/**************************************************************************** * drivers/mtd/w25qxxxjv.c * * SPDX-License-Identifier: Apache-2.0 * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ /* QuadSPI Mode. Per data sheet, either Mode 0 or Mode 3 may be used. */ #ifndef CONFIG_W25QXXXJV_QSPIMODE # define CONFIG_W25QXXXJV_QSPIMODE QSPIDEV_MODE0 #endif /* QuadSPI Frequency per data sheet: * * In this implementation, only "Quad" reads are performed. */ #ifndef CONFIG_W25QXXXJV_QSPI_FREQUENCY /* If you haven't specified frequency, default to 100 MHz which will work * with all commands. up to 133MHz. */ # define CONFIG_W25QXXXJV_QSPI_FREQUENCY 100000000 #endif #ifndef CONFIG_W25QXXXJV_DUMMIES /* If you haven't specified the number of dummy cycles for quad reads, * provide a reasonable default. The actual number of dummies needed is * clock and IO command dependent.(four to six times according to data sheet) */ # define CONFIG_W25QXXXJV_DUMMIES 6 #endif /* W25QXXXJV Commands *******************************************************/ /* Configuration, Status, Erase, Program Commands *************************** * Command Value Description: * * Data sequence * */ /* Read status registers-1/2/3: */ #define W25QXXXJV_READ_STATUS_1 0x05 /* SRP|SEC|TB |BP2|BP1|BP0|WEL|BUSY */ #define W25QXXXJV_READ_STATUS_2 0x35 /* SUS|CMP|LB3|LB2|LB1|(R)|QE |SRL */ #define W25QXXXJV_READ_STATUS_3 0x15 /* HOLD/RST|DRV1|DRV0|(R)|(R)|WPS|(R)|(R) */ /* Write status registers-1/2/3: */ #define W25QXXXJV_WRITE_STATUS_1 0x01 /* SRP|SEC|TB |BP2|BP1|BP0|WEL|BUSY */ #define W25QXXXJV_WRITE_STATUS_2 0x31 /* SUS|CMP|LB3|LB2|LB1|(R)|QE |SRL */ #define W25QXXXJV_WRITE_STATUS_3 0x11 /* HOLD/RST|DRV1|DRV0|(R)|(R)|WPS|(R)|(R) */ #define W25QXXXJV_WRITE_ENABLE 0x06 /* Write enable */ #define W25QXXXJV_WRITE_DISABLE 0x04 /* Write disable */ #define W25QXXXJV_PAGE_PROGRAM 0x02 /* Page Program: * * 0x02 | A23-A16 | A15-A8 | A7-A0 | data */ #define W25QXXXJV_SECTOR_ERASE 0x20 /* Sector Erase (4 kB) * * 0x20 | A23-A16 | A15-A8 | A7-A0 */ #define W25QXXXJV_BLOCK_ERASE_32K 0x52 /* Block Erase (32 KB) * * 0x52 | A23-A16 | A15-A8 | A7-A0 */ #define W25QXXXJV_BLOCK_ERASE_64K 0xd8 /* Block Erase (64 KB) * * 0xd8 | A23-A16 | A15-A8 | A7-A0 */ #define W25QXXXJV_CHIP_ERASE 0x60 /* Chip Erase: * * 0xc7 or 0x60 */ #define W25QXXXJV_ENTER_4BT_MODE 0xB7 /* Enter 4-byte address mode */ #define W25QXXXJV_EXIT_4BT_MODE 0xE9 /* Exit 4-byte address mode */ /* Read Commands ************************************************************ * Command Value Description: * * Data sequence * */ #define W25QXXXJV_FAST_READ_QUADIO 0xeb /* Fast Read Quad I/O: * * 0xeb | ADDR | data... */ #define W25QXXXJV_FAST_READ_QUADIO_4BT 0xec /* Fast Read Quad I/O 4 bytes * * 0xec | ADDR | data... */ /* Reset Commands *********************************************************** * Command Value Description: * * Data sequence * */ #define W25QXXXJV_RESET_ENABLE 0x66 /* Enable Reset */ #define W25QXXXJV_DEVICE_RESET 0x99 /* Reset Device */ /* ID/Security Commands ***************************************************** * Command Value Description: * * Data sequence * */ #define W25QXXXJV_JEDEC_ID 0x9f /* JEDEC ID: * * 0x9f | Manufacturer | * * MemoryType | Capacity */ /* Multiple Die Commands *************************************************** * Command Value Description: * * Data sequence * */ #define W25QXXXJV_SW_DIE_SELECT 0xc2 /* SW_DIE_SELECT ID: * * 0xc2 | Die index */ #define W25QXXXJV_DIE0 0x0 /* First die index */ #define W25QXXXJV_DIE1 0x1 /* Second die index */ /* Flash Manufacturer JEDEC IDs */ #define W25QXXXJV_JEDEC_ID_WINBOND 0xef /* Winbond Serial Flash */ /* W25QXXXJV JEDIC IDs */ #define W25QXXXJVQ_JEDEC_DEVICE_TYPE 0x40 /* with QE = 1 (fixed) in Status register-2. * Backward compatible to FV family. */ #define W25QXXXJVM_JEDEC_DEVICE_TYPE 0x70 /* with QE = 0 (programmable) in Status register-2. * New device ID is used to identify JV family */ #define W25Q016_JEDEC_CAPACITY 0x15 /* W25Q016 (2 MB) memory capacity */ #define W25Q032_JEDEC_CAPACITY 0x16 /* W25Q032 (4 MB) memory capacity */ #define W25Q064_JEDEC_CAPACITY 0x17 /* W25Q064 (8 MB) memory capacity */ #define W25Q128_JEDEC_CAPACITY 0x18 /* W25Q128 (16 MB) memory capacity */ #define W25Q256_JEDEC_CAPACITY 0x19 /* W25Q256 (32 MB) memory capacity */ #define W25Q512_JEDEC_CAPACITY 0x20 /* W25Q512 (64 MB) memory capacity */ #define W25Q01_JEDEC_CAPACITY 0x21 /* W25Q01 (128 MB) memory capacity */ /* W25QXXXJV Registers ******************************************************/ /* Status register 1 bit definitions */ #define STATUS_BUSY_MASK (1 << 0) /* Bit 0: Device ready/busy status */ #define STATUS_READY (0 << 0) /* 0 = Not Busy */ #define STATUS_BUSY (1 << 0) /* 1 = Busy */ #define STATUS_WEL_MASK (1 << 1) /* Bit 1: Write enable latch status */ #define STATUS_WEL_DISABLED (0 << 1) /* 0 = Not Write Enabled */ #define STATUS_WEL_ENABLED (1 << 1) /* 1 = Write Enabled */ #define STATUS_BP_SHIFT (2) /* Bits 2-4: Block protect bits */ #define STATUS_BP_MASK (7 << STATUS_BP_SHIFT) #define STATUS_BP_NONE (0 << STATUS_BP_SHIFT) #define STATUS_BP_ALL (15 << STATUS_BP_SHIFT) #define STATUS_TB_MASK (1 << 5) /* Bit 5: Top / Bottom Protect */ #define STATUS_TB_TOP (0 << 5) /* 0 = BP2-BP0 protect Top down */ #define STATUS_TB_BOTTOM (1 << 5) /* 1 = BP2-BP0 protect Bottom up */ #define STATUS_SEC_MASK (1 << 6) /* Bit 6: SEC */ #define STATUS_SEC_64KB (0 << 6) /* 0 = Protect 64KB Blocks */ #define STATUS_SEC_4KB (1 << 6) /* 1 = Protect 4KB Sectors */ #define STATUS_SRP_MASK (1 << 7) /* Bit 7: Status register protect 0 */ #define STATUS_SRP_UNLOCKED (0 << 7) /* see blow for details */ #define STATUS_SRP_LOCKED (1 << 7) /* see blow for details */ /* Status register 2 bit definitions */ #define STATUS2_QE_MASK (1 << 1) /* Bit 1: Quad Enable (QE) */ #define STATUS2_QE_DISABLED (0 << 1) /* 0 = Standard/Dual SPI modes */ #define STATUS2_QE_ENABLED (1 << 1) /* 1 = Standard/Dual/Quad modes */ /* Some chips have four protect bits */ /* Bits 2-5: Block protect bits */ #define STATUS_BP_4_MASK (15 << STATUS_BP_SHIFT) /* Some chips have top/bottom bit at sixth bit */ #define STATUS_TB_6_MASK (1 << 6) /* Bit 6: Top / Bottom Protect */ /* Status Register Protect (SRP, SRL) * SRL SRP /WP Status Register Description * 0 0 X Software Protection [Factory Default] /WP pin has no * control. * The Status register can be written * to after a Write Enable instruction, * WEL=1. * 0 1 0 Hardware Protected When /WP pin is low the Status * Register locked and cannot be * written to. * 0 1 1 Hardware Unprotected When /WP pin is high the Status * register is unlocked and can be * written to after a Write Enable * instruction, WEL=1. * 1 X X Power Supply Lock-Down Status Register is protected and * cannot be written to again until * the next power-down, power-up cycle. * (When SRL =1 , a power-down, power- * up cycle will change SRL =0 state.) * 1 X X One Time Program Status Register is permanently * protected and cannot be written to. * (enabled by adding prefix command * aah, 55h) */ /* Chip Geometries **********************************************************/ /* All members of the family support uniform 4K-byte 'sub sectors'; they also * support 64k (and sometimes 32k) 'sectors' proper, but we won't be using * those here. */ /* W25Q016 (2 MB) memory capacity */ #define W25Q016_SECTOR_SIZE (4 * 1024) #define W25Q016_SECTOR_ERASE_TIME (120) #define W25Q016_SECTOR_SHIFT (12) #define W25Q016_SECTOR_COUNT (512) #define W25Q016_PAGE_SIZE (256) #define W25Q016_PAGE_SHIFT (8) /* W25Q032 (4 MB) memory capacity */ #define W25Q032_SECTOR_SIZE (4 * 1024) #define W25Q032_SECTOR_ERASE_TIME (120) #define W25Q032_SECTOR_SHIFT (12) #define W25Q032_SECTOR_COUNT (1024) #define W25Q032_PAGE_SIZE (256) #define W25Q032_PAGE_SHIFT (8) /* W25Q064 (8 MB) memory capacity */ #define W25Q064_SECTOR_SIZE (4 * 1024) #define W25Q064_SECTOR_ERASE_TIME (60) #define W25Q064_SECTOR_SHIFT (12) #define W25Q064_SECTOR_COUNT (2048) #define W25Q064_PAGE_SIZE (256) #define W25Q064_PAGE_SHIFT (8) /* W25Q128 (16 MB) memory capacity */ #define W25Q128_SECTOR_SIZE (4 * 1024) #define W25Q128_SECTOR_ERASE_TIME (45) #define W25Q128_SECTOR_SHIFT (12) #define W25Q128_SECTOR_COUNT (4096) #define W25Q128_PAGE_SIZE (256) #define W25Q128_PAGE_SHIFT (8) /* W25Q256 (32 MB) memory capacity */ #define W25Q256_SECTOR_SIZE (4 * 1024) #define W25Q256_SECTOR_ERASE_TIME (50) #define W25Q256_SECTOR_SHIFT (12) #define W25Q256_SECTOR_COUNT (8192) #define W25Q256_PAGE_SIZE (256) #define W25Q256_PAGE_SHIFT (8) /* W25Q512 (64 MB) memory capacity */ #define W25Q512_SECTOR_SIZE (4 * 1024) #define W25Q512_SECTOR_ERASE_TIME (60) #define W25Q512_SECTOR_SHIFT (12) #define W25Q512_SECTOR_COUNT (16384) #define W25Q512_PAGE_SIZE (256) #define W25Q512_PAGE_SHIFT (8) /* W25Q01 (128 MB) memory capacity */ #define W25Q01_SECTOR_SIZE (4 * 1024) #define W25Q01_SECTOR_ERASE_TIME (50) #define W25Q01_SECTOR_SHIFT (12) #define W25Q01_SECTOR_COUNT (32768) #define W25Q01_PAGE_SIZE (256) #define W25Q01_PAGE_SHIFT (8) #define W25Q01_DIE_SIZE ((W25Q01_SECTOR_SIZE * W25Q01_SECTOR_COUNT) / 2) /* Cache flags **************************************************************/ #define W25QXXXJV_CACHE_VALID (1 << 0) /* 1=Cache has valid data */ #define W25QXXXJV_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */ #define W25QXXXJV_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */ #define IS_VALID(p) ((((p)->flags) & W25QXXXJV_CACHE_VALID) != 0) #define IS_DIRTY(p) ((((p)->flags) & W25QXXXJV_CACHE_DIRTY) != 0) #define IS_ERASED(p) ((((p)->flags) & W25QXXXJV_CACHE_ERASED) != 0) #define SET_VALID(p) do { (p)->flags |= W25QXXXJV_CACHE_VALID; } while (0) #define SET_DIRTY(p) do { (p)->flags |= W25QXXXJV_CACHE_DIRTY; } while (0) #define SET_ERASED(p) do { (p)->flags |= W25QXXXJV_CACHE_ERASED; } while (0) #define CLR_VALID(p) do { (p)->flags &= ~W25QXXXJV_CACHE_VALID; } while (0) #define CLR_DIRTY(p) do { (p)->flags &= ~W25QXXXJV_CACHE_DIRTY; } while (0) #define CLR_ERASED(p) do { (p)->flags &= ~W25QXXXJV_CACHE_ERASED; } while (0) /* 512 byte sector support **************************************************/ #define W25QXXXJV_SECTOR512_SHIFT 9 #define W25QXXXJV_SECTOR512_SIZE (1 << 9) #define W25QXXXJV_ERASED_STATE 0xff /**************************************************************************** * Private Types ****************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct w25qxxxjv_dev_s. */ struct w25qxxxjv_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct qspi_dev_s *qspi; /* Saved QuadSPI interface instance */ uint32_t diesize; /* Size of a single die. 0 if just one die used */ uint16_t nsectors; /* Number of erase sectors */ uint8_t erasetime; /* Typical time to erase one sector */ uint8_t sectorshift; /* Log2 of sector size */ uint8_t pageshift; /* Log2 of page size */ uint8_t addresslen; /* Length of address 3 or 4 bytes */ uint8_t protectmask; /* Mask for protect bits in status register */ uint8_t tbmask; /* Mask for top/bottom bit in status register */ uint8_t numofdies; /* Number of dies in flash */ uint8_t currentdie; /* Number of current active die */ FAR uint8_t *cmdbuf; /* Allocated command buffer */ FAR uint8_t *readbuf; /* Allocated status read buffer */ #ifdef CONFIG_W25QXXXJV_SECTOR512 uint8_t flags; /* Buffered sector flags */ uint16_t esectno; /* Erase sector number in the cache */ FAR uint8_t *sector; /* Allocated sector data */ #endif }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Locking */ static void w25qxxxjv_lock(FAR struct qspi_dev_s *qspi); static inline void w25qxxxjv_unlock(FAR struct qspi_dev_s *qspi); /* Low-level message helpers */ static int w25qxxxjv_command(FAR struct qspi_dev_s *qspi, uint8_t cmd); static int w25qxxxjv_command_address(FAR struct qspi_dev_s *qspi, uint8_t cmd, off_t addr, uint8_t addrlen); static int w25qxxxjv_command_read(FAR struct qspi_dev_s *qspi, uint8_t cmd, FAR void *buffer, size_t buflen); static int w25qxxxjv_command_write(FAR struct qspi_dev_s *qspi, uint8_t cmd, FAR const void *buffer, size_t buflen); static uint8_t w25qxxxjv_read_status(FAR struct w25qxxxjv_dev_s *priv); static void w25qxxxjv_write_status(FAR struct w25qxxxjv_dev_s *priv); #if 0 static uint8_t w25qxxxjv_read_volcfg(FAR struct w25qxxxjv_dev_s *priv); static void w25qxxxjv_write_volcfg(FAR struct w25qxxxjv_dev_s *priv); #endif static void w25qxxxjv_write_enable(FAR struct w25qxxxjv_dev_s *priv); static void w25qxxxjv_write_disable(FAR struct w25qxxxjv_dev_s *priv); static void w25qxxxjv_set_die(FAR struct w25qxxxjv_dev_s *priv, uint8_t die); static void w25qxxxjv_quad_enable(FAR struct w25qxxxjv_dev_s *priv); static int w25qxxxjv_get_die_from_addr(FAR struct w25qxxxjv_dev_s *priv, off_t addr); static int w25qxxxjv_readid(FAR struct w25qxxxjv_dev_s *priv); static int w25qxxxjv_protect(FAR struct w25qxxxjv_dev_s *priv, off_t startblock, size_t nblocks); static int w25qxxxjv_unprotect(FAR struct w25qxxxjv_dev_s *priv, off_t startblock, size_t nblocks); static bool w25qxxxjv_isprotected(FAR struct w25qxxxjv_dev_s *priv, uint8_t status, off_t address); static int w25qxxxjv_erase_sector(FAR struct w25qxxxjv_dev_s *priv, off_t offset); static int w25qxxxjv_erase_chip(FAR struct w25qxxxjv_dev_s *priv); static int w25qxxxjv_read_byte(FAR struct w25qxxxjv_dev_s *priv, FAR uint8_t *buffer, off_t address, size_t nbytes); static int w25qxxxjv_write_page(FAR struct w25qxxxjv_dev_s *priv, FAR const uint8_t *buffer, off_t address, size_t nbytes); #ifdef CONFIG_W25QXXXJV_SECTOR512 static int w25qxxxjv_flush_cache(FAR struct w25qxxxjv_dev_s *priv); static FAR uint8_t *w25qxxxjv_read_cache(FAR struct w25qxxxjv_dev_s *priv, off_t sector); static void w25qxxxjv_erase_cache(FAR struct w25qxxxjv_dev_s *priv, off_t sector); static int w25qxxxjv_write_cache(FAR struct w25qxxxjv_dev_s *priv, FAR const uint8_t *buffer, off_t sector, size_t nsectors); #endif /* MTD driver methods */ static int w25qxxxjv_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static ssize_t w25qxxxjv_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buf); static ssize_t w25qxxxjv_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t w25qxxxjv_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); static int w25qxxxjv_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: w25qxxxjv_lock ****************************************************************************/ static void w25qxxxjv_lock(FAR struct qspi_dev_s *qspi) { /* On QuadSPI buses where there are multiple devices, it will be necessary * to lock QuadSPI to have exclusive access to the buses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusive * access to the QuadSPI bus. We will retain that exclusive access until * the bus is unlocked. */ (void)QSPI_LOCK(qspi, true); /* After locking the QuadSPI bus, the we also need call the setfrequency, * setbits, and setmode methods to make sure that the QuadSPI is properly * configured for the device. If the QuadSPI bus is being shared, then it * may have been left in an incompatible state. */ QSPI_SETMODE(qspi, CONFIG_W25QXXXJV_QSPIMODE); QSPI_SETBITS(qspi, 8); (void)QSPI_SETFREQUENCY(qspi, CONFIG_W25QXXXJV_QSPI_FREQUENCY); } /**************************************************************************** * Name: w25qxxxjv_unlock ****************************************************************************/ static inline void w25qxxxjv_unlock(FAR struct qspi_dev_s *qspi) { (void)QSPI_LOCK(qspi, false); } /**************************************************************************** * Name: w25qxxxjv_command ****************************************************************************/ static int w25qxxxjv_command(FAR struct qspi_dev_s *qspi, uint8_t cmd) { struct qspi_cmdinfo_s cmdinfo; finfo("CMD: %02x\n", cmd); cmdinfo.flags = 0; cmdinfo.addrlen = 0; cmdinfo.cmd = cmd; cmdinfo.buflen = 0; cmdinfo.addr = 0; cmdinfo.buffer = NULL; return QSPI_COMMAND(qspi, &cmdinfo); } /**************************************************************************** * Name: w25qxxxjv_command_address ****************************************************************************/ static int w25qxxxjv_command_address(FAR struct qspi_dev_s *qspi, uint8_t cmd, off_t addr, uint8_t addrlen) { struct qspi_cmdinfo_s cmdinfo; finfo("CMD: %02x Address: %04" PRIxOFF " addrlen=%d\n", cmd, addr, addrlen); cmdinfo.flags = QSPICMD_ADDRESS; cmdinfo.addrlen = addrlen; cmdinfo.cmd = cmd; cmdinfo.buflen = 0; cmdinfo.addr = addr; cmdinfo.buffer = NULL; return QSPI_COMMAND(qspi, &cmdinfo); } /**************************************************************************** * Name: w25qxxxjv_command_read ****************************************************************************/ static int w25qxxxjv_command_read(FAR struct qspi_dev_s *qspi, uint8_t cmd, FAR void *buffer, size_t buflen) { struct qspi_cmdinfo_s cmdinfo; finfo("CMD: %02x buflen: %lu\n", cmd, (unsigned long)buflen); cmdinfo.flags = QSPICMD_READDATA; cmdinfo.addrlen = 0; cmdinfo.cmd = cmd; cmdinfo.buflen = buflen; cmdinfo.addr = 0; cmdinfo.buffer = buffer; return QSPI_COMMAND(qspi, &cmdinfo); } /**************************************************************************** * Name: w25qxxxjv_command_write ****************************************************************************/ static int w25qxxxjv_command_write(FAR struct qspi_dev_s *qspi, uint8_t cmd, FAR const void *buffer, size_t buflen) { struct qspi_cmdinfo_s cmdinfo; finfo("CMD: %02x buflen: %lu\n", cmd, (unsigned long)buflen); cmdinfo.flags = QSPICMD_WRITEDATA; cmdinfo.addrlen = 0; cmdinfo.cmd = cmd; cmdinfo.buflen = buflen; cmdinfo.addr = 0; cmdinfo.buffer = (FAR void *)buffer; return QSPI_COMMAND(qspi, &cmdinfo); } /**************************************************************************** * Name: w25qxxxjv_read_status ****************************************************************************/ static uint8_t w25qxxxjv_read_status(FAR struct w25qxxxjv_dev_s *priv) { DEBUGVERIFY(w25qxxxjv_command_read(priv->qspi, W25QXXXJV_READ_STATUS_1, (FAR void *)&priv->readbuf[0], 1)); return priv->readbuf[0]; } /**************************************************************************** * Name: w25qxxxjv_write_status ****************************************************************************/ static void w25qxxxjv_write_status(FAR struct w25qxxxjv_dev_s *priv) { w25qxxxjv_write_enable(priv); /* Keep in Software Protection */ priv->cmdbuf[0] &= ~STATUS_SRP_MASK; w25qxxxjv_command_write(priv->qspi, W25QXXXJV_WRITE_STATUS_1, (FAR const void *)priv->cmdbuf, 1); w25qxxxjv_write_disable(priv); } /**************************************************************************** * Name: w25qxxxjv_write_enable ****************************************************************************/ static void w25qxxxjv_write_enable(FAR struct w25qxxxjv_dev_s *priv) { uint8_t status; do { w25qxxxjv_command(priv->qspi, W25QXXXJV_WRITE_ENABLE); status = w25qxxxjv_read_status(priv); } while ((status & STATUS_WEL_MASK) != STATUS_WEL_ENABLED); } /**************************************************************************** * Name: w25qxxxjv_write_disable ****************************************************************************/ static void w25qxxxjv_write_disable(FAR struct w25qxxxjv_dev_s *priv) { uint8_t status; do { w25qxxxjv_command(priv->qspi, W25QXXXJV_WRITE_DISABLE); status = w25qxxxjv_read_status(priv); } while ((status & STATUS_WEL_MASK) != STATUS_WEL_DISABLED); } /**************************************************************************** * Name: w25qxxxjv_set_die ****************************************************************************/ static void w25qxxxjv_set_die(FAR struct w25qxxxjv_dev_s *priv, uint8_t die) { w25qxxxjv_write_enable(priv); w25qxxxjv_command_write(priv->qspi, W25QXXXJV_SW_DIE_SELECT, (FAR const void *)&die, 1); w25qxxxjv_write_disable(priv); priv->currentdie = die; } /**************************************************************************** * Name: w25qxxxjv_quad_enable ****************************************************************************/ static void w25qxxxjv_quad_enable(FAR struct w25qxxxjv_dev_s *priv) { w25qxxxjv_command_read(priv->qspi, W25QXXXJV_READ_STATUS_2, (FAR void *)priv->cmdbuf, 1); if ((priv->cmdbuf[0] & STATUS2_QE_MASK) != STATUS2_QE_ENABLED) { w25qxxxjv_write_enable(priv); priv->cmdbuf[0] &= ~STATUS2_QE_MASK; priv->cmdbuf[0] |= STATUS2_QE_ENABLED; w25qxxxjv_command_write(priv->qspi, W25QXXXJV_WRITE_STATUS_2, (FAR const void *)priv->cmdbuf, 1); w25qxxxjv_write_disable(priv); } } /**************************************************************************** * Name: w25qxxxjv_get_die_from_addr ****************************************************************************/ static int w25qxxxjv_get_die_from_addr(FAR struct w25qxxxjv_dev_s *priv, off_t addr) { uint8_t die = addr >= priv->diesize ? W25QXXXJV_DIE1 : W25QXXXJV_DIE0; w25qxxxjv_set_die(priv, die); return die; } /**************************************************************************** * Name: w25qxxxjv_readid ****************************************************************************/ static inline int w25qxxxjv_readid(FAR struct w25qxxxjv_dev_s *priv) { /* Lock the QuadSPI bus and configure the bus. */ w25qxxxjv_lock(priv->qspi); /* Read the JEDEC ID */ w25qxxxjv_command_read(priv->qspi, W25QXXXJV_JEDEC_ID, priv->cmdbuf, 3); /* Unlock the bus */ w25qxxxjv_unlock(priv->qspi); finfo("Manufacturer: %02x Device Type %02x, Capacity: %02x\n", priv->cmdbuf[0], priv->cmdbuf[1], priv->cmdbuf[2]); /* Check for a recognized memory device type */ if (priv->cmdbuf[1] != W25QXXXJVQ_JEDEC_DEVICE_TYPE && priv->cmdbuf[1] != W25QXXXJVM_JEDEC_DEVICE_TYPE) { ferr("ERROR: Unrecognized device type: 0x%02x\n", priv->cmdbuf[1]); return -ENODEV; } /* Check for a supported capacity */ priv->numofdies = 0; priv->currentdie = 0; priv->diesize = 0; switch (priv->cmdbuf[2]) { case W25Q016_JEDEC_CAPACITY: priv->erasetime = W25Q016_SECTOR_ERASE_TIME; priv->sectorshift = W25Q016_SECTOR_SHIFT; priv->pageshift = W25Q016_PAGE_SHIFT; priv->nsectors = W25Q016_SECTOR_COUNT; priv->addresslen = 3; priv->protectmask = STATUS_BP_MASK; priv->tbmask = STATUS_TB_MASK; break; case W25Q032_JEDEC_CAPACITY: priv->erasetime = W25Q032_SECTOR_ERASE_TIME; priv->sectorshift = W25Q032_SECTOR_SHIFT; priv->pageshift = W25Q032_PAGE_SHIFT; priv->nsectors = W25Q032_SECTOR_COUNT; priv->addresslen = 3; priv->protectmask = STATUS_BP_MASK; priv->tbmask = STATUS_TB_MASK; break; case W25Q064_JEDEC_CAPACITY: priv->erasetime = W25Q064_SECTOR_ERASE_TIME; priv->sectorshift = W25Q064_SECTOR_SHIFT; priv->pageshift = W25Q064_PAGE_SHIFT; priv->nsectors = W25Q064_SECTOR_COUNT; priv->addresslen = 3; priv->protectmask = STATUS_BP_4_MASK; priv->tbmask = STATUS_TB_6_MASK; break; case W25Q128_JEDEC_CAPACITY: priv->erasetime = W25Q128_SECTOR_ERASE_TIME; priv->sectorshift = W25Q128_SECTOR_SHIFT; priv->pageshift = W25Q128_PAGE_SHIFT; priv->nsectors = W25Q128_SECTOR_COUNT; priv->addresslen = 3; priv->protectmask = STATUS_BP_MASK; priv->tbmask = STATUS_TB_MASK; break; case W25Q256_JEDEC_CAPACITY: priv->erasetime = W25Q256_SECTOR_ERASE_TIME; priv->sectorshift = W25Q256_SECTOR_SHIFT; priv->pageshift = W25Q256_PAGE_SHIFT; priv->nsectors = W25Q256_SECTOR_COUNT; priv->addresslen = 4; priv->protectmask = STATUS_BP_4_MASK; priv->tbmask = STATUS_TB_6_MASK; break; case W25Q512_JEDEC_CAPACITY: priv->erasetime = W25Q512_SECTOR_ERASE_TIME; priv->sectorshift = W25Q512_SECTOR_SHIFT; priv->pageshift = W25Q512_PAGE_SHIFT; priv->nsectors = W25Q512_SECTOR_COUNT; priv->addresslen = 4; priv->protectmask = STATUS_BP_4_MASK; priv->tbmask = STATUS_TB_6_MASK; break; case W25Q01_JEDEC_CAPACITY: priv->erasetime = W25Q01_SECTOR_ERASE_TIME; priv->diesize = W25Q01_DIE_SIZE; priv->sectorshift = W25Q01_SECTOR_SHIFT; priv->pageshift = W25Q01_PAGE_SHIFT; priv->nsectors = W25Q01_SECTOR_COUNT; priv->addresslen = 4; priv->protectmask = STATUS_BP_4_MASK; priv->tbmask = STATUS_TB_6_MASK; priv->numofdies = 2; break; /* Support for this part is not implemented yet */ default: ferr("ERROR: Unsupported memory capacity: %02x\n", priv->cmdbuf[2]); return -ENODEV; } return OK; } /**************************************************************************** * Name: w25qxxxjv_protect ****************************************************************************/ static int w25qxxxjv_protect(FAR struct w25qxxxjv_dev_s *priv, off_t startblock, size_t nblocks) { int i; /* Get the status register value to check the current protection */ priv->cmdbuf[0] = w25qxxxjv_read_status(priv); if ((priv->cmdbuf[0] & priv->protectmask) == (STATUS_BP_ALL & priv->protectmask)) { /* Protection already enabled */ return 0; } /* set the BP bits as necessary to protect the range of sectors. */ priv->cmdbuf[0] |= (STATUS_BP_ALL & priv->protectmask); w25qxxxjv_write_status(priv); /* Check the new status */ for (i = 0; i < priv->numofdies; i++) { w25qxxxjv_set_die(priv, i); priv->cmdbuf[0] = w25qxxxjv_read_status(priv); if ((priv->cmdbuf[0] & priv->protectmask) != (STATUS_BP_ALL & priv->protectmask)) { return -EACCES; } } /* Set the original die active again if this is multi die flash */ if (priv->numofdies != 0) { w25qxxxjv_set_die(priv, priv->currentdie); } return OK; } /**************************************************************************** * Name: w25qxxxjv_unprotect ****************************************************************************/ static int w25qxxxjv_unprotect(FAR struct w25qxxxjv_dev_s *priv, off_t startblock, size_t nblocks) { int i; /* Get the status register value to check the current protection */ priv->cmdbuf[0] = w25qxxxjv_read_status(priv); if ((priv->cmdbuf[0] & priv->protectmask) == STATUS_BP_NONE) { /* Protection already disabled */ return 0; } /* Set the protection mask to zero (and not complemented). * REVISIT: This logic should really just re-write the BP bits as * necessary to unprotect the range of sectors. */ priv->cmdbuf[0] &= ~priv->protectmask; w25qxxxjv_write_status(priv); /* Check the new status */ for (i = 0; i < priv->numofdies; i++) { w25qxxxjv_set_die(priv, i); priv->cmdbuf[0] = w25qxxxjv_read_status(priv); if ((priv->cmdbuf[0] & priv->protectmask) != 0) { return -EACCES; } } /* Set the original die active again if this is multi die flash */ if (priv->numofdies != 0) { w25qxxxjv_set_die(priv, priv->currentdie); } return OK; } /**************************************************************************** * Name: w25qxxxjv_isprotected ****************************************************************************/ static bool w25qxxxjv_isprotected(FAR struct w25qxxxjv_dev_s *priv, uint8_t status, off_t address) { off_t protstart; off_t protend; off_t protsize; unsigned int bp; /* The BP field is spread across non-contiguous bits */ bp = (status & priv->protectmask) >> STATUS_BP_SHIFT; /* the BP field is essentially the power-of-two of the number of 64k * sectors, saturated to the device size. */ if (0 == bp) { return false; } protsize = 0x00010000; protsize <<= (protsize << (bp - 1)); protend = (1 << priv->sectorshift) * priv->nsectors; if (protsize > protend) { protsize = protend; } /* The final protection range then depends on if the protection region is * configured top-down or bottom up (assuming CMP=0). */ if ((status & priv->tbmask) != 0) { protstart = 0x00000000; protend = protstart + protsize; } else { protstart = protend - protsize; /* protend already computed above */ } return address >= protstart && address < protend; } /**************************************************************************** * Name: w25qxxxjv_erase_sector ****************************************************************************/ static int w25qxxxjv_erase_sector(FAR struct w25qxxxjv_dev_s *priv, off_t sector) { off_t address; uint8_t status; finfo("sector: %08" PRIxOFF "\n", sector); /* Get the address associated with the sector */ address = sector << priv->sectorshift; /* Check that the flash is ready and unprotected */ if (priv->numofdies != 0) { priv->currentdie = w25qxxxjv_get_die_from_addr(priv, address); } status = w25qxxxjv_read_status(priv); if ((status & STATUS_BUSY_MASK) != STATUS_READY) { ferr("ERROR: Flash busy: %02x", status); return -EBUSY; } if ((status & priv->protectmask) != 0 && w25qxxxjv_isprotected(priv, status, address)) { ferr("ERROR: Flash protected: %02x", status); return -EACCES; } /* Send the sector erase command */ w25qxxxjv_write_enable(priv); w25qxxxjv_command_address(priv->qspi, W25QXXXJV_SECTOR_ERASE, address, priv->addresslen); /* Wait for erasure to finish */ status = w25qxxxjv_read_status(priv); while ((status & STATUS_BUSY_MASK) != 0) { nxsig_usleep(priv->erasetime * 1000); status = w25qxxxjv_read_status(priv); } return OK; } /**************************************************************************** * Name: w25qxxxjv_erase_chip ****************************************************************************/ static int w25qxxxjv_erase_chip(FAR struct w25qxxxjv_dev_s *priv) { uint8_t status; /* Check if the FLASH is protected */ status = w25qxxxjv_read_status(priv); if ((status & priv->protectmask) != 0) { ferr("ERROR: FLASH is Protected: %02x", status); return -EACCES; } /* Erase the whole chip */ w25qxxxjv_write_enable(priv); w25qxxxjv_command(priv->qspi, W25QXXXJV_CHIP_ERASE); /* Wait for the erasure to complete */ status = w25qxxxjv_read_status(priv); while ((status & STATUS_BUSY_MASK) != 0) { nxsig_usleep(200 * 1000); status = w25qxxxjv_read_status(priv); } return OK; } /**************************************************************************** * Name: w25qxxxjv_read_byte ****************************************************************************/ static int w25qxxxjv_read_byte(FAR struct w25qxxxjv_dev_s *priv, FAR uint8_t *buffer, off_t address, size_t buflen) { struct qspi_meminfo_s meminfo; finfo("address: %08" PRIxOFF " nbytes: %d\n", address, (int)buflen); meminfo.flags = QSPIMEM_READ | QSPIMEM_QUADIO; meminfo.addrlen = priv->addresslen; meminfo.dummies = CONFIG_W25QXXXJV_DUMMIES; meminfo.buflen = buflen; meminfo.cmd = (priv->addresslen == 4) ? W25QXXXJV_FAST_READ_QUADIO_4BT : W25QXXXJV_FAST_READ_QUADIO; meminfo.addr = address; meminfo.buffer = buffer; return QSPI_MEMORY(priv->qspi, &meminfo); } /**************************************************************************** * Name: w25qxxxjv_write_page ****************************************************************************/ static int w25qxxxjv_write_page(FAR struct w25qxxxjv_dev_s *priv, FAR const uint8_t *buffer, off_t address, size_t buflen) { struct qspi_meminfo_s meminfo; unsigned int pagesize; unsigned int npages; int ret; int i; finfo("address: %08" PRIxOFF " buflen: %u\n", address, (unsigned)buflen); npages = (buflen >> priv->pageshift); pagesize = (1 << priv->pageshift); /* Set up non-varying parts of transfer description */ meminfo.flags = QSPIMEM_WRITE; meminfo.cmd = W25QXXXJV_PAGE_PROGRAM; meminfo.addrlen = priv->addresslen; meminfo.buflen = pagesize; meminfo.dummies = 0; /* Then write each page */ for (i = 0; i < npages; i++) { /* Set up varying parts of the transfer description */ meminfo.addr = address; meminfo.buffer = (FAR void *)buffer; /* Write one page */ w25qxxxjv_write_enable(priv); ret = QSPI_MEMORY(priv->qspi, &meminfo); w25qxxxjv_write_disable(priv); if (ret < 0) { ferr("ERROR: QSPI_MEMORY failed writing address=%06" PRIxOFF "\n", address); return ret; } /* Update for the next time through the loop */ buffer += pagesize; address += pagesize; buflen -= pagesize; } /* The transfer should always be an even number of sectors and hence also * pages. There should be no remainder. */ DEBUGASSERT(buflen == 0); return OK; } /**************************************************************************** * Name: w25qxxxjv_flush_cache ****************************************************************************/ #ifdef CONFIG_W25QXXXJV_SECTOR512 static int w25qxxxjv_flush_cache(FAR struct w25qxxxjv_dev_s *priv) { int ret = OK; /* If the cache is dirty (meaning that it no longer matches the old FLASH * contents) or was erased (with the cache containing the correct FLASH * contents), then write the cached erase block to FLASH. */ if (IS_DIRTY(priv) || IS_ERASED(priv)) { off_t address; /* Convert the erase sector number into a FLASH address */ address = (off_t)priv->esectno << priv->sectorshift; /* Write entire erase block to FLASH */ ret = w25qxxxjv_write_page(priv, priv->sector, address, 1 << priv->sectorshift); if (ret < 0) { ferr("ERROR: w25qxxxjv_write_page failed: %d\n", ret); } /* The cache is no long dirty and the FLASH is no longer erased */ CLR_DIRTY(priv); CLR_ERASED(priv); } return ret; } #endif /**************************************************************************** * Name: w25qxxxjv_read_cache ****************************************************************************/ #ifdef CONFIG_W25QXXXJV_SECTOR512 static FAR uint8_t *w25qxxxjv_read_cache(FAR struct w25qxxxjv_dev_s *priv, off_t sector) { off_t esectno; int shift; int index; int ret; /* Convert from the 512 byte sector to the erase sector size of the device. * For example, if the actual erase sector size is 4Kb (1 << 12), then we * first shift to the right by 3 to get the sector number in 4096 * increments. */ shift = priv->sectorshift - W25QXXXJV_SECTOR512_SHIFT; esectno = sector >> shift; finfo("sector: %" PRIdOFF " esectno: %" PRIdOFF " shift=%d\n", sector, esectno, shift); /* Check if the requested erase block is already in the cache */ if (!IS_VALID(priv) || esectno != priv->esectno) { /* No.. Flush any dirty erase block currently in the cache */ ret = w25qxxxjv_flush_cache(priv); if (ret < 0) { ferr("ERROR: w25qxxxjv_flush_cache failed: %d\n", ret); return NULL; } /* Read the erase block into the cache */ ret = w25qxxxjv_read_byte(priv, priv->sector, (esectno << priv->sectorshift), (1 << priv->sectorshift)); if (ret < 0) { ferr("ERROR: w25qxxxjv_read_byte failed: %d\n", ret); return NULL; } /* Mark the sector as cached */ priv->esectno = esectno; SET_VALID(priv); /* The data in the cache is valid */ CLR_DIRTY(priv); /* It should match the FLASH contents */ CLR_ERASED(priv); /* The underlying FLASH has not been erased */ } /* Get the index to the 512 sector in the erase block that holds the * argument */ index = sector & ((1 << shift) - 1); /* Return the address in the cache that holds this sector */ return &priv->sector[index << W25QXXXJV_SECTOR512_SHIFT]; } #endif /**************************************************************************** * Name: w25qxxxjv_erase_cache ****************************************************************************/ #ifdef CONFIG_W25QXXXJV_SECTOR512 static void w25qxxxjv_erase_cache(FAR struct w25qxxxjv_dev_s *priv, off_t sector) { FAR uint8_t *dest; /* First, make sure that the erase block containing the 512 byte sector is * in the cache. */ dest = w25qxxxjv_read_cache(priv, sector); /* Erase the block containing this sector if it is not already erased. * The erased indicated will be cleared when the data from the erase * sector is read into the cache and set here when we erase the block. */ if (!IS_ERASED(priv)) { off_t esectno = sector >> (priv->sectorshift - W25QXXXJV_SECTOR512_SHIFT); finfo("sector: %" PRIdOFF " esectno: %" PRIdOFF "\n", sector, esectno); DEBUGVERIFY(w25qxxxjv_erase_sector(priv, esectno)); SET_ERASED(priv); } /* Put the cached sector data into the erase state and mark the cache as * dirty(but don't update the FLASH yet. The caller will do that at a * more optimal time). */ memset(dest, W25QXXXJV_ERASED_STATE, W25QXXXJV_SECTOR512_SIZE); SET_DIRTY(priv); } #endif /**************************************************************************** * Name: w25qxxxjv_write_cache ****************************************************************************/ #ifdef CONFIG_W25QXXXJV_SECTOR512 static int w25qxxxjv_write_cache(FAR struct w25qxxxjv_dev_s *priv, FAR const uint8_t *buffer, off_t sector, size_t nsectors) { FAR uint8_t *dest; int ret; for (; nsectors > 0; nsectors--) { /* First, make sure that the erase block containing 512 byte sector is * in memory. */ dest = w25qxxxjv_read_cache(priv, sector); /* Erase the block containing this sector if it is not already erased. * The erased indicated will be cleared when the data from the erase * sector is read into the cache and set here when we erase the sector. */ if (!IS_ERASED(priv)) { off_t esectno = sector >> (priv->sectorshift - W25QXXXJV_SECTOR512_SHIFT); finfo("sector: %" PRIdOFF " esectno: %" PRIdOFF "\n", sector, esectno); ret = w25qxxxjv_erase_sector(priv, esectno); if (ret < 0) { ferr("ERROR: w25qxxxjv_erase_sector failed: %d\n", ret); return ret; } SET_ERASED(priv); } /* Copy the new sector data into cached erase block */ memcpy(dest, buffer, W25QXXXJV_SECTOR512_SIZE); SET_DIRTY(priv); /* Set up for the next 512 byte sector */ buffer += W25QXXXJV_SECTOR512_SIZE; sector++; } /* Flush the last erase block left in the cache */ return w25qxxxjv_flush_cache(priv); } #endif /**************************************************************************** * Name: w25qxxxjv_erase ****************************************************************************/ static int w25qxxxjv_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { FAR struct w25qxxxjv_dev_s *priv = (FAR struct w25qxxxjv_dev_s *)dev; size_t blocksleft = nblocks; #ifdef CONFIG_W25QXXXJV_SECTOR512 int ret; #endif finfo("startblock: %08" PRIxOFF " nblocks: %d\n", startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ w25qxxxjv_lock(priv->qspi); while (blocksleft-- > 0) { /* Erase each sector */ #ifdef CONFIG_W25QXXXJV_SECTOR512 w25qxxxjv_erase_cache(priv, startblock); #else w25qxxxjv_erase_sector(priv, startblock); #endif startblock++; } #ifdef CONFIG_W25QXXXJV_SECTOR512 /* Flush the last erase block left in the cache */ ret = w25qxxxjv_flush_cache(priv); if (ret < 0) { nblocks = ret; } #endif w25qxxxjv_unlock(priv->qspi); return (int)nblocks; } /**************************************************************************** * Name: w25qxxxjv_bread ****************************************************************************/ static ssize_t w25qxxxjv_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { #ifndef CONFIG_W25QXXXJV_SECTOR512 FAR struct w25qxxxjv_dev_s *priv = (FAR struct w25qxxxjv_dev_s *)dev; #endif ssize_t nbytes; finfo("startblock: %08" PRIxOFF " nblocks: %d\n", startblock, (int)nblocks); /* On this device, we can handle the block read just like the byte-oriented * read */ if (priv->numofdies != 0) { priv->currentdie = w25qxxxjv_get_die_from_addr(priv, startblock << priv->pageshift); } #ifdef CONFIG_W25QXXXJV_SECTOR512 nbytes = w25qxxxjv_read(dev, startblock << W25QXXXJV_SECTOR512_SHIFT, nblocks << W25QXXXJV_SECTOR512_SHIFT, buffer); if (nbytes > 0) { nbytes >>= W25QXXXJV_SECTOR512_SHIFT; } #else nbytes = w25qxxxjv_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { nbytes >>= priv->pageshift; } #endif return nbytes; } /**************************************************************************** * Name: w25qxxxjv_bwrite ****************************************************************************/ static ssize_t w25qxxxjv_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct w25qxxxjv_dev_s *priv = (FAR struct w25qxxxjv_dev_s *)dev; int ret = (int)nblocks; finfo("startblock: %08" PRIxOFF " nblocks: %d\n", startblock, (int)nblocks); if (priv->numofdies != 0) { priv->currentdie = w25qxxxjv_get_die_from_addr(priv, startblock << priv->pageshift); } /* Lock the QuadSPI bus and write all of the pages to FLASH */ w25qxxxjv_lock(priv->qspi); #if defined(CONFIG_W25QXXXJV_SECTOR512) ret = w25qxxxjv_write_cache(priv, buffer, startblock, nblocks); if (ret < 0) { ferr("ERROR: w25qxxxjv_write_cache failed: %d\n", ret); } #else ret = w25qxxxjv_write_page(priv, buffer, startblock << priv->pageshift, nblocks << priv->pageshift); if (ret < 0) { ferr("ERROR: w25qxxxjv_write_page failed: %d\n", ret); } #endif w25qxxxjv_unlock(priv->qspi); return ret < 0 ? ret : nblocks; } /**************************************************************************** * Name: w25qxxxjv_read ****************************************************************************/ static ssize_t w25qxxxjv_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct w25qxxxjv_dev_s *priv = (FAR struct w25qxxxjv_dev_s *)dev; int ret; finfo("offset: %08" PRIxOFF " nbytes: %d\n", offset, (int)nbytes); /* Lock the QuadSPI bus and select this FLASH part */ w25qxxxjv_lock(priv->qspi); ret = w25qxxxjv_read_byte(priv, buffer, offset, nbytes); w25qxxxjv_unlock(priv->qspi); if (ret < 0) { ferr("ERROR: w25qxxxjv_read_byte returned: %d\n", ret); return (ssize_t)ret; } finfo("return nbytes: %d\n", (int)nbytes); return (ssize_t)nbytes; } /**************************************************************************** * Name: w25qxxxjv_ioctl ****************************************************************************/ static int w25qxxxjv_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct w25qxxxjv_dev_s *priv = (FAR struct w25qxxxjv_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ finfo("cmd: %d\n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo) { memset(geo, 0, sizeof(*geo)); /* Populate the geometry structure with information need to * know the capacity and how to access the device. * * NOTE: * that the device is treated as though it where just an array * of fixed size blocks. That is most likely not true, but the * client will expect the device logic to do whatever is * necessary to make it appear so. */ #ifdef CONFIG_W25QXXXJV_SECTOR512 geo->blocksize = (1 << W25QXXXJV_SECTOR512_SHIFT); geo->erasesize = (1 << W25QXXXJV_SECTOR512_SHIFT); geo->neraseblocks = priv->nsectors << (priv->sectorshift - W25QXXXJV_SECTOR512_SHIFT); #else geo->blocksize = (1 << priv->pageshift); geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; #endif ret = OK; finfo("blocksize: %" PRIu32 " erasesize: %" PRIu32 " neraseblocks: %" PRIu32 "\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case BIOC_PARTINFO: { FAR struct partition_info_s *info = (FAR struct partition_info_s *)arg; if (info != NULL) { #ifdef CONFIG_W25QXXXJV_SECTOR512 info->numsectors = priv->nsectors << (priv->sectorshift - W25QXXXJV_SECTOR512_SHIFT); info->sectorsize = 1 << W25QXXXJV_SECTOR512_SHIFT; #else info->numsectors = priv->nsectors << (priv->sectorshift - priv->pageshift); info->sectorsize = 1 << priv->pageshift; #endif info->startsector = 0; info->parent[0] = '\0'; ret = OK; } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ w25qxxxjv_lock(priv->qspi); ret = w25qxxxjv_erase_chip(priv); w25qxxxjv_unlock(priv->qspi); } break; case MTDIOC_PROTECT: { FAR const struct mtd_protect_s *prot = (FAR const struct mtd_protect_s *)((uintptr_t)arg); DEBUGASSERT(prot); ret = w25qxxxjv_protect(priv, prot->startblock, prot->nblocks); } break; case MTDIOC_UNPROTECT: { FAR const struct mtd_protect_s *prot = (FAR const struct mtd_protect_s *)((uintptr_t)arg); DEBUGASSERT(prot); ret = w25qxxxjv_unprotect(priv, prot->startblock, prot->nblocks); } break; case MTDIOC_ERASESTATE: { FAR uint8_t *result = (FAR uint8_t *)arg; *result = W25QXXXJV_ERASED_STATE; ret = OK; } break; default: ret = -ENOTTY; /* Bad/unsupported command */ break; } finfo("return %d\n", ret); return ret; } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: w25qxxxjv_initialize * * Description: * Create an initialize MTD device instance for the QuadSPI-based W25QxxxJV * FLASH part. * * MTD devices are not registered in the file system, but are created as * instances that can be bound to other functions (such as a block or * character driver front end). * ****************************************************************************/ FAR struct mtd_dev_s *w25qxxxjv_initialize(FAR struct qspi_dev_s *qspi, bool unprotect) { FAR struct w25qxxxjv_dev_s *priv; int ret; finfo("qspi: %p\n", qspi); DEBUGASSERT(qspi != NULL); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per QuadSPI * device (only because of the QSPIDEV_FLASH(0) definition) and so would * have to be extended to handle multiple FLASH parts on the same QuadSPI * bus. */ priv = (FAR struct w25qxxxjv_dev_s *) kmm_zalloc(sizeof(struct w25qxxxjv_dev_s)); if (priv) { /* Initialize the allocated structure (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = w25qxxxjv_erase; priv->mtd.bread = w25qxxxjv_bread; priv->mtd.bwrite = w25qxxxjv_bwrite; priv->mtd.read = w25qxxxjv_read; priv->mtd.ioctl = w25qxxxjv_ioctl; priv->mtd.name = "w25qxxxjv"; priv->qspi = qspi; /* Allocate a 4-byte buffer to support DMA-able command data */ priv->cmdbuf = (FAR uint8_t *)QSPI_ALLOC(qspi, 4); if (priv->cmdbuf == NULL) { ferr("ERROR Failed to allocate command buffer\n"); goto errout_with_priv; } /* Allocate a one-byte buffer to support DMA-able status read data */ priv->readbuf = (FAR uint8_t *)QSPI_ALLOC(qspi, 1); if (priv->readbuf == NULL) { ferr("ERROR Failed to allocate read buffer\n"); goto errout_with_cmdbuf; } /* Identify the FLASH chip and get its capacity */ ret = w25qxxxjv_readid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and * return NULL */ ferr("ERROR Unrecognized QSPI device\n"); goto errout_with_readbuf; } /* Enter 4-byte address mode if chip is 4-byte addressable */ if (priv->addresslen == 4) { w25qxxxjv_lock(priv->qspi); ret = w25qxxxjv_command(priv->qspi, W25QXXXJV_ENTER_4BT_MODE); if (ret != OK) { ferr("ERROR: Failed to enter 4 byte mode\n"); } w25qxxxjv_unlock(priv->qspi); } /* Unprotect FLASH sectors if so requested. */ if (unprotect) { ret = w25qxxxjv_unprotect(priv, 0, priv->nsectors - 1); if (ret < 0) { ferr("ERROR: Sector unprotect failed\n"); } } /* Enable Quad SPI mode, if not already enabled. */ w25qxxxjv_quad_enable(priv); #ifdef CONFIG_W25QXXXJV_SECTOR512 /* Simulate a 512 byte sector */ /* Allocate a buffer for the erase block cache */ priv->sector = (FAR uint8_t *)QSPI_ALLOC(qspi, 1 << priv->sectorshift); if (priv->sector == NULL) { /* Allocation failed! Discard all of that work we just did and * return NULL */ ferr("ERROR: Sector allocation failed\n"); goto errout_with_readbuf; } #endif } /* Return the implementation-specific state structure as the MTD device */ finfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; errout_with_readbuf: QSPI_FREE(qspi, priv->readbuf); errout_with_cmdbuf: QSPI_FREE(qspi, priv->cmdbuf); errout_with_priv: kmm_free(priv); return NULL; }