
rijndael_decrypt(&ctx->key1, block, data);
}
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
{
data[i] ^= ctx->tweak[i];
}
/* Exponentiate tweak */
carry_in = 0;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
{
carry_out = ctx->tweak[i] & 0x80;
ctx->tweak[i] = (ctx->tweak[i] << 1) | carry_in;
carry_in = carry_out >> 7;
}
ctx->tweak[0] ^= (AES_XTS_ALPHA & -carry_in);
explicit_bzero(block, sizeof(block));
}
void
aes_xts_encrypt(caddr_t key, u_int8_t *data)
void aes_xts_encrypt(caddr_t key, FAR uint8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
aes_xts_crypt((FAR struct aes_xts_ctx *)key, data, 1);
}
void
aes_xts_decrypt(caddr_t key, u_int8_t *data)
void aes_xts_decrypt(caddr_t key, FAR uint8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
aes_xts_crypt((FAR struct aes_xts_ctx *)key, data, 0);
}
int
aes_xts_setkey(void *sched, u_int8_t *key, int len)
int aes_xts_setkey(FAR void *sched, FAR uint8_t *key, int len)
{
struct aes_xts_ctx *ctx;
FAR struct aes_xts_ctx *ctx;
if (len != 32 && len != 64)
{
return -1;
}
ctx = (struct aes_xts_ctx *)sched;
ctx = (FAR struct aes_xts_ctx *)sched;
rijndael_set_key(&ctx->key1, key, len * 4);
rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
@ -543,73 +596,65 @@ aes_xts_setkey(void *sched, u_int8_t *key, int len)
return 0;
}
/*
* And now for auth.
*/
/* And now for auth. */
int
RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
int rmd160update_int(FAR void *ctx, FAR const uint8_t *buf, uint16_t len)
{
RMD160Update(ctx, buf, len);
rmd160update(ctx, buf, len);
return 0;
}
int
MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
int md5update_int(FAR void *ctx, FAR const uint8_t *buf, uint16_t len)
{
MD5Update(ctx, buf, len);
md5update(ctx, buf, len);
return 0;
}
int
SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
int sha1update_int(FAR void *ctx, FAR const uint8_t *buf, uint16_t len)
{
SHA1Update(ctx, buf, len);
sha1update(ctx, buf, len);
return 0;
}
int
SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
int sha256update_int(FAR void *ctx, FAR const uint8_t *buf, uint16_t len)
{
SHA256Update(ctx, buf, len);
sha256update(ctx, buf, len);
return 0;
}
int
SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
int sha384update_int(FAR void *ctx, FAR const uint8_t *buf, uint16_t len)
{
SHA384Update(ctx, buf, len);
sha384update(ctx, buf, len);
return 0;
}
int
SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
int sha512update_int(FAR void *ctx, FAR const uint8_t *buf, uint16_t len)
{
SHA512Update(ctx, buf, len);
sha512update(ctx, buf, len);
return 0;
}
uint32_t deflate_global(FAR uint8_t *, uint32_t, int, FAR uint8_t **);
u_int32_t deflate_global(u_int8_t *, u_int32_t, int, u_int8_t **);
struct deflate_buf {
u_int8_t *out;
u_int32_t size;
struct deflate_buf
{
FAR uint8_t *out;
uint32_t size;
int flag;
};
/*
* And compression
*/
/* And compression */
u_int32_t
deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
uint32_t deflate_compress(FAR uint8_t *data,
uint32_t size,
FAR uint8_t **out)
{
return deflate_global(data, size, 0, out);
}
u_int32_t
deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
uint32_t deflate_decompress(FAR uint8_t *data,
uint32_t size,
FAR uint8_t **out)
{
return deflate_global(data, size, 1, out);
}

View file

@ -1,5 +1,7 @@
/* $OpenBSD: aes.h,v 1.4 2020/07/22 13:54:30 tobhe Exp $ */
/*
/****************************************************************************
* include/crypto/aes.h
* $OpenBSD: aes.h,v 1.4 2020/07/22 13:54:30 tobhe Exp $
*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
* Copyright (c) 2016 Mike Belopuhov
*
@ -22,29 +24,32 @@
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
****************************************************************************/
#ifndef _AES_H_
#define _AES_H_
#ifndef __INCLUDE_CRYPTO_AES_H
#define __INCLUDE_CRYPTO_AES_H
#ifndef AES_MAXROUNDS
# define AES_MAXROUNDS (14)
#endif
typedef struct aes_ctx {
typedef struct aes_ctx
{
uint32_t sk[60];
uint32_t sk_exp[120];
unsigned num_rounds;
} AES_CTX;
int AES_Setkey(AES_CTX *, const uint8_t *, int);
void AES_Encrypt(AES_CTX *, const uint8_t *, uint8_t *);
void AES_Decrypt(AES_CTX *, const uint8_t *, uint8_t *);
void AES_Encrypt_ECB(AES_CTX *, const uint8_t *, uint8_t *, size_t);
void AES_Decrypt_ECB(AES_CTX *, const uint8_t *, uint8_t *, size_t);
int aes_setkey(FAR AES_CTX *, FAR const uint8_t *, int);
void aes_encrypt(FAR AES_CTX *, FAR const uint8_t *, FAR uint8_t *);
void aes_decrypt(FAR AES_CTX *, FAR const uint8_t *, FAR uint8_t *);
void aes_encrypt_ecb(FAR AES_CTX *, FAR const uint8_t *, FAR uint8_t *,
size_t);
void aes_decrypt_ecb(FAR AES_CTX *, FAR const uint8_t *, FAR uint8_t *,
size_t);
int AES_KeySetup_Encrypt(uint32_t *, const uint8_t *, int);
int AES_KeySetup_Decrypt(uint32_t *, const uint8_t *, int);
int aes_keysetup_encrypt(FAR uint32_t *, FAR const uint8_t *, int);
int aes_keysetup_decrypt(FAR uint32_t *, FAR const uint8_t *, int);
#endif /* _AES_H_ */
#endif /* __INCLUDE_CRYPTO_AES_H */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: blf.h,v 1.7 2021/11/29 01:04:45 djm Exp $ */
/*
/****************************************************************************
* include/crypto/blf.h
* $OpenBSD: blf.h,v 1.7 2021/11/29 01:04:45 djm Exp $
*
* Blowfish - a fast block cipher designed by Bruce Schneier
*
* Copyright 1997 Niels Provos <provos@physnet.uni-hamburg.de>
@ -27,10 +28,10 @@
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
****************************************************************************/
#ifndef _BLF_H_
#define _BLF_H_
#ifndef __INCLUDE_CRYPTO_BLF_H
#define __INCLUDE_CRYPTO_BLF_H
/* Schneier states the maximum key length to be 56 bytes.
* The way how the subkeys are initialized by the key up
@ -44,10 +45,13 @@
#define BLF_MAXUTILIZED ((BLF_N + 2) * 4) /* 576 bits */
/* Blowfish context */
typedef struct BlowfishContext {
u_int32_t S[4][256]; /* S-Boxes */
u_int32_t P[BLF_N + 2]; /* Subkeys */
} blf_ctx;
typedef struct blowfishcontext
{
uint32_t S[4][256]; /* S-Boxes */
uint32_t P[BLF_N + 2]; /* Subkeys */
}
blf_ctx;
/* Raw access to customized Blowfish
* blf_key is just:
@ -55,25 +59,29 @@ typedef struct BlowfishContext {
* Blowfish_expand0state( state, key, keylen )
*/
void Blowfish_encipher(blf_ctx *, u_int32_t *);
void Blowfish_decipher(blf_ctx *, u_int32_t *);
void Blowfish_initstate(blf_ctx *);
void Blowfish_expand0state(blf_ctx *, const u_int8_t *, u_int16_t);
void Blowfish_expandstate(blf_ctx *, const u_int8_t *, u_int16_t, const u_int8_t *, u_int16_t);
void blowfish_encipher(FAR blf_ctx *, FAR uint32_t *);
void blowfish_decipher(FAR blf_ctx *, FAR uint32_t *);
void blowfish_initstate(FAR blf_ctx *);
void blowfish_expand0state(FAR blf_ctx *, FAR const uint8_t *, uint16_t);
void blowfish_expandstate(FAR blf_ctx *, FAR const uint8_t *,
uint16_t, FAR const uint8_t *, uint16_t);
/* Standard Blowfish */
void blf_key(blf_ctx *, const u_int8_t *, u_int16_t);
void blf_enc(blf_ctx *, u_int32_t *, u_int16_t);
void blf_dec(blf_ctx *, u_int32_t *, u_int16_t);
void blf_key(FAR blf_ctx *, FAR const uint8_t *, uint16_t);
void blf_enc(FAR blf_ctx *, FAR uint32_t *, uint16_t);
void blf_dec(FAR blf_ctx *, FAR uint32_t *, uint16_t);
/* Converts u_int8_t to u_int32_t */
u_int32_t Blowfish_stream2word(const u_int8_t *, u_int16_t ,
u_int16_t *);
/* Converts uint8_t to uint32_t */
void blf_ecb_encrypt(blf_ctx *, u_int8_t *, u_int32_t);
void blf_ecb_decrypt(blf_ctx *, u_int8_t *, u_int32_t);
uint32_t blowfish_stream2word(FAR const uint8_t *, uint16_t,
FAR uint16_t *);
void blf_cbc_encrypt(blf_ctx *, u_int8_t *, u_int8_t *, u_int32_t);
void blf_cbc_decrypt(blf_ctx *, u_int8_t *, u_int8_t *, u_int32_t);
#endif
void blf_ecb_encrypt(FAR blf_ctx *, FAR uint8_t *, uint32_t);
void blf_ecb_decrypt(FAR blf_ctx *, FAR uint8_t *, uint32_t);
void blf_cbc_encrypt(FAR blf_ctx *, FAR uint8_t *, FAR uint8_t *,
uint32_t);
void blf_cbc_decrypt(FAR blf_ctx *, FAR uint8_t *, FAR uint8_t *,
uint32_t);
#endif /* __INCLUDE_CRYPTO_BLF_H */

View file

@ -1,22 +1,28 @@
/* $OpenBSD: cast.h,v 1.2 2002/03/14 01:26:51 millert Exp $ */
/*
/****************************************************************************
* include/crypto/cast.h
* $OpenBSD: cast.h,v 1.2 2002/03/14 01:26:51 millert Exp $
*
* CAST-128 in C
* Written by Steve Reid <sreid@sea-to-sky.net>
* 100% Public Domain - no warranty
* Released 1997.10.11
*/
****************************************************************************/
#ifndef _CAST_H_
#define _CAST_H_
#ifndef __INCLUDE_CRYPTO_CAST_H
#define __INCLUDE_CRYPTO_CAST_H
typedef struct {
u_int32_t xkey[32]; /* Key, after expansion */
typedef struct
{
uint32_t xkey[32]; /* Key, after expansion */
int rounds; /* Number of rounds to use, 12 or 16 */
} cast_key;
void cast_setkey(cast_key * key, u_int8_t * rawkey, int keybytes);
void cast_encrypt(cast_key * key, u_int8_t * inblock, u_int8_t * outblock);
void cast_decrypt(cast_key * key, u_int8_t * inblock, u_int8_t * outblock);
void cast_setkey(FAR cast_key *key, FAR uint8_t *rawkey, int keybytes);
void cast_encrypt(FAR cast_key *key,
FAR uint8_t *inblock,
FAR uint8_t *outblock);
void cast_decrypt(FAR cast_key *key,
FAR uint8_t *inblock,
FAR uint8_t *outblock);
#endif /* ifndef _CAST_H_ */
#endif /* __INCLUDE_CRYPTO_CAST_H */

View file

@ -1,5 +1,6 @@
/* $OpenBSD: chachapoly.h,v 1.4 2020/07/22 13:54:30 tobhe Exp $ */
/*
/****************************************************************************
* include/crypto/chachapoly.h
* $OpenBSD: chachapoly.h,v 1.4 2020/07/22 13:54:30 tobhe Exp $
* Copyright (c) 2015 Mike Belopuhov
*
* Permission to use, copy, modify, and distribute this software for any
@ -13,10 +14,10 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
****************************************************************************/
#ifndef _CHACHAPOLY_H_
#define _CHACHAPOLY_H_
#ifndef __INCLUDE_CRYPTO_CHACHAPOLY_H
#define __INCLUDE_CRYPTO_CHACHAPOLY_H
#define CHACHA20_KEYSIZE 32
#define CHACHA20_CTR 4
@ -24,63 +25,74 @@
#define CHACHA20_NONCE 8
#define CHACHA20_BLOCK_LEN 64
struct chacha20_ctx {
struct chacha20_ctx
{
uint8_t block[CHACHA20_BLOCK_LEN];
uint8_t nonce[CHACHA20_NONCE];
};
int chacha20_setkey(void *, u_int8_t *, int);
void chacha20_reinit(caddr_t, u_int8_t *);
void chacha20_crypt(caddr_t, u_int8_t *);
int chacha20_setkey(FAR void *, FAR uint8_t *, int);
void chacha20_reinit(caddr_t, FAR uint8_t *);
void chacha20_crypt(caddr_t, FAR uint8_t *);
#define POLY1305_KEYLEN 32
#define POLY1305_TAGLEN 16
#define POLY1305_BLOCK_LEN 16
struct poly1305_ctx {
struct poly1305_ctx
{
/* r, h, pad, leftover */
unsigned long state[5 + 5 + 4];
size_t leftover;
unsigned char buffer[POLY1305_BLOCK_LEN];
unsigned char final;
};
typedef struct {
typedef struct
{
uint8_t key[POLY1305_KEYLEN];
/* counter, salt */
uint8_t nonce[CHACHA20_NONCE];
struct chacha20_ctx chacha;
struct poly1305_ctx poly;
} CHACHA20_POLY1305_CTX;
}
CHACHA20_POLY1305_CTX;
void Chacha20_Poly1305_Init(void *);
void Chacha20_Poly1305_Setkey(void *, const uint8_t *, uint16_t);
void Chacha20_Poly1305_Reinit(void *, const uint8_t *, uint16_t);
int Chacha20_Poly1305_Update(void *, const uint8_t *, uint16_t);
void Chacha20_Poly1305_Final(uint8_t[POLY1305_TAGLEN], void *);
void chacha20_poly1305_init(FAR void *);
void chacha20_poly1305_setkey(FAR void *, FAR const uint8_t *, uint16_t);
void chacha20_poly1305_reinit(FAR void *, FAR const uint8_t *, uint16_t);
int chacha20_poly1305_update(FAR void *, FAR const uint8_t *, uint16_t);
void chacha20_poly1305_final(FAR uint8_t *, FAR void *);
/* WireGuard crypto */
#define CHACHA20POLY1305_KEY_SIZE CHACHA20_KEYSIZE
#define CHACHA20POLY1305_AUTHTAG_SIZE POLY1305_TAGLEN
#define XCHACHA20POLY1305_NONCE_SIZE 24
void chacha20poly1305_encrypt(uint8_t *, const uint8_t *, const size_t,
const uint8_t *, const size_t, const uint64_t,
const uint8_t[CHACHA20POLY1305_KEY_SIZE]);
void chacha20poly1305_encrypt(
FAR uint8_t *, FAR const uint8_t *, const size_t,
FAR const uint8_t *, const size_t, const uint64_t,
FAR const uint8_t *);
int chacha20poly1305_decrypt(uint8_t *, const uint8_t *, const size_t,
const uint8_t *, const size_t, const uint64_t,
const uint8_t[CHACHA20POLY1305_KEY_SIZE]);
int chacha20poly1305_decrypt(
FAR uint8_t *, FAR const uint8_t *, const size_t,
FAR const uint8_t *, const size_t, const uint64_t,
FAR const uint8_t *);
void xchacha20poly1305_encrypt(uint8_t *, const uint8_t *, const size_t,
const uint8_t *, const size_t,
const uint8_t[XCHACHA20POLY1305_NONCE_SIZE],
const uint8_t[CHACHA20POLY1305_KEY_SIZE]);
void xchacha20poly1305_encrypt(
FAR uint8_t *, FAR const uint8_t *, const size_t,
FAR const uint8_t *, const size_t,
FAR const uint8_t *,
FAR const uint8_t *);
int xchacha20poly1305_decrypt(uint8_t *, const uint8_t *, const size_t,
const uint8_t *, const size_t,
const uint8_t[XCHACHA20POLY1305_NONCE_SIZE],
const uint8_t[CHACHA20POLY1305_KEY_SIZE]);
int xchacha20poly1305_decrypt(
FAR uint8_t *, FAR const uint8_t *, const size_t,
FAR const uint8_t *, const size_t,
FAR const uint8_t *,
FAR const uint8_t *);
#endif /* _CHACHAPOLY_H_ */
#endif /* __INCLUDE_CRYPTO_CHACHAPOLY_H */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: cmac.h,v 1.3 2017/05/02 17:07:06 mikeb Exp $ */
/*-
/****************************************************************************
* include/crypto/cmac.h
* $OpenBSD: cmac.h,v 1.3 2017/05/02 17:07:06 mikeb Exp $
*
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,28 +15,26 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
*
****************************************************************************/
#ifndef _CMAC_H_
#define _CMAC_H_
#ifndef __INCLUDE_CRYPTO_CMAC_H_
#define __INCLUDE_CRYPTO_CMAC_H_
#define AES_CMAC_KEY_LENGTH 16
#define AES_CMAC_DIGEST_LENGTH 16
typedef struct _AES_CMAC_CTX {
typedef struct _AES_CMAC_CTX
{
AES_CTX aesctx;
u_int8_t X[16];
u_int8_t M_last[16];
u_int M_n;
u_int8_t m_last[16];
u_int m_n;
} AES_CMAC_CTX;
__BEGIN_DECLS
void AES_CMAC_Init(AES_CMAC_CTX *);
void AES_CMAC_SetKey(AES_CMAC_CTX *, const u_int8_t [AES_CMAC_KEY_LENGTH]);
void AES_CMAC_Update(AES_CMAC_CTX *, const u_int8_t *, u_int)
__attribute__((__bounded__(__string__,2,3)));
void AES_CMAC_Final(u_int8_t [AES_CMAC_DIGEST_LENGTH], AES_CMAC_CTX *)
__attribute__((__bounded__(__minbytes__,1,AES_CMAC_DIGEST_LENGTH)));
__END_DECLS
void aes_cmac_init(FAR AES_CMAC_CTX *);
void aes_cmac_setkey(FAR AES_CMAC_CTX *, FAR const u_int8_t *);
void aes_cmac_update(FAR AES_CMAC_CTX *, FAR const u_int8_t *, u_int);
void aes_cmac_final(FAR u_int8_t *, FAR AES_CMAC_CTX *);
#endif /* _CMAC_H_ */
#endif /* __INCLUDE_CRYPTO_CMAC_H_ */

View file

@ -1,6 +1,6 @@
/* $OpenBSD: cryptodev.h,v 1.58 2013/10/31 10:32:38 mikeb Exp $ */
/*
/****************************************************************************
* include/crypto/cryptodev.h
* $OpenBSD: cryptodev.h,v 1.58 2013/10/31 10:32:38 mikeb Exp $
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
@ -47,15 +47,19 @@
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
*/
****************************************************************************/
#ifndef __INCLUDE_CRYPTO_CRYPTODEV_H
#define __INCLUDE_CRYPTO_CRYPTODEV_H
#ifndef _CRYPTO_CRYPTO_H_
#define _CRYPTO_CRYPTO_H_
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/ioccom.h>
#include <sys/task.h>
/* Some initial values */
#define CRYPTO_DRIVERS_INITIAL 4
#define CRYPTO_DRIVERS_MAX 128
#define CRYPTO_SW_SESSIONS 32
@ -67,17 +71,23 @@
#define HMAC_SHA2_256_BLOCK_LEN 64
#define HMAC_SHA2_384_BLOCK_LEN 128
#define HMAC_SHA2_512_BLOCK_LEN 128
#define HMAC_MAX_BLOCK_LEN HMAC_SHA2_512_BLOCK_LEN /* keep in sync */
#define HMAC_MAX_BLOCK_LEN HMAC_SHA2_512_BLOCK_LEN
/* keep in sync */
#define HMAC_IPAD_VAL 0x36
#define HMAC_OPAD_VAL 0x5C
/* Encryption algorithm block sizes */
#define DES_BLOCK_LEN 8
#define DES3_BLOCK_LEN 8
#define BLOWFISH_BLOCK_LEN 8
#define CAST128_BLOCK_LEN 8
#define RIJNDAEL128_BLOCK_LEN 16
#define EALG_MAX_BLOCK_LEN 16 /* Keep this updated */
#define EALG_MAX_BLOCK_LEN 16
/* Keep this updated */
/* Maximum hash algorithm result length */
#define AALG_MAX_RESULT_LEN 64 /* Keep this updated */
@ -108,27 +118,33 @@
#define CRYPTO_ALGORITHM_MAX 23 /* Keep updated */
/* Algorithm flags */
#define CRYPTO_ALG_FLAG_SUPPORTED 0x01 /* Algorithm is supported */
#define CRYPTO_ALG_FLAG_RNG_ENABLE 0x02 /* Has HW RNG for DH/DSA */
#define CRYPTO_ALG_FLAG_DSA_SHA 0x04 /* Can do SHA on msg */
/* Standard initialization structure beginning */
struct cryptoini {
struct cryptoini
{
int cri_alg; /* Algorithm to use */
int cri_klen; /* Key length, in bits */
int cri_rnd; /* Algorithm rounds, where relevant */
caddr_t cri_key; /* key to use */
union {
u_int8_t iv[EALG_MAX_BLOCK_LEN]; /* IV to use */
u_int8_t esn[4]; /* high-order ESN */
union
{
uint8_t iv[EALG_MAX_BLOCK_LEN]; /* IV to use */
uint8_t esn[4]; /* high-order ESN */
} u;
#define cri_iv u.iv
#define cri_esn u.esn
struct cryptoini *cri_next;
FAR struct cryptoini *cri_next;
};
/* Describe boundaries of a single crypto operation */
struct cryptodesc {
struct cryptodesc
{
int crd_skip; /* How many bytes to ignore from start */
int crd_len; /* How many bytes to process */
int crd_inject; /* Where to inject results, if applicable */
@ -136,9 +152,9 @@ struct cryptodesc {
#define CRD_F_ENCRYPT 0x01 /* Set when doing encryption */
#define CRD_F_IV_PRESENT 0x02 /* When encrypting, IV is already in
place, so don't copy. */
* place, so don't copy.
*/
#define CRD_F_IV_EXPLICIT 0x04 /* IV explicitly provided */
#define CRD_F_DSA_SHA_NEEDED 0x08 /* Compute SHA-1 of buffer for DSA */
#define CRD_F_COMP 0x10 /* Set when doing compression */
#define CRD_F_ESN 0x20 /* Set when ESN field is provided */
@ -150,20 +166,19 @@ struct cryptodesc {
#define crd_alg CRD_INI.cri_alg
#define crd_klen CRD_INI.cri_klen
struct cryptodesc *crd_next;
FAR struct cryptodesc *crd_next;
};
/* Structure describing complete operation */
struct cryptop {
struct task crp_task;
u_int64_t crp_sid; /* Session ID */
struct cryptop
{
struct task crp_task;
uint64_t crp_sid; /* Session ID */
int crp_ilen; /* Input data total length */
int crp_olen; /* Result total length */
int crp_alloctype; /* Type of buf to allocate if needed */
int crp_etype; /*
* Error type (zero means no error).
int crp_etype; /* Error type (zero means no error).
* All error codes except EAGAIN
* indicate possible data corruption (as in,
* the data have been touched). On all
@ -180,11 +195,11 @@ struct cryptop {
#define CRYPTO_F_NOQUEUE 0x0008 /* Don't use crypto queue/thread */
#define CRYPTO_F_DONE 0x0010 /* request completed */
void *crp_buf; /* Data to be processed */
void *crp_opaque; /* Opaque pointer, passed along */
struct cryptodesc *crp_desc; /* Linked list of processing descriptors */
FAR void *crp_buf; /* Data to be processed */
FAR void *crp_opaque; /* Opaque pointer, passed along */
FAR struct cryptodesc *crp_desc; /* Linked list of processing descriptors */
int (*crp_callback)(struct cryptop *); /* Callback function */
CODE int (*crp_callback)(FAR struct cryptop *); /* Callback function */
caddr_t crp_mac;
};
@ -196,14 +211,17 @@ struct cryptop {
#define CRYPTO_OP_ENCRYPT 0x1
/* bignum parameter, in packed bytes, ... */
struct crparam {
struct crparam
{
caddr_t crp_p;
u_int crp_nbits;
};
#define CRK_MAXPARAM 8
struct crypt_kop {
struct crypt_kop
{
u_int crk_op; /* ie. CRK_MOD_EXP or other */
u_int crk_status; /* return status */
u_short crk_iparams; /* # of input parameters */
@ -211,6 +229,7 @@ struct crypt_kop {
u_int crk_pad1;
struct crparam crk_param[CRK_MAXPARAM];
};
#define CRK_MOD_EXP 0
#define CRK_MOD_EXP_CRT 1
#define CRK_DSA_SIGN 2
@ -224,72 +243,74 @@ struct crypt_kop {
#define CRF_DSA_VERIFY (1 << CRK_DSA_VERIFY)
#define CRF_DH_COMPUTE_KEY (1 << CRK_DH_COMPUTE_KEY)
struct cryptkop {
struct cryptkop
{
struct task krp_task;
u_int krp_op; /* ie. CRK_MOD_EXP or other */
u_int krp_status; /* return status */
u_short krp_iparams; /* # of input parameters */
u_short krp_oparams; /* # of output parameters */
u_int32_t krp_hid;
uint32_t krp_hid;
struct crparam krp_param[CRK_MAXPARAM]; /* kvm */
int (*krp_callback)(struct cryptkop *);
CODE int (*krp_callback)(FAR struct cryptkop *);
};
/* Crypto capabilities structure */
struct cryptocap {
u_int64_t cc_operations; /* Counter of how many ops done */
u_int64_t cc_bytes; /* Counter of how many bytes done */
u_int64_t cc_koperations; /* How many PK ops done */
u_int32_t cc_sessions; /* How many sessions allocated */
struct cryptocap
{
uint64_t cc_operations; /* Counter of how many ops done */
uint64_t cc_bytes; /* Counter of how many bytes done */
uint64_t cc_koperations; /* How many PK ops done */
uint32_t cc_sessions; /* How many sessions allocated */
/* Symmetric/hash algorithms supported */
int cc_alg[CRYPTO_ALGORITHM_MAX + 1];
/* Asymmetric algorithms supported */
int cc_kalg[CRK_ALGORITHM_MAX + 1];
int cc_queued; /* Operations queued */
u_int8_t cc_flags;
uint8_t cc_flags;
#define CRYPTOCAP_F_CLEANUP 0x01
#define CRYPTOCAP_F_SOFTWARE 0x02
#define CRYPTOCAP_F_ENCRYPT_MAC 0x04 /* Can do encrypt-then-MAC (IPsec) */
#define CRYPTOCAP_F_MAC_ENCRYPT 0x08 /* Can do MAC-then-encrypt (TLS) */
int (*cc_newsession) (u_int32_t *, struct cryptoini *);
int (*cc_process) (struct cryptop *);
int (*cc_freesession) (u_int64_t);
int (*cc_kprocess) (struct cryptkop *);
CODE int (*cc_newsession)(FAR uint32_t *, FAR struct cryptoini *);
CODE int (*cc_process)(FAR struct cryptop *);
CODE int (*cc_freesession)(uint64_t);
CODE int (*cc_kprocess)(FAR struct cryptkop *);
};
/*
* ioctl parameter to request creation of a session.
*/
struct session_op {
u_int32_t cipher; /* ie. CRYPTO_DES_CBC */
u_int32_t mac; /* ie. CRYPTO_MD5_HMAC */
/* ioctl parameter to request creation of a session. */
u_int32_t keylen; /* cipher key */
struct session_op
{
uint32_t cipher; /* ie. CRYPTO_AES_EBC */
uint32_t mac;
uint32_t keylen; /* cipher key */
caddr_t key;
int mackeylen; /* mac key */
caddr_t mackey;
u_int32_t ses; /* returns: session # */
uint32_t ses; /* returns: session # */
};
/*
* ioctl parameter to request a crypt/decrypt operation against a session.
*/
struct crypt_op {
u_int32_t ses;
u_int16_t op; /* ie. COP_ENCRYPT */
struct crypt_op
{
uint32_t ses;
#define COP_ENCRYPT 1
#define COP_DECRYPT 2
u_int16_t flags; /* always 0 */
u_int len;
uint16_t op; /* i.e. COP_ENCRYPT */
uint16_t flags;
unsigned len;
caddr_t src, dst; /* become iov[] inside kernel */
caddr_t mac; /* must be big enough for chosen MAC */
caddr_t iv;
@ -297,44 +318,45 @@ struct crypt_op {
#define CRYPTO_MAX_MAC_LEN 20
/*
* done against open of /dev/crypto, to get a cloned descriptor.
/* done against open of /dev/crypto, to get a cloned descriptor.
* Please use F_SETFD against the cloned descriptor.
*/
#define CRIOGET _IOWR('c', 100, u_int32_t)
#define CRIOGET _IOWR('c', 100, uint32_t)
/* the following are done against the cloned descriptor */
#define CIOCGSESSION _IOWR('c', 101, struct session_op)
#define CIOCFSESSION _IOW('c', 102, u_int32_t)
#define CIOCFSESSION _IOW('c', 102, uint32_t)
#define CIOCCRYPT _IOWR('c', 103, struct crypt_op)
#define CIOCKEY _IOWR('c', 104, struct crypt_kop)
#define CIOCASYMFEAT _IOR('c', 105, u_int32_t)
#define CIOCASYMFEAT _IOR('c', 105, uint32_t)
#ifdef _KERNEL
int crypto_newsession(u_int64_t *, struct cryptoini *, int);
int crypto_freesession(u_int64_t);
int crypto_dispatch(struct cryptop *);
int crypto_kdispatch(struct cryptkop *);
int crypto_register(u_int32_t, int *,
int (*)(u_int32_t *, struct cryptoini *), int (*)(u_int64_t),
int (*)(struct cryptop *));
int crypto_kregister(u_int32_t, int *, int (*)(struct cryptkop *));
int crypto_unregister(u_int32_t, int);
int32_t crypto_get_driverid(u_int8_t);
int crypto_invoke(struct cryptop *);
int crypto_kinvoke(struct cryptkop *);
void crypto_done(struct cryptop *);
void crypto_kdone(struct cryptkop *);
int crypto_getfeat(int *);
int crypto_newsession(FAR uint64_t *, FAR struct cryptoini *, int);
int crypto_freesession(uint64_t);
int crypto_dispatch(FAR struct cryptop *);
int crypto_kdispatch(FAR struct cryptkop *);
int crypto_register(uint32_t, FAR int *,
CODE int (*)(uint32_t *, struct cryptoini *),
CODE int (*)(uint64_t),
CODE int (*)(FAR struct cryptop *));
int crypto_kregister(uint32_t, FAR int *, CODE int (*)(struct cryptkop *));
int crypto_unregister(uint32_t, int);
int crypto_get_driverid(uint8_t);
int crypto_invoke(FAR struct cryptop *);
int crypto_kinvoke(FAR struct cryptkop *);
void crypto_done(FAR struct cryptop *);
void crypto_kdone(FAR struct cryptkop *);
int crypto_getfeat(FAR int *);
void cuio_copydata(struct uio *, int, int, caddr_t);
void cuio_copyback(struct uio *, int, int, const void *);
int cuio_getptr(struct uio *, int, int *);
int cuio_apply(struct uio *, int, int,
int (*f)(caddr_t, caddr_t, unsigned int), caddr_t);
void cuio_copydata(FAR struct uio *, int, int, caddr_t);
void cuio_copyback(FAR struct uio *, int, int, const void *);
int cuio_getptr(FAR struct uio *, int, FAR int *);
int cuio_apply(FAR struct uio *, int, int,
CODE int (*f)(caddr_t, caddr_t, unsigned int), caddr_t);
struct cryptop *crypto_getreq(int);
void crypto_freereq(struct cryptop *);
FAR struct cryptop *crypto_getreq(int);
void crypto_freereq(FAR struct cryptop *);
#endif /* _KERNEL */
#endif /* _CRYPTO_CRYPTO_H_ */
#endif /* __INCLUDE_CRYPTO_CRYPTODEV_H */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: cryptosoft.h,v 1.14 2012/12/07 17:03:22 mikeb Exp $ */
/*
/****************************************************************************
* include/crypto/cryptosoft.h
* $OpenBSD: cryptosoft.h,v 1.14 2012/12/07 17:03:22 mikeb Exp $
*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
@ -19,56 +20,71 @@
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
*
****************************************************************************/
#ifndef _CRYPTO_CRYPTOSOFT_H_
#define _CRYPTO_CRYPTOSOFT_H_
#ifndef __INCLUDE_CRYPTO_CRYPTOSOFT_H
#define __INCLUDE_CRYPTO_CRYPTOSOFT_H
/****************************************************************************
* Included Files
****************************************************************************/
/* Software session entry */
struct swcr_data {
struct swcr_data
{
int sw_alg; /* Algorithm */
union {
struct {
u_int8_t *SW_ictx;
u_int8_t *SW_octx;
u_int32_t SW_klen;
const struct auth_hash *SW_axf;
union
{
struct
{
FAR uint8_t *ictx;
FAR uint8_t *octx;
uint32_t klen;
FAR const struct auth_hash *axf;
} SWCR_AUTH;
struct {
u_int8_t *SW_kschedule;
const struct enc_xform *SW_exf;
struct
{
FAR uint8_t *kschedule;
FAR const struct enc_xform *exf;
} SWCR_ENC;
struct {
u_int32_t SW_size;
const struct comp_algo *SW_cxf;
struct
{
uint32_t size;
FAR const struct comp_algo *cxf;
} SWCR_COMP;
} SWCR_UN;
#define sw_ictx SWCR_UN.SWCR_AUTH.SW_ictx
#define sw_octx SWCR_UN.SWCR_AUTH.SW_octx
#define sw_klen SWCR_UN.SWCR_AUTH.SW_klen
#define sw_axf SWCR_UN.SWCR_AUTH.SW_axf
#define sw_kschedule SWCR_UN.SWCR_ENC.SW_kschedule
#define sw_exf SWCR_UN.SWCR_ENC.SW_exf
#define sw_size SWCR_UN.SWCR_COMP.SW_size
#define sw_cxf SWCR_UN.SWCR_COMP.SW_cxf
#define sw_ictx SWCR_UN.SWCR_AUTH.ictx
#define sw_octx SWCR_UN.SWCR_AUTH.octx
#define sw_klen SWCR_UN.SWCR_AUTH.klen
#define sw_axf SWCR_UN.SWCR_AUTH.axf
#define sw_kschedule SWCR_UN.SWCR_ENC.kschedule
#define sw_exf SWCR_UN.SWCR_ENC.exf
#define sw_size SWCR_UN.SWCR_COMP.size
#define sw_cxf SWCR_UN.SWCR_COMP.cxf
struct swcr_data *sw_next;
};
#ifdef _KERNEL
extern const u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN];
extern const u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN];
extern const uint8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN];
extern const uint8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN];
int swcr_encdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
int swcr_authcompute(struct cryptop *, struct cryptodesc *, struct swcr_data *,
int swcr_encdec(FAR struct cryptodesc *,
FAR struct swcr_data *, caddr_t, int);
int swcr_authcompute(FAR struct cryptop *, FAR struct cryptodesc *,
FAR struct swcr_data *, caddr_t, int);
int swcr_authenc(FAR struct cryptop *);
int swcr_compdec(FAR struct cryptodesc *, FAR struct swcr_data *,
caddr_t, int);
int swcr_authenc(struct cryptop *);
int swcr_compdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
int swcr_process(struct cryptop *);
int swcr_newsession(u_int32_t *, struct cryptoini *);
int swcr_freesession(u_int64_t);
int swcr_process(FAR struct cryptop *);
int swcr_newsession(FAR uint32_t *, FAR struct cryptoini *);
int swcr_freesession(uint64_t);
void swcr_init(void);
#endif /* _KERNEL */
#endif /* _CRYPTO_CRYPTO_H_ */
#endif /* __INCLUDE_CRYPTO_CRYPTOSOFT_H */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: gmac.h,v 1.6 2017/05/02 11:44:32 mikeb Exp $ */
/*
/****************************************************************************
* include/crypto/gmac.h
* $OpenBSD: gmac.h,v 1.6 2017/05/02 11:44:32 mikeb Exp $
*
* Copyright (c) 2010 Mike Belopuhov
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,36 +15,42 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
****************************************************************************/
#ifndef _GMAC_H_
#define _GMAC_H_
#ifndef __INCLUDE_CRYPTO_GMAC_H
#define __INCLUDE_CRYPTO_GMAC_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <crypto/aes.h>
#define GMAC_BLOCK_LEN 16
#define GMAC_DIGEST_LEN 16
typedef struct _GHASH_CTX {
typedef struct _GHASH_CTX
{
uint8_t H[GMAC_BLOCK_LEN]; /* hash subkey */
uint8_t S[GMAC_BLOCK_LEN]; /* state */
uint8_t Z[GMAC_BLOCK_LEN]; /* initial state */
} GHASH_CTX;
}
GHASH_CTX;
typedef struct _AES_GMAC_CTX {
typedef struct _AES_GMAC_CTX
{
GHASH_CTX ghash;
AES_CTX K;
uint8_t J[GMAC_BLOCK_LEN]; /* counter block */
} AES_GMAC_CTX;
}
AES_GMAC_CTX;
__BEGIN_DECLS
extern void (*ghash_update)(GHASH_CTX *, uint8_t *, size_t);
extern void (*ghash_update)(FAR GHASH_CTX *, FAR uint8_t *, size_t);
void AES_GMAC_Init(void *);
void AES_GMAC_Setkey(void *, const uint8_t *, uint16_t);
void AES_GMAC_Reinit(void *, const uint8_t *, uint16_t);
int AES_GMAC_Update(void *, const uint8_t *, uint16_t);
void AES_GMAC_Final(uint8_t [GMAC_DIGEST_LEN], void *);
__END_DECLS
void aes_gmac_init(FAR void *);
void aes_gmac_setkey(FAR void *, FAR const uint8_t *, uint16_t);
void aes_gmac_reinit(FAR void *, FAR const uint8_t *, uint16_t);
int aes_gmac_update(FAR void *, FAR const uint8_t *, uint16_t);
void aes_gmac_final(FAR uint8_t *, FAR void *);
#endif /* _GMAC_H_ */
#endif /* __INCLUDE_CRYPTO_GMAC_H */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: hmac.h,v 1.3 2012/12/05 23:20:15 deraadt Exp $ */
/*-
/****************************************************************************
* include/crypto/hmac.h
* $OpenBSD: hmac.h,v 1.3 2012/12/05 23:20:15 deraadt Exp $
*
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,52 +15,42 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
*
****************************************************************************/
#ifndef _HMAC_H_
#define _HMAC_H_
#ifndef __INCLUDE_CRYPTO_HMAC_H_
#define __INCLUDE_CRYPTO_HMAC_H_
typedef struct _HMAC_MD5_CTX {
typedef struct _HMAC_MD5_CTX
{
MD5_CTX ctx;
u_int8_t key[MD5_BLOCK_LENGTH];
u_int key_len;
} HMAC_MD5_CTX;
typedef struct _HMAC_SHA1_CTX {
typedef struct _HMAC_SHA1_CTX
{
SHA1_CTX ctx;
u_int8_t key[SHA1_BLOCK_LENGTH];
u_int key_len;
} HMAC_SHA1_CTX;
typedef struct _HMAC_SHA256_CTX {
typedef struct _HMAC_SHA256_CTX
{
SHA2_CTX ctx;
u_int8_t key[SHA256_BLOCK_LENGTH];
u_int key_len;
} HMAC_SHA256_CTX;
__BEGIN_DECLS
void hmac_md5_init(FAR HMAC_MD5_CTX *, FAR const u_int8_t *, u_int);
void hmac_md5_update(FAR HMAC_MD5_CTX *, FAR const u_int8_t *, u_int);
void hmac_md5_final(FAR u_int8_t *, FAR HMAC_MD5_CTX *);
void hmac_sha1_init(FAR HMAC_SHA1_CTX *, FAR const u_int8_t *, u_int);
void hmac_sha1_update(FAR HMAC_SHA1_CTX *, FAR const u_int8_t *, u_int);
void hmac_sha1_final(FAR u_int8_t *, FAR HMAC_SHA1_CTX *);
void HMAC_MD5_Init(HMAC_MD5_CTX *, const u_int8_t *, u_int)
__attribute__((__bounded__(__string__,2,3)));
void HMAC_MD5_Update(HMAC_MD5_CTX *, const u_int8_t *, u_int)
__attribute__((__bounded__(__string__,2,3)));
void HMAC_MD5_Final(u_int8_t [MD5_DIGEST_LENGTH], HMAC_MD5_CTX *)
__attribute__((__bounded__(__minbytes__,1,MD5_DIGEST_LENGTH)));
void hmac_sha256_init(FAR HMAC_SHA256_CTX *, FAR const u_int8_t *, u_int);
void hmac_sha256_update(FAR HMAC_SHA256_CTX *, FAR const u_int8_t *, u_int);
void hmac_sha256_final(FAR u_int8_t *, FAR HMAC_SHA256_CTX *);
void HMAC_SHA1_Init(HMAC_SHA1_CTX *, const u_int8_t *, u_int)
__attribute__((__bounded__(__string__,2,3)));
void HMAC_SHA1_Update(HMAC_SHA1_CTX *, const u_int8_t *, u_int)
__attribute__((__bounded__(__string__,2,3)));
void HMAC_SHA1_Final(u_int8_t [SHA1_DIGEST_LENGTH], HMAC_SHA1_CTX *)
__attribute__((__bounded__(__minbytes__,1,SHA1_DIGEST_LENGTH)));
void HMAC_SHA256_Init(HMAC_SHA256_CTX *, const u_int8_t *, u_int)
__attribute__((__bounded__(__string__,2,3)));
void HMAC_SHA256_Update(HMAC_SHA256_CTX *, const u_int8_t *, u_int)
__attribute__((__bounded__(__string__,2,3)));
void HMAC_SHA256_Final(u_int8_t [SHA256_DIGEST_LENGTH], HMAC_SHA256_CTX *)
__attribute__((__bounded__(__minbytes__,1,SHA256_DIGEST_LENGTH)));
__END_DECLS
#endif /* _HMAC_H_ */
#endif /* __INCLUDE_CRYPTO_HMAC_H_ */

View file

@ -1,5 +1,7 @@
/* $OpenBSD: idgen.h,v 1.3 2013/06/05 05:45:54 djm Exp $ */
/*
/****************************************************************************
* include/crypto/idgen.h
* $OpenBSD: idgen.h,v 1.3 2013/06/05 05:45:54 djm Exp $
*
* Copyright (c) 2008 Damien Miller <djm@mindrot.org>
*
* Permission to use, copy, modify, and distribute this software for any
@ -13,14 +15,19 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
*
****************************************************************************/
#ifndef __INCLUDE_CRYPTO_IDGEN_H_
#define __INCLUDE_CRYPTO_IDGEN_H_
#define IDGEN32_ROUNDS 31
#define IDGEN32_KEYLEN 32
#define IDGEN32_REKEY_LIMIT 0x60000000
#define IDGEN32_REKEY_TIME 600
struct idgen32_ctx {
struct idgen32_ctx
{
u_int32_t id32_counter;
u_int32_t id32_offset;
u_int32_t id32_hibit;
@ -28,6 +35,7 @@ struct idgen32_ctx {
time_t id32_rekey_time;
};
void idgen32_init(struct idgen32_ctx *);
u_int32_t idgen32(struct idgen32_ctx *);
void idgen32_init(FAR struct idgen32_ctx *);
u_int32_t idgen32(FAR struct idgen32_ctx *);
#endif /* __INCLUDE_CRYPTO_IDGEN_H_ */

View file

@ -1,6 +1,6 @@
/* $OpenBSD: key_wrap.h,v 1.3 2017/05/02 17:07:06 mikeb Exp $ */
/*-
/****************************************************************************
* include/crypto/key_wrap.h
*$OpenBSD: key_wrap.h,v 1.3 2017/05/02 17:07:06 mikeb Exp $
* Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
@ -14,23 +14,26 @@
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
*
****************************************************************************/
#ifndef _KEY_WRAP_H_
#define _KEY_WRAP_H_
#ifndef __INCLUDE_CRYPTO_KEY_WRAP_H_
#define __INCLUDE_CRYPTO_KEY_WRAP_H_
typedef struct _aes_key_wrap_ctx {
typedef struct _aes_key_wrap_ctx
{
AES_CTX ctx;
} aes_key_wrap_ctx;
__BEGIN_DECLS
void aes_key_wrap_set_key(aes_key_wrap_ctx *, const u_int8_t *, size_t);
void aes_key_wrap_set_key_wrap_only(aes_key_wrap_ctx *, const u_int8_t *,
void aes_key_wrap_set_key(FAR aes_key_wrap_ctx *,
FAR const u_int8_t *,
size_t);
void aes_key_wrap(aes_key_wrap_ctx *, const u_int8_t *, size_t, u_int8_t *);
int aes_key_unwrap(aes_key_wrap_ctx *, const u_int8_t *, u_int8_t *,
void aes_key_wrap_set_key_wrap_only(FAR aes_key_wrap_ctx *,
FAR const u_int8_t *,
size_t);
__END_DECLS
void aes_key_wrap(FAR aes_key_wrap_ctx *,
FAR const u_int8_t *, size_t, FAR u_int8_t *);
int aes_key_unwrap(FAR aes_key_wrap_ctx *,
FAR const u_int8_t *, FAR u_int8_t *, size_t);
#endif /* _KEY_WRAP_H_ */
#endif /* __INCLUDE_CRYPTO_KEY_WRAP_H_ */

View file

@ -1,6 +1,8 @@
/* $OpenBSD: md5.h,v 1.3 2014/11/16 17:39:09 tedu Exp $ */
/*
/****************************************************************************
* include/crypto/md5.h
* $OpenBSD: md5.h,v 1.3 2014/11/16 17:39:09 tedu Exp $
*
*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
@ -10,29 +12,25 @@
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*/
*
****************************************************************************/
#ifndef _MD5_H_
#define _MD5_H_
#ifndef __INCLUDE_CRYPTO_MD5_H
#define __INCLUDE_CRYPTO_MD5_H
#define MD5_BLOCK_LENGTH 64
#define MD5_DIGEST_LENGTH 16
typedef struct MD5Context {
u_int32_t state[4]; /* state */
u_int64_t count; /* number of bits, mod 2^64 */
u_int8_t buffer[MD5_BLOCK_LENGTH]; /* input buffer */
typedef struct MD5CONTEXT
{
uint32_t state[4]; /* state */
uint64_t count; /* number of bits, mod 2^64 */
uint8_t buffer[MD5_BLOCK_LENGTH]; /* input buffer */
} MD5_CTX;
__BEGIN_DECLS
void MD5Init(MD5_CTX *);
void MD5Update(MD5_CTX *, const void *, size_t)
__attribute__((__bounded__(__string__,2,3)));
void MD5Final(u_int8_t [MD5_DIGEST_LENGTH], MD5_CTX *)
__attribute__((__bounded__(__minbytes__,1,MD5_DIGEST_LENGTH)));
void MD5Transform(u_int32_t [4], const u_int8_t [MD5_BLOCK_LENGTH])
__attribute__((__bounded__(__minbytes__,1,4)))
__attribute__((__bounded__(__minbytes__,2,MD5_BLOCK_LENGTH)));
__END_DECLS
void md5init(FAR MD5_CTX *);
void md5update(FAR MD5_CTX *, FAR const void *, size_t);
void md5final(FAR uint8_t *, FAR MD5_CTX *);
void md5transform(FAR uint32_t *, FAR const uint8_t *);
#endif /* _MD5_H_ */
#endif /* __INCLUDE_CRYPTO_MD5_H */

View file

@ -1,17 +1,20 @@
/* $OpenBSD: poly1305.h,v 1.2 2020/07/22 13:54:30 tobhe Exp $ */
/*
/****************************************************************************
* include/crypto/poly1305.h
* $OpenBSD: poly1305.h,v 1.2 2020/07/22 13:54:30 tobhe Exp $
*
* Public Domain poly1305 from Andrew Moon
*
* poly1305 implementation using 32 bit * 32 bit = 64 bit multiplication
* and 64 bit addition from https://github.com/floodyberry/poly1305-donna
*/
****************************************************************************/
#ifndef _POLY1305_H_
#define _POLY1305_H_
#ifndef __INCLUDE_CRYPTO_POLY1305_H
#define __INCLUDE_CRYPTO_POLY1305_H
#define poly1305_block_size 16
typedef struct poly1305_state {
typedef struct poly1305_state
{
unsigned long r[5];
unsigned long h[5];
unsigned long pad[4];
@ -20,8 +23,9 @@ typedef struct poly1305_state {
unsigned char final;
} poly1305_state;
void poly1305_init(poly1305_state *, const unsigned char[32]);
void poly1305_update(poly1305_state *, const unsigned char *, size_t);
void poly1305_finish(poly1305_state *, unsigned char[16]);
void poly1305_init(FAR poly1305_state *, FAR const unsigned char *);
void poly1305_update(FAR poly1305_state *,
FAR const unsigned char *, size_t);
void poly1305_finish(FAR poly1305_state *, FAR unsigned char *);
#endif /* _POLY1305_H_ */
#endif /* __INCLUDE_CRYPTO_POLY1305_H */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: rijndael.h,v 1.13 2008/06/09 07:49:45 djm Exp $ */
/**
/****************************************************************************
* include/crypto/rijndael.h
* $OpenBSD: rijndael.h,v 1.13 2008/06/09 07:49:45 djm Exp $
*
* rijndael-alg-fst.h
*
* @version 3.0 (December 2000)
@ -24,35 +25,42 @@
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __RIJNDAEL_H
#define __RIJNDAEL_H
****************************************************************************/
#ifndef __INCLUDE_CRYPTO_RIJNDAEL_H
#define __INCLUDE_CRYPTO_RIJNDAEL_H
#define AES_MAXKEYBITS (256)
#define AES_MAXKEYBYTES (AES_MAXKEYBITS / 8)
/* for 256-bit keys, fewer for less */
#define AES_MAXROUNDS 14
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
/* The structure for key information */
typedef struct {
typedef struct
{
int enc_only; /* context contains only encrypt schedule */
int Nr; /* key-length-dependent number of rounds */
u32 ek[4*(AES_MAXROUNDS + 1)]; /* encrypt key schedule */
u32 dk[4*(AES_MAXROUNDS + 1)]; /* decrypt key schedule */
int nr; /* key-length-dependent number of rounds */
uint32_t ek[4 * (AES_MAXROUNDS + 1)]; /* encrypt key schedule */
uint32_t dk[4 * (AES_MAXROUNDS + 1)]; /* decrypt key schedule */
} rijndael_ctx;
int rijndael_set_key(rijndael_ctx *, const u_char *, int);
int rijndael_set_key_enc_only(rijndael_ctx *, const u_char *, int);
void rijndael_decrypt(rijndael_ctx *, const u_char *, u_char *);
void rijndael_encrypt(rijndael_ctx *, const u_char *, u_char *);
int rijndael_set_key(FAR rijndael_ctx *, FAR const u_char *, int);
int rijndael_set_key_enc_only(FAR rijndael_ctx *, FAR const u_char *, int);
void rijndael_decrypt(FAR rijndael_ctx *, FAR const u_char *, FAR u_char *);
void rijndael_encrypt(FAR rijndael_ctx *, FAR const u_char *, FAR u_char *);
int rijndaelKeySetupEnc(unsigned int [], const unsigned char [], int);
int rijndaelKeySetupDec(unsigned int [], const unsigned char [], int);
void rijndaelEncrypt(const unsigned int [], int, const unsigned char [],
int rijndael_keysetupenc(unsigned int [],
const unsigned char [],
int);
int rijndael_keysetupdec(unsigned int [],
const unsigned char [],
int);
void rijndael_encrypt1(const unsigned int [],
int,
const unsigned char [],
unsigned char []);
#endif /* __RIJNDAEL_H */
#endif /* __INCLUDE_CRYPTO_RIJNDAEL_H */

View file

@ -1,5 +1,7 @@
/* $OpenBSD: rmd160.h,v 1.5 2009/07/05 19:33:46 millert Exp $ */
/*
/****************************************************************************
* include/crypto/rmd160.h
* $OpenBSD: rmd160.h,v 1.5 2009/07/05 19:33:46 millert Exp $
*
* Copyright (c) 2001 Markus Friedl. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -21,29 +23,27 @@
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RMD160_H
#define _RMD160_H
****************************************************************************/
#ifndef __INCLUDE_CRYPTO_RMD160_H
#define __INCLUDE_CRYPTO_RMD160_H
#define RMD160_BLOCK_LENGTH 64
#define RMD160_DIGEST_LENGTH 20
/* RMD160 context. */
typedef struct RMD160Context {
u_int32_t state[5]; /* state */
u_int64_t count; /* number of bits, mod 2^64 */
typedef struct RMD160CONTEXT
{
uint32_t state[5]; /* state */
uint64_t count; /* number of bits, mod 2^64 */
u_char buffer[RMD160_BLOCK_LENGTH]; /* input buffer */
} RMD160_CTX;
__BEGIN_DECLS
void RMD160Init(RMD160_CTX *);
void RMD160Transform(u_int32_t [5], const u_char [RMD160_BLOCK_LENGTH])
__attribute__((__bounded__(__minbytes__,1,5)))
__attribute__((__bounded__(__minbytes__,2,RMD160_BLOCK_LENGTH)));
void RMD160Update(RMD160_CTX *, const u_char *, u_int32_t)
__attribute__((__bounded__(__string__,2,3)));
void RMD160Final(u_char [RMD160_DIGEST_LENGTH], RMD160_CTX *)
__attribute__((__bounded__(__minbytes__,1,RMD160_DIGEST_LENGTH)));
__END_DECLS
void rmd160init(FAR RMD160_CTX *);
void rmd160transform(FAR uint32_t *,
FAR const u_char *);
void rmd160update(FAR RMD160_CTX *, FAR const u_char *, uint32_t);
void rmd160final(FAR u_char *, FAR RMD160_CTX *);
#endif /* _RMD160_H */
#endif /* __INCLUDE_CRYPTO_RMD160_H */

View file

@ -1,26 +1,31 @@
/* $OpenBSD: sha1.h,v 1.6 2014/11/16 17:39:09 tedu Exp $ */
/*
/****************************************************************************
* include/crypto/sha1.h
* $OpenBSD: sha1.h,v 1.6 2014/11/16 17:39:09 tedu Exp $
* SHA-1 in C
* By Steve Reid <steve@edmweb.com>
* 100% Public Domain
*/
****************************************************************************/
#ifndef _SHA1_H_
#define _SHA1_H_
#ifndef __INCLUDE_CRYPTO_SHA1_H
#define __INCLUDE_CRYPTO_SHA1_H
#define SHA1_BLOCK_LENGTH 64
#define SHA1_DIGEST_LENGTH 20
typedef struct {
u_int32_t state[5];
u_int64_t count;
typedef struct
{
uint32_t state[5];
uint64_t count;
unsigned char buffer[SHA1_BLOCK_LENGTH];
} SHA1_CTX;
void SHA1Init(SHA1_CTX * context);
void SHA1Transform(u_int32_t state[5], const unsigned char buffer[SHA1_BLOCK_LENGTH]);
void SHA1Update(SHA1_CTX *context, const void *data, unsigned int len);
void SHA1Final(unsigned char digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context);
void sha1init(FAR SHA1_CTX * context);
void sha1transform(FAR uint32_t *state,
FAR const unsigned char *buffer);
void sha1update(FAR SHA1_CTX *context,
FAR const void *data,
unsigned int len);
void sha1final(FAR unsigned char *digest,
FAR SHA1_CTX *context);
#endif /* _SHA1_H_ */
#endif /* __INCLUDE_CRYPTO_SHA1_H */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: sha2.h,v 1.5 2014/11/16 17:39:09 tedu Exp $ */
/*
/****************************************************************************
* include/crypto/sha2.h
* $OpenBSD: sha2.h,v 1.5 2014/11/16 17:39:09 tedu Exp $
*
* FILE: sha2.h
* AUTHOR: Aaron D. Gifford <me@aarongifford.com>
*
@ -32,13 +33,13 @@
* SUCH DAMAGE.
*
* $From: sha2.h,v 1.1 2001/11/08 00:02:01 adg Exp adg $
*/
****************************************************************************/
#ifndef _SHA2_H
#define _SHA2_H
#ifndef __INCLUDE_CRYPTO_SHA2_H
#define __INCLUDE_CRYPTO_SHA2_H
/* SHA-256/384/512 Various Length Definitions */
/*** SHA-256/384/512 Various Length Definitions ***********************/
#define SHA256_BLOCK_LENGTH 64
#define SHA256_DIGEST_LENGTH 32
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
@ -49,35 +50,29 @@
#define SHA512_DIGEST_LENGTH 64
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
/* SHA-256/384/512 Context Structure */
/*** SHA-256/384/512 Context Structure *******************************/
typedef struct _SHA2_CTX {
union {
u_int32_t st32[8];
u_int64_t st64[8];
typedef struct _SHA2_CTX
{
union
{
uint32_t st32[8];
uint64_t st64[8];
} state;
u_int64_t bitcount[2];
u_int8_t buffer[SHA512_BLOCK_LENGTH];
uint64_t bitcount[2];
uint8_t buffer[SHA512_BLOCK_LENGTH];
} SHA2_CTX;
__BEGIN_DECLS
void SHA256Init(SHA2_CTX *);
void SHA256Update(SHA2_CTX *, const void *, size_t)
__attribute__((__bounded__(__string__,2,3)));
void SHA256Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA2_CTX *)
__attribute__((__bounded__(__minbytes__,1,SHA256_DIGEST_LENGTH)));
void sha256init(FAR SHA2_CTX *);
void sha256update(FAR SHA2_CTX *, FAR const void *, size_t);
void sha256final(FAR uint8_t *, FAR SHA2_CTX *);
void SHA384Init(SHA2_CTX *);
void SHA384Update(SHA2_CTX *, const void *, size_t)
__attribute__((__bounded__(__string__,2,3)));
void SHA384Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA2_CTX *)
__attribute__((__bounded__(__minbytes__,1,SHA384_DIGEST_LENGTH)));
void sha384init(FAR SHA2_CTX *);
void sha384update(FAR SHA2_CTX *, FAR const void *, size_t);
void sha384final(FAR uint8_t *, FAR SHA2_CTX *);
void SHA512Init(SHA2_CTX *);
void SHA512Update(SHA2_CTX *, const void *, size_t)
__attribute__((__bounded__(__string__,2,3)));
void SHA512Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA2_CTX *)
__attribute__((__bounded__(__minbytes__,1,SHA512_DIGEST_LENGTH)));
__END_DECLS
void sha512init(FAR SHA2_CTX *);
void sha512update(FAR SHA2_CTX *, FAR const void *, size_t);
void sha512final(FAR uint8_t *, FAR SHA2_CTX *);
#endif /* _SHA2_H */
#endif /* __INCLUDE_CRYPTO_SHA2_H */

View file

@ -1,5 +1,7 @@
/* $OpenBSD: siphash.h,v 1.5 2015/02/20 11:51:03 tedu Exp $ */
/*-
/****************************************************************************
* include/crypto/siphash.h
* $OpenBSD: siphash.h,v 1.5 2015/02/20 11:51:03 tedu Exp $
*
* Copyright (c) 2013 Andre Oppermann <andre@FreeBSD.org>
* All rights reserved.
*
@ -28,60 +30,61 @@
* SUCH DAMAGE.
*
* $FreeBSD$
*/
*
****************************************************************************/
/*
* SipHash is a family of pseudorandom functions (a.k.a. keyed hash functions)
/* SipHash is a family of pseudorandom functions
* (a.k.a. keyed hash functions)
* optimized for speed on short messages returning a 64bit hash/digest value.
*
* The number of rounds is defined during the initialization:
* SipHash24_Init() for the fast and resonable strong version
* SipHash48_Init() for the strong version (half as fast)
* siphash24_init() for the fast and resonable strong version
* siphash48_init() for the strong version (half as fast)
*
* struct SIPHASH_CTX ctx;
* SipHash24_Init(&ctx);
* SipHash_SetKey(&ctx, "16bytes long key");
* SipHash_Update(&ctx, pointer_to_string, length_of_string);
* SipHash_Final(output, &ctx);
* siphash24_init(&ctx);
* siphash_setkey(&ctx, "16bytes long key");
* siphash_update(&ctx, pointer_to_string, length_of_string);
* siphash_final(output, &ctx);
*/
#ifndef _SIPHASH_H_
#define _SIPHASH_H_
#ifndef __INCLUDE_CRYPTO_SIPHASH_H_
#define __INCLUDE_CRYPTO_SIPHASH_H_
#define SIPHASH_BLOCK_LENGTH 8
#define SIPHASH_KEY_LENGTH 16
#define SIPHASH_DIGEST_LENGTH 8
typedef struct _SIPHASH_CTX {
typedef struct _SIPHASH_CTX
{
uint64_t v[4];
uint8_t buf[SIPHASH_BLOCK_LENGTH];
uint32_t bytes;
} SIPHASH_CTX;
typedef struct {
typedef struct
{
uint64_t k0;
uint64_t k1;
} SIPHASH_KEY;
void SipHash_Init(SIPHASH_CTX *, const SIPHASH_KEY *);
void SipHash_Update(SIPHASH_CTX *, int, int, const void *, size_t)
__bounded((__buffer__, 4, 5));
uint64_t SipHash_End(SIPHASH_CTX *, int, int);
void SipHash_Final(void *, SIPHASH_CTX *, int, int)
__bounded((__minbytes__, 1, SIPHASH_DIGEST_LENGTH));
uint64_t SipHash(const SIPHASH_KEY *, int, int, const void *, size_t)
__bounded((__buffer__, 4, 5));
void siphash_init(FAR SIPHASH_CTX *, FAR const SIPHASH_KEY *);
void siphash_update(FAR SIPHASH_CTX *, int, int, FAR const void *, size_t);
uint64_t siphash_end(FAR SIPHASH_CTX *, int, int);
void siphash_final(FAR void *, FAR SIPHASH_CTX *, int, int);
uint64_t siphash(FAR const SIPHASH_KEY *,
int, int, FAR const void *, size_t);
#define SipHash24_Init(_c, _k) SipHash_Init((_c), (_k))
#define SipHash24_Update(_c, _p, _l) SipHash_Update((_c), 2, 4, (_p), (_l))
#define SipHash24_End(_d) SipHash_End((_d), 2, 4)
#define SipHash24_Final(_d, _c) SipHash_Final((_d), (_c), 2, 4)
#define SipHash24(_k, _p, _l) SipHash((_k), 2, 4, (_p), (_l))
#define SipHash24_Init(_c, _k) siphash_init((_c), (_k))
#define SipHash24_Update(_c, _p, _l) siphash_update((_c), 2, 4, (_p), (_l))
#define SipHash24_End(_d) siphash_end((_d), 2, 4)
#define SipHash24_Final(_d, _c) siphash_final((_d), (_c), 2, 4)
#define SipHash24(_k, _p, _l) siphash((_k), 2, 4, (_p), (_l))
#define SipHash48_Init(_c, _k) SipHash_Init((_c), (_k))
#define SipHash48_Update(_c, _p, _l) SipHash_Update((_c), 4, 8, (_p), (_l))
#define SipHash48_End(_d) SipHash_End((_d), 4, 8)
#define SipHash48_Final(_d, _c) SipHash_Final((_d), (_c), 4, 8)
#define SipHash48(_k, _p, _l) SipHash((_k), 4, 8, (_p), (_l))
#define SipHash48_Init(_c, _k) siphash_init((_c), (_k))
#define SipHash48_Update(_c, _p, _l) siphash_update((_c), 4, 8, (_p), (_l))
#define SipHash48_End(_d) siphash_end((_d), 4, 8)
#define SipHash48_Final(_d, _c) siphash_final((_d), (_c), 4, 8)
#define SipHash48(_k, _p, _l) siphash((_k), 4, 8, (_p), (_l))
#endif /* _SIPHASH_H_ */

View file

@ -1,6 +1,7 @@
/* $OpenBSD: xform.h,v 1.32 2021/10/22 12:30:53 bluhm Exp $ */
/*
/****************************************************************************
* include/crypto/xform.h
* $OpenBSD: xform.h,v 1.32 2021/10/22 12:30:53 bluhm Exp $
*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
@ -19,10 +20,14 @@
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
****************************************************************************/
#ifndef _CRYPTO_XFORM_H_
#define _CRYPTO_XFORM_H_
#ifndef __INCLUDE_CRYPTO_XFORM_H
#define __INCLUDE_CRYPTO_XFORM_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <crypto/md5.h>
#include <crypto/sha1.h>
@ -39,44 +44,49 @@
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
/* Declarations */
struct auth_hash {
struct auth_hash
{
int type;
char *name;
u_int16_t keysize;
u_int16_t hashsize;
u_int16_t authsize;
u_int16_t ctxsize;
u_int16_t blocksize;
void (*Init) (void *);
void (*Setkey) (void *, const u_int8_t *, u_int16_t);
void (*Reinit) (void *, const u_int8_t *, u_int16_t);
int (*Update) (void *, const u_int8_t *, u_int16_t);
void (*Final) (u_int8_t *, void *);
FAR char *name;
uint16_t keysize;
uint16_t hashsize;
uint16_t authsize;
uint16_t ctxsize;
uint16_t blocksize;
CODE void (*init) (FAR void *);
CODE void (*setkey) (FAR void *, FAR const uint8_t *, uint16_t);
CODE void (*reinit) (FAR void *, FAR const uint8_t *, uint16_t);
CODE int (*update) (FAR void *, FAR const uint8_t *, uint16_t);
CODE void (*final) (FAR uint8_t *, FAR void *);
};
struct enc_xform {
struct enc_xform
{
int type;
char *name;
u_int16_t blocksize;
u_int16_t ivsize;
u_int16_t minkey;
u_int16_t maxkey;
u_int16_t ctxsize;
void (*encrypt) (caddr_t, u_int8_t *);
void (*decrypt) (caddr_t, u_int8_t *);
int (*setkey) (void *, u_int8_t *, int len);
void (*reinit) (caddr_t, u_int8_t *);
FAR char *name;
uint16_t blocksize;
uint16_t ivsize;
uint16_t minkey;
uint16_t maxkey;
uint16_t ctxsize;
CODE void (*encrypt) (caddr_t, FAR uint8_t *);
CODE void (*decrypt) (caddr_t, FAR uint8_t *);
CODE int (*setkey) (void *, FAR uint8_t *, int len);
CODE void (*reinit) (caddr_t, FAR uint8_t *);
};
struct comp_algo {
struct comp_algo
{
int type;
char *name;
FAR char *name;
size_t minlen;
u_int32_t (*compress) (u_int8_t *, u_int32_t, u_int8_t **);
u_int32_t (*decompress) (u_int8_t *, u_int32_t, u_int8_t **);
CODE uint32_t (*compress) (FAR uint8_t *, uint32_t, FAR uint8_t **);
CODE uint32_t (*decompress) (FAR uint8_t *, uint32_t, FAR uint8_t **);
};
union authctx {
union authctx
{
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
RMD160_CTX rmd160ctx;
@ -108,4 +118,4 @@ extern const struct auth_hash auth_hash_chacha20_poly1305;
extern const struct comp_algo comp_algo_deflate;
#endif /* _CRYPTO_XFORM_H_ */
#endif /* __INCLUDE_CRYPTO_XFORM_H */