1
0
Fork 0
forked from nuttx/nuttx-update

sched: change nxsched_islocked_global to nxsched_islocked_tcb

reason:
1 To improve efficiency, we mimic Linux's behavior where preemption disabling is only applicable to the current CPU and does not affect other CPUs.
2 In the future, we will implement "spinlock+sched_lock", and use it extensively. Under such circumstances, if preemption is still globally disabled, it will seriously impact the scheduling efficiency.
3 We have removed g_cpu_lockset and used irqcount in order to eliminate the dependency of schedlock on critical sections in the future, simplify the logic, and further enhance the performance of sched_lock.
4 We set lockcount to 1 in order to lock scheduling on all CPUs during startup, without the need to provide additional functions to disable scheduling on other CPUs.
5 Cpu1~n must wait for cpu0 to enter the idle state before enabling scheduling because it prevents CPUs1~n from competing with cpu0 for the memory manager mutex, which could cause the cpu0 idle task to enter a wait state and trigger an assert.

size nuttx
before:
   text    data     bss     dec     hex filename
 265396   51057   63646  380099   5ccc3 nuttx
after:
   text    data     bss     dec     hex filename
 265184   51057   63642  379883   5cbeb nuttx

size -216

Configuring NuttX and compile:
$ ./tools/configure.sh -l qemu-armv8a:nsh_smp
$ make
Running with qemu
$ qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic \
   -machine virt,virtualization=on,gic-version=3 \
   -net none -chardev stdio,id=con,mux=on -serial chardev:con \
   -mon chardev=con,mode=readline -kernel ./nuttx

Signed-off-by: hujun5 <hujun5@xiaomi.com>
This commit is contained in:
hujun5 2024-05-13 19:33:01 +08:00 committed by Xiang Xiao
parent bd83d2aca5
commit b4cc9fb11b
12 changed files with 30 additions and 141 deletions

View file

@ -92,7 +92,7 @@ extern "C"
* hardware resources may not yet be available to the OS-internal logic.
*/
EXTERN uint8_t g_nx_initstate; /* See enum nx_initstate_e */
EXTERN volatile uint8_t g_nx_initstate; /* See enum nx_initstate_e */
/****************************************************************************
* Public Function Prototypes

View file

@ -35,6 +35,7 @@
#include <nuttx/kmalloc.h>
#include <nuttx/sched.h>
#include <nuttx/sched_note.h>
#include <nuttx/init.h>
#include "group/group.h"
#include "sched/sched.h"
@ -74,6 +75,12 @@ void nx_idle_trampoline(void)
sched_note_start(tcb);
#endif
/* wait until cpu0 in idle() */
while (!OSINIT_IDLELOOP());
sched_unlock();
/* Enter the IDLE loop */
sinfo("CPU%d: Beginning Idle Loop\n", this_cpu());

View file

@ -195,7 +195,7 @@ struct tasklist_s g_tasklisttable[NUM_TASK_STATES];
* hardware resources may not yet be available to the kernel logic.
*/
uint8_t g_nx_initstate; /* See enum nx_initstate_e */
volatile uint8_t g_nx_initstate; /* See enum nx_initstate_e */
/****************************************************************************
* Private Data
@ -361,6 +361,7 @@ static void idle_task_initialize(void)
tcb->pid = i;
tcb->task_state = TSTATE_TASK_RUNNING;
tcb->lockcount = 1;
/* Set the entry point. This is only for debug purposes. NOTE: that
* the start_t entry point is not saved. That is acceptable, however,
@ -628,13 +629,6 @@ void nx_start(void)
task_initialize();
/* Disables context switching because we need take the memory manager
* semaphore on this CPU so that it will not be available on the other
* CPUs until we have finished initialization.
*/
sched_lock();
/* Initialize the instrument function */
instrument_initialize();

View file

@ -297,9 +297,6 @@ extern volatile clock_t g_cpuload_total;
*/
#ifdef CONFIG_SMP
/* Used to keep track of which CPU(s) hold the IRQ lock. */
extern volatile cpu_set_t g_cpu_lockset;
/* This is the spinlock that enforces critical sections when interrupts are
* disabled.
@ -406,16 +403,13 @@ static inline_function FAR struct tcb_s *this_task(void)
int nxsched_select_cpu(cpu_set_t affinity);
int nxsched_pause_cpu(FAR struct tcb_s *tcb);
void nxsched_process_delivered(int cpu);
# define nxsched_islocked_global() (g_cpu_lockset != 0)
# define nxsched_islocked_tcb(tcb) nxsched_islocked_global()
#else
# define nxsched_select_cpu(a) (0)
# define nxsched_pause_cpu(t) (-38) /* -ENOSYS */
# define nxsched_islocked_tcb(tcb) ((tcb)->lockcount > 0)
#endif
#define nxsched_islocked_tcb(tcb) ((tcb)->lockcount > 0)
/* CPU load measurement support */
#if defined(CONFIG_SCHED_CPULOAD_SYSCLK) || \

View file

@ -194,7 +194,7 @@ bool nxsched_add_readytorun(FAR struct tcb_s *btcb)
* situation.
*/
if (nxsched_islocked_global())
if (nxsched_islocked_tcb(this_task()))
{
/* Add the new ready-to-run task to the g_pendingtasks task list for
* now.
@ -275,14 +275,6 @@ bool nxsched_add_readytorun(FAR struct tcb_s *btcb)
btcb->task_state = TSTATE_TASK_RUNNING;
doswitch = true;
/* Resume scheduling lock */
DEBUGASSERT(g_cpu_lockset == 0);
if (btcb->lockcount > 0)
{
g_cpu_lockset |= (1 << cpu);
}
}
return doswitch;

View file

@ -42,30 +42,6 @@
* Public Data
****************************************************************************/
/* Pre-emption is disabled via the interface sched_lock(). sched_lock()
* works by preventing context switches from the currently executing tasks.
* This prevents other tasks from running (without disabling interrupts) and
* gives the currently executing task exclusive access to the (single) CPU
* resources. Thus, sched_lock() and its companion, sched_unlock(), are
* used to implement some critical sections.
*
* In the single CPU case, pre-emption is disabled using a simple lockcount
* in the TCB. When the scheduling is locked, the lockcount is incremented;
* when the scheduler is unlocked, the lockcount is decremented. If the
* lockcount for the task at the head of the g_readytorun list has a
* lockcount > 0, then pre-emption is disabled.
*
* No special protection is required since only the executing task can
* modify its lockcount.
*/
#ifdef CONFIG_SMP
/* Used to keep track of which CPU(s) hold the IRQ lock. */
volatile cpu_set_t g_cpu_lockset;
#endif /* CONFIG_SMP */
/****************************************************************************
* Public Functions
****************************************************************************/
@ -93,7 +69,6 @@ volatile cpu_set_t g_cpu_lockset;
int sched_lock(void)
{
FAR struct tcb_s *rtcb;
int cpu;
/* If the CPU supports suppression of interprocessor interrupts, then
* simple disabling interrupts will provide sufficient protection for
@ -118,36 +93,9 @@ int sched_lock(void)
DEBUGASSERT(rtcb->lockcount < MAX_LOCK_COUNT);
flags = enter_critical_section();
cpu = this_cpu();
/* We must hold the lock on this CPU before we increment the lockcount
* for the first time. Holding the lock is sufficient to lockout
* context switching.
*/
if (rtcb->lockcount == 0)
{
/* We don't have the scheduler locked. But logic running on a
* different CPU may have the scheduler locked. It is not
* possible for some other task on this CPU to have the scheduler
* locked (or we would not be executing!).
*/
DEBUGASSERT((g_cpu_lockset & (1 << cpu)) == 0);
g_cpu_lockset |= (1 << cpu);
}
else
{
/* If this thread already has the scheduler locked, then
* g_cpu_lockset should indicate that the scheduler is locked
* and g_cpu_lockset should include the bit setting for this CPU.
*/
DEBUGASSERT((g_cpu_lockset & (1 << cpu)) != 0);
}
/* A counter is used to support locking. This allows nested lock
* operations on this thread (on any CPU)
* operations on this thread
*/
rtcb->lockcount++;

View file

@ -199,7 +199,7 @@ bool nxsched_merge_pending(void)
* some CPU other than this one is in a critical section.
*/
if (!nxsched_islocked_global())
if (!nxsched_islocked_tcb(this_task()))
{
/* Find the CPU that is executing the lowest priority task */
@ -237,7 +237,7 @@ bool nxsched_merge_pending(void)
* Check if that happened.
*/
if (nxsched_islocked_global())
if (nxsched_islocked_tcb(this_task()))
{
/* Yes.. then we may have incorrectly placed some TCBs in the
* g_readytorun list (unlikely, but possible). We will have to

View file

@ -84,9 +84,10 @@ void nxsched_process_delivered(int cpu)
g_cpu_irqset |= (1 << cpu);
}
tcb = current_task(cpu);
if (g_delivertasks[cpu] == NULL)
{
tcb = current_task(cpu);
if (tcb->irqcount <= 0)
{
cpu_irqlock_clear();
@ -95,13 +96,12 @@ void nxsched_process_delivered(int cpu)
return;
}
if (nxsched_islocked_global())
if (nxsched_islocked_tcb(tcb))
{
btcb = g_delivertasks[cpu];
g_delivertasks[cpu] = NULL;
nxsched_add_prioritized(btcb, &g_pendingtasks);
btcb->task_state = TSTATE_TASK_PENDING;
tcb = current_task(cpu);
if (tcb->irqcount <= 0)
{
cpu_irqlock_clear();
@ -111,9 +111,8 @@ void nxsched_process_delivered(int cpu)
}
btcb = g_delivertasks[cpu];
tasklist = &g_assignedtasks[cpu];
for (next = (FAR struct tcb_s *)tasklist->head;
for (next = tcb;
(next && btcb->sched_priority <= next->sched_priority);
next = next->flink);
@ -122,6 +121,7 @@ void nxsched_process_delivered(int cpu)
{
/* Special case: Insert at the head of the list */
tasklist = &g_assignedtasks[cpu];
dq_addfirst_nonempty((FAR dq_entry_t *)btcb, tasklist);
btcb->cpu = cpu;
btcb->task_state = TSTATE_TASK_RUNNING;
@ -129,11 +129,6 @@ void nxsched_process_delivered(int cpu)
DEBUGASSERT(btcb->flink != NULL);
DEBUGASSERT(next == btcb->flink);
next->task_state = TSTATE_TASK_ASSIGNED;
if (btcb->lockcount > 0)
{
g_cpu_lockset |= (1 << cpu);
}
}
else
{

View file

@ -262,23 +262,6 @@ void nxsched_remove_running(FAR struct tcb_s *tcb)
nxttcb = rtrtcb;
}
/* Will pre-emption be disabled after the switch? If the lockcount is
* greater than zero, then this task/this CPU holds the scheduler lock.
*/
if (nxttcb->lockcount > 0)
{
/* Yes... make sure that scheduling logic knows about this */
g_cpu_lockset |= (1 << cpu);
}
else
{
/* No.. we may need to perform release our hold on the lock. */
g_cpu_lockset &= ~(1 << cpu);
}
/* NOTE: If the task runs on another CPU(cpu), adjusting global IRQ
* controls will be done in the pause handler on the new CPU(cpu).
* If the task is scheduled on this CPU(me), do nothing because

View file

@ -70,7 +70,7 @@ static FAR struct tcb_s *nxsched_nexttcb(FAR struct tcb_s *tcb)
* then use the 'nxttcb' which will probably be the IDLE thread.
*/
if (!nxsched_islocked_global())
if (!nxsched_islocked_tcb(this_task()))
{
/* Search for the highest priority task that can run on tcb->cpu. */

View file

@ -77,12 +77,11 @@ int sched_unlock(void)
irqstate_t flags = enter_critical_section();
int cpu = this_cpu();
DEBUGASSERT(rtcb->lockcount > 0);
/* Decrement the preemption lock counter */
if (rtcb->lockcount > 0)
{
rtcb->lockcount--;
}
rtcb->lockcount--;
/* Check if the lock counter has decremented to zero. If so,
* then pre-emption has been re-enabled.
@ -103,14 +102,6 @@ int sched_unlock(void)
rtcb->lockcount = 0;
/* The lockcount has decremented to zero and we need to perform
* release our hold on the lock.
*/
DEBUGASSERT((g_cpu_lockset & (1 << cpu)) != 0);
g_cpu_lockset &= ~(1 << cpu);
/* Release any ready-to-run tasks that have collected in
* g_pendingtasks.
*
@ -137,7 +128,7 @@ int sched_unlock(void)
* BEFORE it clears IRQ lock.
*/
if (!nxsched_islocked_global() &&
if (!nxsched_islocked_tcb(rtcb) &&
list_pendingtasks()->head != NULL)
{
if (nxsched_merge_pending())
@ -211,6 +202,7 @@ int sched_unlock(void)
#endif
}
UNUSED(cpu);
leave_critical_section(flags);
}
@ -234,12 +226,11 @@ int sched_unlock(void)
irqstate_t flags = enter_critical_section();
DEBUGASSERT(rtcb->lockcount > 0);
/* Decrement the preemption lock counter */
if (rtcb->lockcount > 0)
{
rtcb->lockcount--;
}
rtcb->lockcount--;
/* Check if the lock counter has decremented to zero. If so,
* then pre-emption has been re-enabled.

View file

@ -133,12 +133,6 @@ int nxtask_exit(void)
rtcb->lockcount++;
#ifdef CONFIG_SMP
/* Make sure that the system knows about the locked state */
g_cpu_lockset |= (1 << cpu);
#endif
rtcb->task_state = TSTATE_TASK_READYTORUN;
/* Move the TCB to the specified blocked task list and delete it. Calling
@ -173,14 +167,5 @@ int nxtask_exit(void)
rtcb->lockcount--;
#ifdef CONFIG_SMP
if (rtcb->lockcount == 0)
{
/* Make sure that the system knows about the unlocked state */
g_cpu_lockset &= ~(1 << cpu);
}
#endif
return ret;
}