
 2.00a
June 2015

DesignWare DW_apb_i2c Databook

DW_apb_i2c – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook

Copyright Notice and Proprietary Information Notice
© 2015 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in
accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or
translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of
Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.

All other product or company names may be trademarks of their respective owners.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://solvnet.synopsys.com
http://www.synopsys.com/Company/Pages/Trademarks.aspx
www.synopsys.com
www.designware.com

Synopsys, Inc. 3SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Contents

Contents

Preface . 9

Revision History .13

Chapter 1
Product Overview .17

1.1 DesignWare System Overview .17
1.2 General Product Description .19

1.2.1 DW_apb_i2c Block Diagram .19
1.3 Features .20

1.3.1 I2C Features .20
1.3.2 DesignWare APB Slave Interface .21

1.4 Standards Compliance .21
1.5 Verification Environment Overview .21
1.6 Licenses .21

Chapter 2
Building and Verifying a Component or Subsystem .23

2.1 Setting up Your Environment .23
2.2 Overview of the coreConsultant Configuration and Integration Process .24

2.2.1 coreConsultant Usage .24
2.2.2 Configuring the DW_apb_i2c within coreConsultant .26
2.2.3 Creating Gate-Level Netlists within coreConsultant .26
2.2.4 Verifying the DW_apb_i2c within coreConsultant .26
2.2.5 Running Leda on Generated Code with coreConsultant .26
2.2.6 Running SpyGlass® Lint and SpyGlass® CDC .26

2.3 Overview of the coreAssembler Configuration and Integration Process .30
2.3.1 coreAssembler Usage .30
2.3.2 Configuring the DW_apb_i2c within a Subsystem .33
2.3.3 Creating Gate-Level Netlists within coreAssembler .34
2.3.4 Verifying the DW_apb_i2c within coreAssembler .34
2.3.5 Running Leda on Generated Code with coreAssembler .34
2.3.6 Running Spyglass on Generated Code with coreAssembler .34

2.4 Database Files .34
2.4.1 Design/HDL Files .34
2.4.2 Synthesis Files .36
2.4.3 Verification Reference Files .36

Chapter 3
Functional Description .37

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Contents DesignWare DW_apb_i2c Databook

3.1 Overview .37
3.2 I2C Terminology .40

3.2.1 I2C Bus Terms .40
3.2.2 Bus Transfer Terms .41

3.3 I2C Behavior .41
3.3.1 START and STOP Generation .42
3.3.2 Combined Formats .42

3.4 I2C Protocols .43
3.4.1 START and STOP Conditions .43
3.4.2 Addressing Slave Protocol .44
3.4.3 Transmitting and Receiving Protocol .45
3.4.4 START BYTE Transfer Protocol .47

3.5 Tx FIFO Management and START, STOP and RESTART Generation .48
3.5.1 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 0 .48
3.5.2 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 1 .49

3.6 Multiple Master Arbitration .53
3.7 Clock Synchronization .55
3.8 Operation Modes .56

3.8.1 Slave Mode Operation .56
3.8.2 Master Mode Operation .60
3.8.3 Disabling DW_apb_i2c .62
3.8.4 Aborting I2C Transfers .63

3.9 Spike Suppression .64
3.10 Fast Mode Plus Operation .65
3.11 Bus Clear Feature .66

3.11.1 SDA Line Stuck at LOW Recovery .66
3.11.2 SCL Line is Stuck at LOW .67

3.12 Device ID .67
3.13 Ultra-Fast Speed Mode .68
3.14 SMBus/PMBus .69

3.14.1 tTimeout,MIN Parameter .69
3.14.2 Master Device Clock Extension .69
3.14.3 Slave Device Clock Extension .70
3.14.4 SMBDAT Low Timeout .70
3.14.5 Bus Protocols .70
3.14.6 SMBUS Address Resolution Protocol .72
3.14.7 SMBUS Additional Slave Address .77
3.14.8 SMBUS Optional Signals .78

3.15 IC_CLK Frequency Configuration .79
3.15.1 Minimum High and Low Counts in SS, FS, FM+ and HS Modes With

IC_CLK_FREQ_OPTIMIZATION = 0. .80
3.15.2 Minimum High and Low Counts in SS, FS, FM+ and HS Modes With

IC_CLK_FREQ_OPTIMIZATION = 1 .82
3.15.3 Minimum High and Low counts in Ultra-Fast mode (IC_ULTRA_FAST_MODE = 1)82
3.15.4 Minimum IC_CLK Frequency .82

3.16 SDA Hold Time .90
3.16.1 SDA Hold Timings in Receiver .91
3.16.2 SDA Hold Timings in Transmitter .92

3.17 DMA Controller Interface .93

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Contents

3.17.1 Enabling the DMA Controller Interface .94
3.17.2 Overview of Operation .94
3.17.3 Transmit Watermark Level and Transmit FIFO Underflow .96
3.17.4 Choosing the Transmit Watermark Level .96
3.17.5 Selecting DEST_MSIZE and Transmit FIFO Overflow .98
3.17.6 Receive Watermark Level and Receive FIFO Overflow .98
3.17.7 Choosing the Receive Watermark level .99
3.17.8 Selecting SRC_MSIZE and Receive FIFO Underflow .99
3.17.9 Handshaking Interface Operation .99

3.18 APB Interface . 103

Chapter 4
Parameters . 105

4.1 Parameter Descriptions . 105
4.2 Configuration Parameters . 105

Chapter 5
Signal Descriptions .125

Chapter 6
Registers .153

6.1 Register Memory Map . 153
6.2 Operation of Interrupt Registers . 160
6.3 Registers and Field Descriptions . 161

6.3.1 IC_CON . 161
6.3.2 IC_TAR . 168
6.3.3 IC_SAR . 171
6.3.4 IC_HS_MADDR . 171
6.3.5 IC_DATA_CMD . 173
6.3.6 IC_SS_SCL_HCNT . 175
6.3.7 IC_SS_SCL_LCNT . 176
6.3.8 IC_FS_SCL_HCNT . 177
6.3.9 IC_FS_SCL_LCNT . 178
6.3.10 IC_HS_SCL_HCNT . 179
6.3.11 IC_HS_SCL_LCNT . 180
6.3.12 IC_INTR_STAT . 182
6.3.13 IC_INTR_MASK . 183
6.3.14 IC_RAW_INTR_STAT . 186
6.3.15 IC_RX_TL . 190
6.3.16 IC_TX_TL . 191
6.3.17 IC_CLR_INTR . 192
6.3.18 IC_CLR_RX_UNDER . 192
6.3.19 IC_CLR_RX_OVER . 193
6.3.20 IC_CLR_TX_OVER . 193
6.3.21 IC_CLR_RD_REQ . 194
6.3.22 IC_CLR_TX_ABRT . 194
6.3.23 IC_CLR_RX_DONE . 195
6.3.24 IC_CLR_ACTIVITY . 195
6.3.25 IC_CLR_STOP_DET . 196
6.3.26 IC_CLR_START_DET . 196

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Contents DesignWare DW_apb_i2c Databook

6.3.27 IC_CLR_GEN_CALL . 197
6.3.28 IC_ENABLE . 198
6.3.29 IC_STATUS . 201
6.3.30 IC_TXFLR . 205
6.3.31 IC_RXFLR . 206
6.3.32 IC_SDA_HOLD . 207
6.3.33 IC_TX_ABRT_SOURCE . 208
6.3.34 IC_SLV_DATA_NACK_ONLY . 214
6.3.35 IC_DMA_CR . 215
6.3.36 IC_DMA_TDLR . 216
6.3.37 IC_DMA_RDLR . 217
6.3.38 IC_SDA_SETUP . 218
6.3.39 IC_ACK_GENERAL_CALL . 219
6.3.40 IC_ENABLE_STATUS . 220
6.3.41 IC_FS_SPKLEN . 222
6.3.42 IC_HS_SPKLEN . 223
6.3.43 IC_CLR_RESTART_DET . 224
6.3.44 IC_COMP_PARAM_1 . 225
6.3.45 IC_COMP_VERSION . 227
6.3.46 IC_COMP_TYPE . 227
6.3.47 IC_SCL_STUCK_AT_LOW_TIMEOUT . 228
6.3.48 IC_SDA_STUCK_AT_LOW_TIMEOUT . 228
6.3.49 IC_CLR_SCL_STUCK_DET . 229
6.3.50 IC_DEVICE_ID . 230
6.3.51 IC_UFM_SCL_HCNT . 231
6.3.52 IC_UFM_SCL_LCNT . 232
6.3.53 IC_UFM_SPKLEN . 232
6.3.54 IC_UFM_TBUF_CNT . 234
6.3.55 IC_SMBUS_CLOCK_LOW_SEXT . 235
6.3.56 IC_SMBUS_CLOCK_LOW_MEXT . 235
6.3.57 IC_SMBUS_THIGH_MAX_IDLE_COUNT . 236
6.3.58 IC_SMBUS_INTR_STAT . 237
6.3.59 IC_SMBUS_INTR_MASK . 239
6.3.60 IC_SMBUS_INTR_RAW_STATUS . 241
6.3.61 IC_CLR_SMBUS_INTR . 243
6.3.62 IC_OPTIONAL_SAR . 244
6.3.63 IC_SMBUS_UDID_LSB . 245

Chapter 7
Internal Parameter Descriptions . 247

Chapter 8
Programming the DW_apb_i2c . 249

8.1 Software Registers . 249
8.2 Software Drivers . 249
8.3 Programming Example . 250
8.4 Programming Flow for SCL and SDA Bus Recovery . 256
8.5 Programming Flow for Reading the Device ID . 257
8.6 Programming Flow for SMBUS Timeout in Master Mode . 258

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Contents

8.7 Programming Flow for SMBUS Timeout in Slave Mode . 259
8.8 ARP Master Programming Flow . 260
8.9 ARP Slave Programming Flow . 260
8.10 SMBus SUSPEND Programming Flow in Host Mode .263
8.11 SMBus SUSPEND Programming Flow in Device Mode . 264
8.12 SMBus ALERT Programming Flow in Host Mode .265
8.13 SMBus ALERT Programming Flow in Device Mode . 266
8.14 Programming Flow Of DW_apb_i2c in Ultra-Fast Mode . 267

8.14.1 DW_apb_i2c Master Mode . 267
8.14.2 DW_apb_i2c Slave Mode . 268

Chapter 9
Verification . 269

9.1 Overview of Vera Tests . 269
9.1.1 APB Slave Interface . 269
9.1.2 DW_apb_i2c Master Operation . 270
9.1.3 DW_apb_i2c Slave Operation . 270
9.1.4 DW_apb_i2c Interrupts . 271
9.1.5 DMA Handshaking Interface . 271
9.1.6 DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update . 271
9.1.7 Generate NACK as a Slave-Receiver . 271
9.1.8 SCL Held Low for Duration Specified in IC_SDA_SETUP . 271
9.1.9 Generate ACK/NACK for General Call . 271

9.2 Overview of DW_apb_i2c Testbench . 272

Chapter 10
Integration Considerations . 275

10.1 Accessing Top-level Constraints . 275
10.1.1 Area . 275
10.1.2 Power Consumption . 276

Appendix A
Synchronizer Methods . 279

A.1 Synchronizers Used in DW_apb_i2c . 280
A.2 Synchronizer 1: Simple Double Register Synchronizer . 281
A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset 281

Appendix B
Glossary . 283

Index . 287

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Contents DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

Preface

This databook provides information that you need to interface the DW_apb_i2c to the Advanced Peripheral
Bus (APB). The DW_apb_i2c conforms to the AMBA Specification, Revision 2.0 from ARM.

The information in this databook includes an overview, pin and parameter descriptions, a memory map,
and functional behavior of the component. An overview of the testbench, a description of the tests that are
run to verify the coreKit, and synthesis information for the component are also provided.

 Organization

The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Building and Verifying a Component or Subsystem” introduces you to using the
DW_apb_i2c within the coreAssembler and coreConsultant tools.

■ Chapter 3, “Functional Description” describes the functional operation of the DW_apb_i2c.

■ Chapter 4, “Parameters” identifies the configurable parameters supported by the DW_apb_i2c.

■ Chapter 5, “Signal Descriptions” provides a list and description of the DW_apb_i2c signals.

■ Chapter 6, “Registers” describes the programmable registers of the DW_apb_i2c.

■ Chapter 7, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals chapter.

■ Chapter 8, “Programming the DW_apb_i2c” provides information needed to program the configured
DW_apb_i2c.

■ Chapter 9, “Verification” provides information on verifying the configured DW_apb_i2c.

■ Chapter 10, “Integration Considerations” includes information you need to integrate the configured
DW_apb_i2c into your design.

■ Chapter A, “Synchronizer Methods” documents the synchronizer methods (blocks of synchronizer
functionality) used in DW_apb_i2c to cross clock boundaries.

■ Appendix B, “Glossary” provides a glossary of general terms.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Preface DesignWare DW_apb_i2c Databook

Related Documentation
■ DW_apb_i2c Driver Kit User Guide – Contains information on the Driver Kit for the DW_apb_i2c;

requires source code license (DWC-APB-Periph-Source)

■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using
DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for
AMBA 3 AXI, refer to the Guide to Documentation for DesignWare Synthesizable Components for AMBA 2 and
AMBA 3 AXI.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the above
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained below,
your issue is automatically routed to a support engineer who is experienced with your product.
The Sub Product entry is critical for correct routing.

http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/drivers/DW_apb_i2c/latest/doc/dw_apb_i2c_driver.pdf
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

Synopsys, Inc. 11SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Preface

Go to http://solvnet.synopsys.com/EnterACall and click on the link to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: <product version number>
■ Problem Type:
■ Priority:
■ Title: DW_apb_i2c
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified above) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
http://www.synopsys.com/Support/GlobalSupportCenters

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare APB Advanced
Peripherals.

Table 1-1 DesignWare APB Advanced Peripherals – Product Code: 3772-0

Component Name Description

DW_apb_i2c A highly configurable, programmable master or slave i2c device with an APB slave
interface

DW_apb_i2s A configurable master or slave device for the three-wire interface (I2S) for streaming stereo
audio between devices

DW_apb_ssi A configurable, programmable, full-duplex, master or slave synchronous serial interface

DW_apb_uart A programmable and configurable Universal Asynchronous Receiver/Transmitter (UART)
for the AMBA 2 APB bus

http://solvnet.synopsys.com/EnterACall
mailto:support_center@synopsys.com
http://www.synopsys.com/Support/GlobalSupportCenters
https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Preface DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 1.08a onward.

Version Date Description

2.00a June 2015 Added:

■ “Running SpyGlass® Lint and SpyGlass® CDC” on page 26

■ “Running Spyglass on Generated Code with coreAssembler” on page 34

■ “Internal Parameter Descriptions” on page 247

■ New features:

- “Bus Clear Feature” on page 66
- “Device ID” on page 67
- “SMBus/PMBus” on page 69
- “Ultra-Fast Speed Mode” on page 68
- New parameter “IC_CLK_FREQ_OPTIMIZATION”
- Synchronizer Methods

■ Included a note regarding tBUF timing and setup/hold time.

Updated:
- “IC_CLK Frequency Configuration” on page 79 updated for

IC_CLK_FREQ_OPTIMIZATION and IC_ULTRA_FAST_MODE Configurations
- “Signal Descriptions” on page 125 auto-extracted from the RTL

1.22a June 2014 Added:

■ New features:

- Blocking the Tx FIFO commands using IC_TX_CMD_BLOCK field in
IC_ENABLE register

- Indication for first data byte received after the address in IC_DATA_CMD register
- Detection of STOP interrupt only if master is active

■ coreConsultant parameter (IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT)
introduced to avoid flushing of RX FIFO during TX Abort

■ New bits in IC_STATUS register for Indicating a reason for bus holding

■ Performance section in Integration considerations

Updated:

■ Width of TX_FLUSH_CNT field in the IC_TX_ABRT_SOURCE register

■ Default Input/Output Delays in Signals chapter

https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Revision History DesignWare DW_apb_i2c Databook

1.21a May 2013 Added:

■ Section on Fast Mode Plus

■ Configuration Parameters:

- IC_RX_FULL_HLD_BUS_EN
- IC_SLV_RESTART_DET_EN

■ Signals:

- ic_restart_det_intr(_n) signal to enable restart detect in slave mode

■ Registers

- RESTART_DET bit of IC_INTR_STAT, IC_INTR_MASK and
IC_RAW_INTR_STAT registers
Bit detects a repeated start when the DW_apb_i2c is the addressed slave

- IC_CLR_RESTART_DET to clear the RESTART_DET interrupt
- MST_ON_HOLD bit to the IC_INTR_STAT, IC_INTR_MASK and

IC_RAW_INTR_STAT registers. This bit indicates whether a master is holding
the bus and the Tx FIFO is empty. Added the signal ic_mst_on_hold_intr(_n)

■ Programming flow for DW_apb_i2c master with TAR update

1.21a Cont’d May 2013
Cont’d

Continued
Updated:

■ References to Fast Mode Plus

■ Registers:

- TX_FLUSH_CNT field of the IC_TX_ABRT_SOURCE register
- TX_ABRT field of the IC_RAW_INTR_STAT register
- IC_CON
- IC_RAW_INTR_STAT
- IC_SDA_HOLD

Signals:

■ Active state of the ic_current_src_en signal

■ Programming flow for DW_apb_i2c as master in standard or fast mode

■ Method for deriving ic_clk values in high-speed modes

■ Documentation template

Removed:

■ Text stating that Fast Mode Plus is not supported

■ Note in the IC_TX_ABRT_SOURCE register description stating DW_apb_i2c can be
a master and slave at the same time

1.20a Oct 2012 Added the product code on the cover and in Table 1-1.

1.20a June 2012 Edited calculations for driving SDA in “High-Speed Modes” section; updated
IC_ENABLE and IC_TX_ABRT_SOURCE registers.

1.17a Mar 2012 Enhanced DW_ahb_dmac and DW_apb_i2c programming example; updated definition
of IC_FS_SPKLEN and IC_HS_SPKLEN register descriptions; corrected programming
values for dma_tx_req and dma_rx_req signals.

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Revision History

1.16b Dec 2011 Enhanced description of IC_ADD_ENCODED_PARAMS parameter.

1.16b Nov 2011 Version change for 2011.11a release.

1.16a Oct 2011 Version change for 2011.10a release.

1.15a 14 June 2011 Removed “Digital/Analog Domain Functional Partitioning” section (9.1) – irrelevant now
with Spike Suppression functionality.

1.15a June 2011 Updated system diagram in Figure 1-1; enhanced description of ic_rst_n signal;
enhanced “Related Documents” section in Preface.

1.15a 21 Apr 2011 Clarified description of C_DEFAULT_SDA_HOLD parameter.

1.15a 12 Apr 2011 Corrected IC_DEFAULT_FS_SPKLEN and IC_DEFAULT_HS_SPKLEN default values.

1.15a Apr 2011 Added spike suppression material; corrected R/W locations in timing diagrams in “Tx
FIFO Management and START, STOP and RESTART Generation” section

1.14a Dec 2010 Corrected subsection numbering in Registers chapter.

1.13a Oct 2010 Added information on calculating maximum value for IC_DEFAULT_SDA_HOLD
parameter and IC_SDA_HOLD register; “SDA Hold Time” section, description of
IC_DEFAULT_SDA_HOLD parameter, and IC_SDA_HOLD register updated

1.12a 7 Sep 2010 Corrected DW_ahb_dmac response in “Receive Watermark Level and Receive FIFO
Overflow” section

1.12a Sep 2010 Corrected names of include files and vcs command used for simulation

1.11a Mar 2010 Corrected information regarding how DW_apb_i2c communicates with slaves when
operating in master mode; corrected default value for IC_DEFAULT_SDA_SETUP
parameter; added SDA hold time information; added IC_SDA_HOLD register
description; removed references to 300ns hold time in integration considerations;
removed DW_apb_i2c Application Notes appendix.

1.10a Jan 2010 Removed reference to I2C protocol created by Philips (NXP).

1.10a Dec 2009 Corrected dependencies for IC_SS_SCL_HIGH_COUNT, IC_SS_SCL_LOW_COUNT,
IC_FS_SCL_HIGH_COUNT, and IC_FS_SCL_LOW_COUNT parameters; corrected
IC_RESTART_EN parameter description; modified description of IC_SDA_SETUP
register; updated databook to new template for consistency with other IIP/VIP/PHY
databooks.

1.10a Jul 2009 Corrected equations for avoiding underflow when programming a source burst
transaction.

1.10a Jun 2009 Corrected name of IC_10BITADDR_SLAVE parameter in “Parameters” chapter.

1.10a May 2009 Removed references to QuickStarts, as they are no longer supported.

1.10a 24 Apr 2009 Enhanced IC_CON description with table for IC_SLAVE_DISABLE and
MASTER_MODE combinations that result in configuration errors.

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Revision History DesignWare DW_apb_i2c Databook

1.10a 23 Apr 2009 Enhanced “Master Transmit and Master Receive” subsection to clarify reads for multiple
bytes.

1.10a Oct 2008 IC_RX_FULL_GEN_NACK parameter removed; IC_INTR_MASK is active low;
dependency changed for IC_HS_MASTER_CODE parameter; IC_SLAVE_DISABLE
default changed to 1; values for HS mode corrected in Table 8; debug_* signal default
values corrected; version change for 2008.10a release.

1.09a Jul 2008 Removed IC_RX_FULL_GEN_NACK configuration parameter and its conditional text.
Changed reference to non-existent table for IC_*S_SCL_*CNT registers to link to
“IC_CLK Frequency Configuration” section. Removed USE_FOUNDATION parameter.

1.09a Jun 2008 Removed Synchronous value from IC_CLK_TYPE parameter; clarified that putting data
into the FIFO generates a START and emptying the FIFO generates a STOP; clarified
description of I2C_DYNAMIC_TAR_UPDATE parameter; clarification of IC_TAR
description.

1.08b 11 Feb 2008 Modified note on restriction; page 47.

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 17

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

1
Product Overview

This chapter describes the DesignWare APB I2C Interface Peripheral, referred to as DW_apb_i2c. The
DW_apb_i2c component is an AMBA 2.0-compliant Advanced Peripheral Bus (APB) slave device and is
part of the family of DesignWare Synthesizable Components.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

Attention
Links resolve only if you are viewing this databook from your $DESIGNWARE_HOME
tree, and to only those components that are installed in the tree.

https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Product Overview DesignWare DW_apb_i2c Databook

Figure 1-1 Example of DW_apb_i2c in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/dw_ahb_icm_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/dw_ahb_h2h_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/dw_ahb_eh2h_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/dw_axi_gs_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/dw_ahb_ictl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/dw_axi_x2h_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/dw_apb_ictl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/dw_apb_uart_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/dw_apb_rap_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/dw_apb_timers_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/dw_apb_wdt_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/dw_apb_gpio_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/dw_apb_ssi_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/dw_apb_rtc_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/dw_apb_i2c_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/dw_apb_db.pdf
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/dw_apb_i2s_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/dw_axi_gm_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/dw_axi_hmx_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/dw_ahb_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/dw_axi_x2p_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/dw_apb_uart_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/dw_apb_i2c_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/dw_axi_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/dw_ahb_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/dw_axi_x2x_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/dw_axi_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/dw_axi_rs_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/dw_axi_x2x_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/dw_axi_x2x_db.pdf

Synopsys, Inc. 19SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb_i2c within a DesignWare subsystem using
coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb_i2c component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The DW_apb_i2c is a configurable, synthesizable, and programmable control bus that provides support for
the communications link between integrated circuits in a system. It is a simple two-wire bus with a
software-defined protocol for system control, which is used in temperature sensors and voltage level
translators to EEPROMs, general-purpose I/O, A/D and D/A converters, CODECs, and many types of
microprocessors.

1.2.1 DW_apb_i2c Block Diagram

Figure 1-2 illustrates a simple block diagram of DW_apb_i2c. For a more detailed block diagram and
description of the component, refer to “Functional Description” on page 37.

Figure 1-2 Block Diagram of DW_apb_i2c
.

DW_apb_i2c

Master State
Machine

Slave State
Machine

Register
File

AMBA Bus
Interface Unit

Clock
Generator

Rx
Shift

Tx
Shift

Rx
Filter

Toggle Synchronizer DMA Interface
Interrupt

Controller

RX
FIFO

TX
FIFO

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

20 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Product Overview DesignWare DW_apb_i2c Databook

1.3 Features
DW_apb_i2c has the following features:

1.3.1 I2C Features

■ Two-wire I2C serial interface – consists of a serial data line (SDA) and a serial clock (SCL)

■ Three speeds:

❑ Standard mode (0 to 100 Kb/s)

❑ Fast mode (≤ 400 Kb/s) or fast mode plus (≤ 1000 Κb/s)1

❑ High-speed mode (≤ 3.4 Mb/s)

■ Clock synchronization

■ Master OR slave I2C operation

■ 7- or 10-bit addressing

■ 7- or 10-bit combined format transfers

■ Bulk transmit mode

■ Ignores CBUS addresses (an older ancestor of I2C that used to share the I2C bus)

■ Transmit and receive buffers

■ Interrupt or polled-mode operation

■ Handles Bit and Byte waiting at all bus speeds

■ Simple software interface consistent with DesignWare APB peripherals

■ Component parameters for configurable software driver support

■ DMA handshaking interface compatible with the DW_ahb_dmac handshaking interface

■ Programmable SDA hold time (tHD;DAT)

■ Bus clear feature

■ Device ID feature

■ SMBus/PMBus Support

■ SMBus Slave detects and responds to ARP commands.

■ Ultra-Fast mode support

The DW_apb_i2c requires external hardware components as support in order to be compliant in an I2C
system. The descriptions are detailed later in this document.

It must also be noted that the DW_apb_i2c should only be operated either as (but not both):

■ A master in an I2C system and programmed only as a Master; OR

■ A slave in an I2C system and programmed only as a Slave.

1. In this document, references to fast mode also apply to fast mode plus, unless specifically stated otherwise.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Product Overview

1.3.2 DesignWare APB Slave Interface

■ Support for APB data bus widths of 8, 16, and 32 bits

■ Source code for this component is available on a per-project basis as a DesignWare Core; contact your
local sales office for the details.

1.4 Standards Compliance
The DW_apb_i2c component conforms to the AMBA Specification, Revision 2.0 from ARM. Readers are
assumed to be familiar with this specification.

The DW_apb_i2c was designed for the following specifications:

■ I2C Bus Specification, Version 6.0, dated April 2014

■ SMBus specification Version 3.0, dated January 2015

■ PMBus Specification Version 1.2, dated September 2010

1.5 Verification Environment Overview
The DW_apb_i2c includes an extensive verification environment, which sets up and invokes your selected
simulation tool to execute tests that verify the functionality of the configured component. You can then
analyze the results of the simulation.

The “Verification” on page 269 chapter discusses the specific procedures for verifying the DW_apb_i2c.

1.6 Licenses
Before you begin using the DW_apb_i2c, you must have a valid license. For more information, refer to the
DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI Installation Guide.

http://www.arm.com/products/solutions/AMBA_Spec.html
message URL https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com
message URL https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf

22 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Product Overview DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

2
Building and Verifying a Component or

Subsystem

DesignWare Synthesizable IP (SIP) components for AMBA 2 and AMBA 3 AXI are packaged using
Synopsys coreTools, which enable the user to configure, synthesize, and run simulations on a single SIP
title, or to build a configured AMBA subsystem. You do this by generating a workspace view using one of
the following coreTools applications:

■ coreConsultant – Used for configuration, RTL generation, synthesis, and execution of packaged
verification for a single SIP title. The coreConsultant User Guide provides complete information on
using coreConsultant.

■ coreAssembler – Used for building and configuration of a subsystem that connects multiple SIP titles,
RTL generation, synthesis, and creation of a template subsystem testbench. The coreAssembler User
Guide provides complete information on using coreAssembler.

A workspace is your working version of a DesignWare SIP component or subsystem. In fact, you can create
several workspaces to experiment with different design alternatives.

2.1 Setting up Your Environment
The DW_apb_i2c is included in a release of DesignWare SIP components. It is assumed that you have
already downloaded and installed the release. If you have not, you can download and install the latest
versions of required tools using the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI
Installation Guide.

You also need to set up your environment correctly using specific environment variables, such as
DESIGNWARE_HOME, VERA_HOME, PATH, and SYNOPSYS. If you are not familiar with these
requirements and the necessary licenses, refer to the DesignWare Synthesizable Components for
AMBA 2/AMBA 3 AXI Installation Guide.

Hint
If you are unfamiliar with coreTools—which is comprised of the coreAssembler,
coreConsultant, and coreBuilder tools—you can go to Using DesignWare Library IP in
coreAssembler to “get started” learning how to work with DesignWare SIP components.

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
message URL https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
message URL https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
message URL https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
message URL https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Building and Verifying a Component or Subsystem DesignWare DW_apb_i2c Databook

2.2 Overview of the coreConsultant Configuration and Integration Process
Once you have correctly downloaded and installed a release of DesignWare SIP components and then set
up your environment, you can begin work on the DW_apb_i2c using coreConsultant.

2.2.1 coreConsultant Usage

Figure 2-1 illustrates some general directories and files in a coreConsultant workspace.

Figure 2-1 coreConsultant Usage Flow

Table 2-1 provides a description of the implementation workspace directory and subdirectories.

Table 2-1 coreConsultant Implementation Workspace Directory Contents

Directory/Subdirectory Description

auxiliary Scripts and text files used by coreConsultant.
Generated upon first creating workspace.

custom Contains RTL preprocessor scripts.
Generated during Specify Configuration activity.

doc Contains local copies of component-specific databooks.
Generated upon first creating workspace.

export Contains files used to integrate results from the completed source
configuration and synthesis activities into your design (outside
coreConsultant).
Generated upon first creating workspace; populated during Specify
Configuration activity.

gtech Contains synthesis scripts and output netlists from gtech generation; also
used for RTL simulation of encrypted source code.
Generated during Generate GTECH Model activity.

export report simsrc syn

coreConsultant Workspace – workspace_name
Run coreConsultant
% cd <working directory>

1

Create workspace2

kb scratch

% coreConsultant

Use coreConsultant to create, synthesize, and verify your component3

Populated when
Synthesize

Populated when
Setup and Run
Simulations activity is
activity iscompleted
completed

gtech

Created when
Create GTECH
Model activity
is completed

… …

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Building and Verifying a Component or Subsystem

For details on some key files created during coreConsultant activities, refer to “Database Files” on page 34.

For information on using coreConsultant, refer to the coreConsultant User Guide.

kb Contains knowledge base information used by coreConsultant. These are
binary files containing the state of the design.
Generated upon first creating workspace; populated and updated throughout
activities.

leda Contains Leda configuration files for the component.
Generated upon first creating workspace; updated during Run Leda Coding
Checker activity.

report Contains all of the reports created by coreConsultant during build,
configuration, test and synthesis phases. An index.html file in this directory
links to many of these generated reports.
Generated upon first creating workspace; populated and updated throughout
activities.

scratch Contains temp files used during the coreConsultant processes.
Generated upon first creating workspace; populated and updated throughout
activities.

sim Contains test stimulus and output files.
Generated upon first creating workspace; updated during Setup and Run
Simulations activity.

spyglass Contains SpyGlass Lint and CDC configuration files for the component.
Generated upon first SpyGlass run; updated during Run Spyglass RTL
Checker activity.

src Includes the top-level RTL file, design_name.v. If you have a source license,
this will contain plain-text RTL; if you only have a designware license, this will
contain encrypted RTL.
Generated upon first creating workspace; populated during Specify
Configuration activity.

syn Contains synthesis files for the component.
Generated upon first creating workspace; updated during Synthesis activity
and Formal Verification activity.

tcl Contains synthesis intent scripts.
Generated upon first creating workspace.

Table 2-1 coreConsultant Implementation Workspace Directory Contents (Continued)

Directory/Subdirectory Description

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Building and Verifying a Component or Subsystem DesignWare DW_apb_i2c Databook

2.2.2 Configuring the DW_apb_i2c within coreConsultant

The “Parameters” chapter on page 105 describes the DW_apb_i2c hardware configuration parameters that
you configure using the coreConsultant GUI.

The “Creating the RTL View of a Core” chapter in the coreConsultant User Guide discusses how to specify a
configuration for an individual component like the DW_apb_i2c.

2.2.3 Creating Gate-Level Netlists within coreConsultant

The “Creating the Gate-Level Netlist for a Core” chapter in the coreConsultant User Guide discusses how to
create a translation of the RTL view into a technology-specific netlist for an individual component like the
DW_apb_i2c.

2.2.4 Verifying the DW_apb_i2c within coreConsultant

The “Verification” chapter on page 269 provides an overview of the testbench available for DW_apb_i2c
verification using the coreConsultant GUI.

The “Verifying Your Implementation” chapter in the coreConsultant User Guide discusses how to simulate an
individual component like the DW_apb_i2c.

2.2.5 Running Leda on Generated Code with coreConsultant

When you select Verify Component > Run Leda Coding Checker from the Activity List, the corresponding
Activity View appears. In this Activity View you select rules configuration file and define Leda command
line switches.

2.2.6 Running SpyGlass® Lint and SpyGlass® CDC

This section discusses the procedure to run SpyGlass Lint and SpyGlass CDC.

Figure 2-2 shows the coreConsultant GUI in which you run Lint and CDC goals.

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Building and Verifying a Component or Subsystem

Figure 2-2 SpyGlass Options in coreConsultant

The SpyGlass flow in coreConsultant runs Guideware 2.0 rules for block/rtl_handoff. Within the
block/rtl_handoff, only lint/lint_rtl and cdc/cdc_verify_struct goals are run.

In Figure 2-2, select the type of run goals. You can select either Lint run goal or CDC run goal, or both Lint
and CDC run goals. By default, both Lint and CDC are selected.

When the Lint and/or CDC is run, the results are available in the Report tab. Errors (if any) are displayed
with a red colored cell and warnings (if any) are displayed in yellow colored cell, as shown in Figure 2-3.

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Building and Verifying a Component or Subsystem DesignWare DW_apb_i2c Databook

Figure 2-3 coreConsultant SpyGlass Report Summary

2.2.6.1 Fixed Settings

The settings are fixed (hardcoded) when you run SpyGlass in coreConsultant.

2.2.6.2 SpyGlass Lint

Table 2-2 lists the SpyGlass Link waiver files that are used by the coreConsultant tool.

Table 2-2 Waiver Files for Sypglass Lint

File Name Description

<configured_workspace>/spyglass/spyglass_d
esign_specific_waivers.swl

These are DW_apb_i2c design-specific rule waivers. This file
contains Lint waivers for DW_apb_i2c (if applicable). The reason
for each of the waivers (if any) are included as comments in the
file.

<configured_workspace>/spyglass/spy
glass_engineering_council_waivers.swl

This file contains rules that Synopsys waives for its IPs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Building and Verifying a Component or Subsystem

2.2.6.3 SpyGlass CDC

To define the SpyGlass CDC constraints, it is important to understand the reset and clock logic used in
DW_apb_i2c. For information on reset and clock logic, refer “Functional Description” on page 37 and
“Signal Descriptions” on page 125.

2.2.6.3.1 CDC Files

Table 2-3 summarizes files for SpyGlass CDC used by coreConsultant.

2.2.6.3.2 CDC Path Debug Using the SpyGlass GUI

For debugging the CDC path, it is necessary to run SpyGlass in interactive mode in the configured
workspace. To invoke the SpyGlass GUI and to run CDC, complete the following steps:

1. Go to the <configured_workspace>/spyglass directory.

2. Issue ./sh.spyglass to start the spyGlass GUI or issue ./sh.spyglass -batch to start the
SpyGlass in batch mode.

3. In the SpyGlass GUI, the Goal Setup window opens by default.

4. Uncheck the lint_rtl option and click the Selected Goal (s) button.

5. After the CDC run is complete, the Analyze Results window displays the results.

Navigate to and select the relevant errors to open a schematic for analysis.

Table 2-3 Waiver Files for Sypglass CDC

File Name Description

<configured_workspace>/spyglass/manual.sg
dc

These are the constraints pertaining to a given mode.

<configured_workspace>/spyglass/ports.sgdc These are the list of I/O signals and their respective clocks.

<configured_workspace>/spyglass/spyglass_
design_specific_waivers.swl

These are DW_apb_i2c design-specific rule waivers. This file
contains CDC waivers for DW_apb_i2c (if applicable). The
reason for each of the waivers (if any) are included as comments
in the file.

<configured_workspace>/spyglass/spyglass_
engineering_council_waivers.swl

These are rules that Synopsys waives for its IPs.

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Building and Verifying a Component or Subsystem DesignWare DW_apb_i2c Databook

2.3 Overview of the coreAssembler Configuration and Integration Process
Once you have correctly downloaded and installed a release of DesignWare SIP components and then set
up your environment, you can begin work on your DesignWare subsystem with coreAssembler.

2.3.1 coreAssembler Usage

Figure 2-4 illustrates some general directories and files in a coreAssembler workspace.

Figure 2-4 coreAssembler Usage Flow

export report src

coreAssembler Workspace – workspace_name
Run coreAssembler
% cd <working directory>

1

Create workspace2

components kb scratch

i_ahb i_apb i_axi_x2x

% coreAssembler

Use coreAssembler to create, synthesize, and verify your subsystem3

syn

…
export report simsrc synkb scratch

Populated when
Synthesis

Populated when
Add Subsystem
Components activity is
activity iscompleted
completed

gtech

Generated during
Create Component
GTECH Simulation
Model activity

… …
i_ahb_h2h i_axii_apb_ssi… … … …

export report simsrc synkb scratch gtech… …

export report simsrc synkb scratch gtech… …

Directory containing
component-specific

Directory containing subsystem-specific
directories and files

directories and files

…

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Building and Verifying a Component or Subsystem

Table 2-4 provides a description of the implementation workspace directory and subdirectories.

Table 2-4 coreAssembler Implementation Workspace Directory Contents

Directory/Subdirectory Description

components Contains a directory for each IP component instance connected in the
subsystem.
Generated and populated with separate component directories upon first
adding components; populated and updated throughout activities.

 i_component/auxiliary Scripts and text files used by coreAssembler.
Generated during Add Subsystem Components activity.

 i_component/custom Contains RTL preprocessor scripts.
Generated during Configure Components activity.

 i_component/doc Contains local copies of component-specific databooks.
Generated during Add Subsystem Components activity.

 i_component/export Contains files used to integrate results from the completed source
configuration and synthesis activities into your design (outside
coreAssembler).
Generated during Add Subsystem Components activity; populated during
Configure Components activity.

 i_component/gtech Contains synthesis scripts and output netlists from gtech generation; also
used for RTL simulation of encrypted source code.
Generated during Create Component GTECH Simulation Model activity.

 i_component/kb Contains knowledge base information used by coreAssembler. These are
binary files containing the state of the design.
Generated during Add Subsystem Components activity; populated and
updated throughout activities.

 i_component/leda Contains Leda configuration files for the component.
Generated during Add Subsystem Components activity; populated during
Run Leda Coding Checker (for /i_component) activity.

 i_component/report Contains all of the reports created by coreAssembler during build,
configuration, test and synthesis phases. An index.html file in this
directory links to many of these generated reports.
Generated during Add Subsystem Components activity; populated and
updated throughout activities.

 i_component/scratch Contains temp files used during the coreAssembler processes.
Generated during Add Subsystem Components activity; populated and
updated throughout activities.

 i_component/sim Contains test stimulus and output files.
Generated during Add Subsystem Components activity; updated during
Setup and Run Simulations (for /i_component) activity.

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Building and Verifying a Component or Subsystem DesignWare DW_apb_i2c Databook

For details on some key files created during coreAssembler activities, refer to “Database Files” on page 34.

 i_component/spyglass Contains SpyGlass Lint and CDC configuration files for the component.
Generated upon first SpyGlass run; updated during Run Spyglass RTL
Checker activity.

 i_component/src Includes the top-level RTL file, design_name.v. If you have a source
license, this will contain plain-text RTL; if you only have a designware
license, this will contain encrypted RTL.
Generated during Add Subsystem Components activity; populated during
Specify Configuration activity.

 i_component/syn Contains synthesis files for the component.
Generated during Add Subsystem Components activity; updated during
Synthesis activity.

 i_component/tcl Contains synthesis intent scripts.
Generated during Add Subsystem Components activity.

export Contains subsystem files used to integrate the results from the completed
source configuration and synthesis activities into your design (outside
coreAssembler).
Generated upon first creating workspace; populated starting with Memory
Map Specification activity.

kb Contains subsystem knowledge base information used by coreAssembler.
These are binary files containing the state of the design.
Generated upon first creating workspace; populated and updated
throughout activities.

report Contains subsystem reports created by coreAssembler during build,
configuration, test and synthesis phases. An index.html file in this
directory links to many of these generated reports.
Generated upon first creating workspace; populated and updated
throughout activities.

scratch Contains subsystem temp files used during the coreAssembler processes.
Generated upon first creating workspace; populated and updated
throughout activities.

src Includes the RTL related to the subsystem. If you have a source license,
this will contain plain-text RTL; if you only have a designware license, this
will contain encrypted RTL.
Generated upon first creating workspace; populated starting with
Generate Subsystem RTL activity.

syn Contains synthesis files for the subsystem.
Generated upon first creating workspace; updated during Synthesize
activity and Formal Verification activity.

Table 2-4 coreAssembler Implementation Workspace Directory Contents (Continued)

Directory/Subdirectory Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Building and Verifying a Component or Subsystem

For information on using coreAssembler, refer to the coreAssembler User Guide. For information on getting
started with using DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within
coreTools, refer to Using DesignWare Library IP in coreAssembler.

Figure 2-5 illustrates the DW_apb_i2c in a simple subsystem.

Figure 2-5 DW_apb_i2c in Simple Subsystem

The subsystem in Figure 2-5 contains the following components that you may want to use as you learn to
use coreAssembler:

■ DW_apb_i2c

■ DW_ahb

■ DW_apb

■ AHB Master

The AHB Master is meant to be exported out of the design and then replaced by a real AHB Master—such as
a CPU—later in the design process; at least one exported AHB master is required in a subsystem if you
intend to do a basic simulation that tests connections.

2.3.2 Configuring the DW_apb_i2c within a Subsystem

The “Parameters” chapter on page 105 describes the DW_apb_i2c hardware configuration parameters that
you configure using the coreAssembler GUI. Corresponding databooks for the other components in a
subsystem contain “Parameters” chapters that describe their respective configuration parameters.

The “Creating the RTL View of a Subsystem” chapter in the coreAssembler User Guide discusses how to
configure subsystem components and automatically connect them using the coreAssembler GUI.

m

s

s

User’s System/Chip
DesignWare

manually exported interfaces to non-DesignWare IP
automatically exported interfaces from DesignWare peripheral IP

non-DW AMBA IP
(custom AHB master)

DW_ahb

DW_apb_i2c
Bridge

(DW_apb)

Subsystem

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title

34 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Building and Verifying a Component or Subsystem DesignWare DW_apb_i2c Databook

2.3.3 Creating Gate-Level Netlists within coreAssembler

The “Creating the Gate-Level Netlist for a Subsystem” chapter in the coreAssembler User Guide discusses how
to create a translation of the RTL view into a technology-specific netlist for a subsystem.

2.3.4 Verifying the DW_apb_i2c within coreAssembler

The “Verification” chapter on page 269 provides an overview of the testbench available for DW_apb_i2c
verification using the coreAssembler GUI.

The “Verifying Subsystems and Components” chapter in the coreAssembler User Guide discusses how to
simulate a subsystem.

2.3.5 Running Leda on Generated Code with coreAssembler

When you select Verify Component > Run Leda Coding Checker for /i_component) from the Activity List,
the corresponding Activity View appears. In this Activity View you select rules configuration file and define
Leda command line switches.

2.3.6 Running Spyglass on Generated Code with coreAssembler

When you select Verify Component > Run Spyglass RTL Checker for /i_component from the Activity List,
the corresponding Activity View appears. In this Activity View, you can select to run Spyglass Lint and
Spyglass CDC.

2.4 Database Files
The following subsections describe some key files created in coreConsultant and coreAssembler activities.

2.4.1 Design/HDL Files

The following sections describe the design and HDL files that are produced by coreConsultant and
coreAssembler when configuring and verifying a DesignWare Synthesizable Component. The following
files are created in different directories by coreConsultant and coreAssembler:

■ coreConsultant – workspace/ directory

■ coreAssembler – workspace/components/i_component/ directory

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title

Synopsys, Inc. 35SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Building and Verifying a Component or Subsystem

2.4.1.1 RTL-Level Files

The following table describes the RTL files that are generated by the Create RTL activity. They are
encrypted except where otherwise noted. Any Synopsys synthesis tool or simulator can read encrypted RTL
files.

2.4.1.2 Simulation Model Files

The following table includes files generated for the component during the Generate GTECH Simulation
activity. These files are needed when you are using a non-Synopsys simulator (when you can not use the
encrypted RTL).

Table 2-5 RTL-Level Files

Files Encrypted? Purpose

./src/component_cc_constants.v No Includes definitions and values of all configuration parameters that
you have specified for the component.

./src/component.v No Top-level HDL file. Include the DesignWare libraries by using the
following options in your simulator invocation:
+libext+.v+.V
-y ${SYNOPSYS}/packages/gtech/src_ver
-y ${SYNOPSYS}/dw/sim_ver

./src/component_submodule.v Yes Sub-modules of component

./src/component_constants.v No Includes the constants used internally in the design.

./src/component_undef.v Includes an undef for each of the definitions found in the
component_cc_constants.v file; compiled in after the last file listed
in ./src/components.lst when compiling multiple instances of the
same IP.

./src/component.lst No Lists the order in which the RTL files should be read into tools,
such as simulators or dc_shell. For example, use the following
option to read the design into VCS:
vcs +v2k -f component.lst

Table 2-6 Simulation Model Files

Files Encrypted? Purpose

./gtech/final/db/component.v No Simulation model of the component for use with non-Synopsys
simulators. A technology-independent, gate-level netlist; VHDL and
Verilog versions are generated. Include the DesignWare libraries by
using the following options in your simulator invocation:
+libext+.v+.V
-y ${SYNOPSYS}/packages/gtech/src_ver
-y ${SYNOPSYS}/dw/sim_ver

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Building and Verifying a Component or Subsystem DesignWare DW_apb_i2c Databook

2.4.2 Synthesis Files

The following table includes files generated after the Create Gate-Level Netlist activity is performed on a
component.

2.4.3 Verification Reference Files

Files described in the following table include information pertaining to the component’s operation so that
you can verify installation and configuration of the component has been successful. These files are not for
re-use during system-level verification.

Table 2-7 Synthesis Files

Files Encrypted? Purpose

./syn/auxScripts No Auxiliary files for synthesis.

./syn/final/db/component.db Binary format Synopsys .db files (gate level) that can be read into dc_shell for further
synthesis, if desired.

./syn/final/db/component.v No Gate-level netlist that is mapped to technology libraries that you specify.

./syn/constrain/script/*.* No Constraint files for the components.

./syn/final/report/*.* No Synthesis result files.

Table 2-8 Verification Reference Files

Files Encrypted? Purpose

./sim/runtest No Perl script that runs the Setup and Run Simulations activity from the
command line.

./sim/runtest.log No The overall result of simulation, including pass/fail results.

./sim/test_testname/test.result No Pass/fail of individual test.

./sim/test_testname/test.log No Log file for individual test.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

3
Functional Description

This chapter describes the functional behavior of DW_apb_i2c in more detail.

3.1 Overview
The I2C bus is a two-wire serial interface, consisting of a serial data line (SDA) and a serial clock (SCL).
These wires carry information between the devices connected to the bus. Each device is recognized by a
unique address and can operate as either a “transmitter” or “receiver,” depending on the function of the
device. Devices can also be considered as masters or slaves when performing data transfers. A master is a
device that initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that
time, any device addressed is considered a slave.

The DW_apb_i2c module can operate in standard mode (with data rates 0 to 100 Kb/s), fast mode (with
data rates less than or equal to 400 Kb/s), fast mode plus (with data rates less than or equal to 1000 Kb/s),
high-speed mode (with data rates less than or equal to 3.4 Mb/s), and Ultra-Fast Speed Mode (with data
rates less than or equal to 5 Mb/s).

The DW_apb_i2c can communicate with devices only of these modes as long as they are attached to the bus.
Additionally, high-speed mode and fast mode devices are downward compatible. For instance, high-speed
mode devices can communicate with fast mode and standard mode devices in a mixed-speed bus system;
fast mode devices can communicate with standard mode devices in 0 to 100 Kb/s I2C bus system. However:

1. Standard mode devices are not upward compatible and should not be incorporated in a fast-mode
I2C bus system as they cannot follow the higher transfer rate and unpredictable states would occur.

2. Ultra-Fast mode devices are not downward compatible and should not be incorporated in traditional
I2C speeds (High speed, Fast/Fast Mode Plus speed, Standard mode speed) as Ultra-Fast mode

NoteNoteNoteNote The DW_apb_i2c must only be programmed to operate in either master OR slave mode only.
Operating as a master and slave simultaneously is not supported.

NoteNoteNoteNote In this document, references to fast mode also apply to fast mode plus, unless specifically
stated otherwise.

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

follows the higher transfer rate (up to 5Mb/s) with only write transfers and there is no
acknowledgment from the slave.

An example of high-speed mode devices are LCD displays, high-bit count ADCs, and high capacity
EEPROMs. These devices typically need to transfer large amounts of data. Most maintenance and control
applications, the common use for the I²C bus, typically operate at 100 kHz (in standard and fast modes).

An example of Ultra-Fast speed mode devices are LED controllers and other devices that do not need
feedback. These devices typically need to transfer large amounts of data greater than 1Mhz.

Any DW_apb_i2c device can be attached to an I²C-bus and every device can talk with any master, passing
information back and forth. There needs to be at least one master (such as a microcontroller or DSP) on the
bus but there can be multiple masters, which require them to arbitrate for ownership. Multiple masters and
arbitration are explained later in this chapter.

The DW_apb_i2c also supports SMBus and PMBus protocols for System Management and Power
management.

The DW_apb_i2c is made up of an AMBA APB slave interface, an I2C interface, and FIFO logic to maintain
coherency between the two interfaces. A simplified block diagram of the component is illustrated in
Figure 3-1.

Figure 3-1 DW_apb_i2c Block Diagram

NoteNoteNoteNote In this databook, any reference to SMBus implicitly refers to PMBus also and vice
versa.

DW_apb_i2c

Master State
Machine

Slave State
Machine

Register
File

AMBA Bus
Interface Unit

Clock
Generator

Rx
Shift

Tx
Shift

Rx
Filter

Toggle Synchronizer DMA Interface
Interrupt

Controller

RX
FIFO

TX
FIFO

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

The following define the file names and functions of the blocks in Figure 3-1:

■ AMBA Bus Interface Unit—DW_apb_i2c_biu.v—Takes the APB interface signals and translates them
into a common generic interface that allows the register file to be bus protocol-agnostic.

■ Register File—DW_apb_i2c_regfile—Contains configuration registers and is the interface with
software.

■ Slave State Machine—DW_apb_i2c_slvfsm—Follows the protocol for a slave and monitors bus for
address match.

■ Master State Machine—DW_apb_i2c_mstfsm—Generates the I2C protocol for the master transfers.

■ Clock Generator—DW_apb_i2c_clk_gen.v—Calculates the required timing to do the following:

❑ Generate the SCL clock when configured as a master

❑ Check for bus idle

❑ Generate a START and a STOP

❑ Setup the data and hold the data

■ Rx Shift—DW_apb_i2c_rx_shift—Takes data into the design and extracts it in byte format.

■ Tx Shift—DW_apb_i2c_tx_shift—Presents data supplied by CPU for transfer on the I2C bus.

■ Rx Filter—DW_apb_i2c_rx_filter—Detects the events in the bus; for example, start, stop and
arbitration lost.

■ Toggle—DW_apb_i2c_toggle—Generates pulses on both sides and toggles to transfer signals across
clock domains.

■ Synchronizer—DW_apb_i2c_sync—Transfers signals from one clock domain to another.

■ DMA Interface—DW_apb_i2c_dma—Generates the handshaking signals to the central DMA
controller in order to automate the data transfer without CPU intervention.

■ Interrupt Controller—DW_apb_i2c_intctl—Generates the raw interrupt and interrupt flags, allowing
them to be set and cleared.

■ RX FIFO/TX FIFO—DW_apb_i2c_fifo—Holds the RX FIFO and TX FIFO register banks and
controllers, along with their status levels.

NoteNoteNoteNote The ic_clk frequency must be greater than or equal to the pclk frequency. This restriction
occurs because the clock domain-crossing scheme within the DW_apb_i2c does not support
pclk faster than ic_clk.

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.2 I2C Terminology
The following terms are used throughout this manual and are defined as follows:

3.2.1 I2C Bus Terms

The following terms relate to how the role of the I2C device and how it interacts with other I2C devices on
the bus.

■ Transmitter – the device that sends data to the bus. A transmitter can either be a device that initiates
the data transmission to the bus (a master-transmitter) or responds to a request from the master to
send data to the bus (a slave-transmitter).

■ Receiver – the device that receives data from the bus. A receiver can either be a device that receives
data on its own request (a master-receiver) or in response to a request from the master (a slave-receiver).

■ Master -– the component that initializes a transfer (START command), generates the clock (SCL)
signal and terminates the transfer (STOP command). A master can be either a transmitter or a
receiver.

■ Slave – the device addressed by the master. A slave can be either receiver or transmitter.

These concepts are illustrated in Figure 3-2.

Figure 3-2 Master/Slave and Transmitter/Receiver Relationships

■ Multi-master – the ability for more than one master to co-exist on the bus at the same time without
collision or data loss.

■ Arbitration – the predefined procedure that authorizes only one master at a time to take control of
the bus. For more information about this behavior, refer to “Multiple Master Arbitration” on page 53.

■ Synchronization – the predefined procedure that synchronizes the clock signals provided by two or
more masters. For more information about this feature, refer to “Clock Synchronization” on page 55.

■ SDA – data signal line (Serial DAta)

■ SCL – clock signal line (Serial CLock)

Transmitter

Receiver

Receiver

Transmitter

Master

Master

Slave

Slave

SDA

SCL

SDA

SCL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

3.2.2 Bus Transfer Terms

The following terms are specific to data transfers that occur to/from the I2C bus.

■ START (RESTART) – data transfer begins with a START or RESTART condition. The level of the
SDA data line changes from high to low, while the SCL clock line remains high. When this occurs, the
bus becomes busy.

■ STOP – data transfer is terminated by a STOP condition. This occurs when the level on the SDA data
line passes from the low state to the high state, while the SCL clock line remains high. When the data
transfer has been terminated, the bus is free or idle once again. The bus stays busy if a RESTART is
generated instead of a STOP condition.

3.3 I2C Behavior
The DW_apb_i2c can be controlled via software to be either:

■ An I2C master only, communicating with other I2C slaves; OR

■ An I2C slave only, communicating with one more I2C masters.

The master is responsible for generating the clock and controlling the transfer of data. The slave is
responsible for either transmitting or receiving data to/from the master. The acknowledgement of data is
sent by the device that is receiving data, which can be either a master or a slave. As mentioned previously,
the I2C protocol also allows multiple masters to reside on the I2C bus and uses an arbitration procedure to
determine bus ownership.

Each slave has a unique address that is determined by the system designer. When a master wants to
communicate with a slave, the master transmits a START/RESTART condition that is then followed by the
slave’s address and a control bit (R/W) to determine if the master wants to transmit data or receive data
from the slave. The slave then sends an acknowledge (ACK) pulse after the address.

If the master (master-transmitter) is writing to the slave (slave-receiver), the receiver gets one byte of data.
This transaction continues until the master terminates the transmission with a STOP condition. If the master
is reading from a slave (master-receiver), the slave transmits (slave-transmitter) a byte of data to the master,
and the master then acknowledges the transaction with the ACK pulse. This transaction continues until the
master terminates the transmission by not acknowledging (NACK) the transaction after the last byte is

NoteNoteNoteNote START and RESTART conditions are functionally identical.

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

received, and then the master issues a STOP condition or addresses another slave after issuing a RESTART
condition. This behavior is illustrated in Figure 3-3.

In Ultra-Fast Speed Mode, the master can issue only the write transfers to the slaves with always not
acknowledging (NACK) from the slaves. Read transfers are not allowed in this mode.

Figure 3-3 Data transfer on the I2C Bus

The DW_apb_i2c is a synchronous serial interface. The SDA line is a bidirectional signal and changes only
while the SCL line is low, except for STOP, START, and RESTART conditions. The output drivers are
open-drain or open-collector to perform wire-AND functions on the bus. The maximum number of devices
on the bus is limited by only the maximum capacitance specification of 400 pF. Data is transmitted in byte
packages.

The I2C protocols implemented in DW_apb_i2c are described in more details in “I2C Protocols” on page 43.

3.3.1 START and STOP Generation

When operating as an I2C master, putting data into the transmit FIFO causes the DW_apb_i2c to generate a
START condition on the I2C bus. If the IC_EMPTYFIFO_HOLD_MASTER_EN parameteris set to 0,
allowing the transmit FIFO to empty causes the DW_apb_i2c to generate a STOP condition on the I2C bus. If
IC_EMPTYFIFO_HOLD_MASTER_EN is set to 1, then writing a 1 to IC_DATA_CMD[9] causes the
DW_apb_i2c to generate a STOP condition on the I2C bus; a STOP condition is not issued if this bit is not set,
even if the transmit FIFO is empty.

When operating as a slave, the DW_apb_i2c does not generate START and STOP conditions, as per the
protocol. However, if a read request is made to the DW_apb_i2c, it holds the SCL line low until read data
has been supplied to it. This stalls the I2C bus until read data is provided to the slave DW_apb_i2c, or the
DW_apb_i2c slave is disabled by writing a 0 to bit 0 of the IC_ENABLE register.

3.3.2 Combined Formats

The DW_apb_i2c supports mixed read and write combined format transactions in both 7-bit and 10-bit
addressing modes.

The DW_apb_i2c does not support mixed address and mixed address format—that is, a 7-bit address
transaction followed by a 10-bit address transaction or vice versa—combined format transactions.

To initiate combined format transfers, IC_CON.IC_RESTART_EN should be set to 1. With this value set and
operating as a master, when the DW_apb_i2c completes an I2C transfer, it checks the transmit FIFO and
executes the next transfer. If the direction of this transfer differs from the previous transfer, the combined

MSB LSB ACKACK

1 2 7 8 9 1 2 3-8 9

from slave from receiver
SDA

SCL

P or R

START or
RESTART
Condition

STOP AND
RESTART
Condition

Byte Complete
Interrupt within
Slave

SCL held low
while servicing
interrupts

S
or
R

R or P

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

format is used to issue the transfer. If the transmit FIFO is empty when the current I2C transfer completes—
depending on the value of IC_EMPTYFIFO_HOLD_MASTER_EN:

■ Either a STOP is issued or,

■ IC_DATA_CMD[9] is checked and:

❑ If set to 1, a STOP bit is issued.

❑ If set to 0, the SCL is held low until the next command is written to the transmit FIFO.

For more details, refer to “Tx FIFO Management and START, STOP and RESTART Generation” on page 48.

3.4 I2C Protocols
The DW_apb_i2c has the protocols discussed in this section.

3.4.1 START and STOP Conditions

When the bus is idle, both the SCL and SDA signals are pulled high through external pull-up resistors on
the bus. When the master wants to start a transmission on the bus, the master issues a START condition.
This is defined to be a high-to-low transition of the SDA signal while SCL is 1. When the master wants to
terminate the transmission, the master issues a STOP condition. This is defined to be a low-to-high
transition of the SDA line while SCL is 1. Figure 3-4 shows the timing of the START and STOP conditions.
When data is being transmitted on the bus, the SDA line must be stable when SCL is 1.

Figure 3-4 START and STOP Condition

NoteNoteNoteNote Mixed write and read transactions in both 7-bit and 10-bit addressing modes are
not applicable for Ultra-Fast Mode (IC_ULTRA_FAST_MODE=1) as read transfers
are not supported in Ultra-Fast Mode.

NoteNoteNoteNote The signal transitions for the START/STOP conditions, as depicted in Figure 3-4, reflect those
observed at the output signals of the Master driving the I2C bus. Care should be taken when
observing the SDA/SCL signals at the input signals of the Slave(s), because unequal line
delays may result in an incorrect SDA/SCL timing relationship.

SDA

SCL
PS

Start Condition
Change of Data

Allowed
Change of Data

Allowed Stop Condition
Data line Stable

Data Valid

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.4.2 Addressing Slave Protocol

There are two address formats: the 7-bit address format and the 10-bit address format.

3.4.2.1 7-bit Address Format

During the 7-bit address format, the first seven bits (bits 7:1) of the first byte set the slave address and the
LSB bit (bit 0) is the R/W bit as shown in Figure 3-5. When bit 0 (R/W) is set to 0, the master writes to the
slave. When bit 0 (R/W) is set to 1, the master reads from the slave.

Figure 3-5 7-bit Address Format

3.4.2.2 10-bit Address Format

During 10-bit addressing, two bytes are transferred to set the 10-bit address. The transfer of the first byte
contains the following bit definition. The first five bits (bits 7:3) notify the slaves that this is a 10-bit transfer
followed by the next two bits (bits 2:1), which set the slaves address bits 9:8, and the LSB bit (bit 0) is the
R/W bit. The second byte transferred sets bits 7:0 of the slave address. Figure 3-6 shows the 10-bit address
format.

Figure 3-6 10-bit Address Format

Table 3-1 on page 44 defines the special purpose and reserved first byte addresses.
v

Table 3-1 I2C/SMBus Definition of Bits in First Byte

Slave Address R/W Bit Description

0000 000 0 General Call Address. DW_apb_i2c places the data in the receive buffer and issues a
General Call interrupt.

0000 000 1 START byte. For more details, refer to “START BYTE Transfer Protocol” on page 47.

0000 001 X CBUS address. DW_apb_i2c ignores these accesses.

S A6 A5 A4 A3 A2 A1 A0 R/W ACK

Slave Address
sent by slave

S = START condition R/W = Read/Write PulseACK = Acknowledge

MSB LSB

S A6 A5 A4 A3 A2 A1 A0R/W ACK

Reserved for 10-bit sent by slave

S = START condition

R/W = Read/Write Pulse

ACK = Acknowledge

A7ACKA9‘1’ ‘1’ ‘1’ ‘1’ ‘0’ A8

Address

sent by slave

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

DW_apb_i2c does not restrict you from using these reserved addresses. However, if you use these reserved
addresses, you may run into incompatibilities with other I2C components.

3.4.3 Transmitting and Receiving Protocol

The master can initiate data transmission and reception to/from the bus, acting as either a
master-transmitter or master-receiver. A slave responds to requests from the master to either transmit data
or receive data to/from the bus, acting as either a slave-transmitter or slave-receiver, respectively.

3.4.3.1 Master-Transmitter and Slave-Receiver

All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer.
After the master sends the address and R/W bit or the master transmits a byte of data to the slave, the
slave-receiver must respond with the acknowledge signal (ACK). When a slave-receiver does not respond
with an ACK pulse, the master aborts the transfer by issuing a STOP condition. The slave must leave the
SDA line high so that the master can abort the transfer.

0000 010 X Reserved.

0000 011 X Reserved.

0000 1XX X High-speed master code (for more information, refer to “Multiple Master Arbitration” on
page 53).

1111 1XX X Reserved.

1111 0XX X 10-bit slave addressing.

0001 000 X SMbus Host

0001 100 X SMBus Alert Response Address

1100 001 X SMBus Device Default Address

Table 3-1 I2C/SMBus Definition of Bits in First Byte (Continued)

Slave Address R/W Bit Description

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

If the master-transmitter is transmitting data as shown in Figure 3-7, then the slave-receiver responds to the
master-transmitter with an acknowledge pulse after every byte of data is received.

Figure 3-7 Master-Transmitter Protocol

3.4.3.2 Master-Receiver and Slave-Transmitter

If the master is receiving data as shown in Figure 3-8, then the master responds to the slave-transmitter with
an acknowledge pulse after a byte of data has been received, except for the last byte. This is the way the

NoteNoteNoteNote In Ultra-Fast Mode, the slave-receiver always responds with the No Acknowledge
signal (NACK) for the Address and the write data from the Master.

S A/A PR/W

For 7-bit Address

A DATASlave Address A DATA

‘0’ (write)
S A/A PR/W

For 10-bit Address

ASlave Address

‘0’ (write)

First 7 bits
Slave Address
Second Byte

A DATA

From Master to Slave

From Slave to Master

A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = START Condition
P = STOP Condition

‘0’ (write)‘11110xxx’

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

master-receiver notifies the slave-transmitter that this is the last byte. The slave-transmitter relinquishes the
SDA line after detecting the No Acknowledge (NACK) so that the master can issue a STOP condition.

Figure 3-8 Master-Receiver Protocol

When a master does not want to relinquish the bus with a STOP condition, the master can issue a RESTART
condition. This is identical to a START condition except it occurs after the ACK pulse. Operating in master
mode, the DW_apb_i2c can then communicate with the same slave using a transfer of a different direction.
For a description of the combined format transactions that the DW_apb_i2c supports, refer to “Combined
Formats” on page 42.

3.4.4 START BYTE Transfer Protocol

The START BYTE transfer protocol is set up for systems that do not have an on-board dedicated I2C
hardware module. When the DW_apb_i2c is addressed as a slave, it always samples the I2C bus at the
highest speed supported so that it never requires a START BYTE transfer. However, when DW_apb_i2c is a
master, it supports the generation of START BYTE transfers at the beginning of every transfer in case a slave
device requires it.

NoteNoteNoteNote The DW_apb_i2c must be completely disabled—if I2C_DYNAMIC_TAR_UPDATE = 0—or
inactive on the serial port—if I2C_DYNAMIC_TAR_UPDATE = 1—before the target slave
address register (IC_TAR) can be reprogrammed.

NoteNoteNoteNote In Ultra-Fast mode, the Master receiver and Slave Transmitter is not applicable, as
read transfers are not supported.

S A PR/W

For 7-bit Address

A DATASlave Address A DATA

‘0’ (write)
S R/W

For 10-bit Address

ASlave Address

‘1’ (read)

First 7 bits
Slave Address
Second Byte

A DATA

From Master to Slave

From Slave to Master

A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = START Condition

P = STOP Condition

Sr Slave Address
First 7 bits

R/W A A P

R = RESTART Condition

‘0’ (write) ‘1’ (read)‘11110xxx’ ‘11110xxx’

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

This protocol consists of seven zeros being transmitted followed by a 1, as illustrated in Figure 3-9. This
allows the processor that is polling the bus to under-sample the address phase until 0 is detected. Once the
microcontroller detects a 0, it switches from the under sampling rate to the correct rate of the master.

Figure 3-9 START BYTE Transfer

The START BYTE procedure is as follows:

1. Master generates a START condition.

2. Master transmits the START byte (0000 0001).

3. Master transmits the ACK clock pulse. (Present only to conform with the byte handling format used
on the bus)

4. No slave sets the ACK signal to 0.

5. Master generates a RESTART (R) condition.

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after
the RESTART condition is generated.

3.5 Tx FIFO Management and START, STOP and RESTART Generation
When operating as a master, the DW_apb_i2c component supports two modes of Tx FIFO management.
You use the IC_EMPTYFIFO_HOLD_MASTER_EN parameter to select between these two modes:

■ IC_EMPTYFIFO_HOLD_MASTER_EN equals 0, illustrated in Figure 3-10

■ IC_EMPTYFIFO_HOLD_MASTER_EN equals 1, illustrated in Figure 3-13 on page 50

3.5.1 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 0

When the value of IC_EMPTYFIFO_HOLD_MASTER_EN is 0, the component generates a STOP on the bus
whenever the Tx FIFO becomes empty. If RESTART generation capability is enabled, the component
generates a RESTART when the direction of the transfer in the Tx FIFO commands changes from Read to
Write or vice-versa; if RESTART is not enabled, a STOP followed by a START is generated in this situation.

SDA

SCL

SrS

start byte 00000001

dummy
acknowledge

1 2 7 8 9

(HIGH)

ACK

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Figure 3-10 shows the bits in the IC_DATA_CMD register if IC_EMPTYFIFO_HOLD_MASTER_EN = 0.

Figure 3-10 IC_DATA_CMD Register if IC_EMPTYFIFO_HOLD_MASTER_EN = 0

Figure 3-11 shows a timing diagram that illustrates the behavior of the DW_apb_i2c when Tx FIFO becomes
empty while operating as a master transmitter when IC_EMPTYFIFO_HOLD_MASTER_EN=0.

Figure 3-11 Master Transmitter — Tx FIFO Becomes Empty If IC_EMPTYFIFO_HOLD_MASTER_EN = 0

Figure 3-12 shows a timing diagram that illustrates the behavior of the DW_apb_i2c when Tx FIFO becomes
empty while operating as a master receiver when IC_EMPTYFIFO_HOLD_MASTER_EN=0.

Figure 3-12 Master Receiver — Tx FIFO Becomes Empty If IC_EMPTYFIFO_HOLD_MASTER_EN = 0

3.5.2 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 1

When the value of IC_EMPTYFIFO_HOLD_MASTER_EN is 1, the component does not generate a STOP if
the Tx FIFO becomes empty; in this situation the component holds the SCL line low, stalling the bus until a
new entry is available in the Tx FIFO. A STOP condition is generated only when the user specifically
requests it by setting bit 9 (Stop bit) of the command written to IC_DATA_CMD register.

CMD DATA

8 7 0

IC_DATA_CMD

DATA –Read/Write field; data retrieved from slave is read from this
field; data to be sent to slave is written to this field.
CMD –Write-only field; this bit determines whether transfer to be
carried out is Read (CMD=1) or Write (CMD=0)

SDA

SCL

FIFO_EMPTY

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

Last byte popped
from Tx FIFO

Empty Tx FIFO triggers
STOP condition on bus

S P

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

SDA

SCL

FIFO_EMPTY

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

Last command popped
from Tx FIFO

Empty Tx FIFO triggers
STOP condition on bus

S P

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

Figure 3-13 shows the bits in the IC_DATA_CMD register if IC_EMPTYFIFO_HOLD_MASTER_EN = 1.

Figure 3-13 IC_DATA_CMD Register if IC_EMPTYFIFO_HOLD_MASTER_EN = 1

Figure 3-14 illustrates the behavior of the DW_apb_i2c when the Tx FIFO becomes empty while operating as
a master transmitter, as well as showing the generation of a STOP condition when
IC_EMPTYFIFO_HOLD_MASTER_EN=1.

Figure 3-14 Master Transmitter — Tx FIFO Empties/STOP Generation If IC_EMPTYFIFO_HOLD_MASTER_EN = 1

Restart DATA

8 7 0

IC_DATA_CMD

DATA –Read/Write field; data retrieved from slave is read from this
field; data to be sent to slave is written to this field
CMD –Write-only field; this bit determines whether transfer to be
carried out is Read (CMD=1) or Write (CMD=0)
Stop –Write-only field; this bit determines whether STOP is generated
after data byte is sent or received
Restart – Write-only field; this bit determines whether RESTART (or
STOP followed by START in case of restart capability is not enabled)
is generated before data byte is sent of received

Stop CMD

10 9

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

STOP bit enabled triggers
STOP condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

P

AckD6 D5 D4 D3 D2 D1 D0D7

…

…
…

Last byte popped from Tx
FIFO, with STOP bit not set

Master releases SCL line and
resumes transmission because
new data became available

Last byte popped from Tx
FIFO with STOP bit set

Tx FIFO loaded
with new data

Because STOP bit was not set
on last byte popped from Tx
FIFO, Master holds SCL low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Figure 3-15 illustrates the behavior of the DW_apb_i2c when the Tx FIFO becomes empty while operating as
a master receiver, as well as showing the generation of a STOP condition when
IC_EMPTYFIFO_HOLD_MASTER_EN=1.

Figure 3-15 Master Receiver — Tx FIFO Empties/STOP Generation If IC_EMPTYFIFO_HOLD_MASTER_EN = 1

Figure 3-16 and Figure 3-17 illustrate configurations where the user can control the generation of RESTART
conditions on the I2C bus. If bit 10 (Restart) of the IC_DATA_CMD register is set and the restart capability is
enabled (IC_RESTART_EN=1), a RESTART is generated before the data byte is written to or read from the
slave. If the restart capability is not enabled a STOP followed by a START is generated in place of the
RESTART. Figure 3-16 illustrates this situation during operation as a master transmitter.

Figure 3-16 Master Transmitter — Restart Bit of IC_DATA_CMD Is Set (IC_EMPTYFIFO_HOLD_MASTER_EN = 1)

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

STOP bit enabled triggers
STOP condition on bus

S

R Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

P
NakD6 D5 D4 D3 D2 D1 D0D7

…

…
…

Last command popped from
Tx FIFO, with STOP bit not set

Master releases SCL line and
resumes transmission because
new command became available

Last command popped from
Tx FIFO with STOP bit set

Tx FIFO loaded
with new command

Because STOP bit was not set
on last command popped from
Tx FIFO, Master holds SCL low

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Next byte in Tx FIFO
has RESTART bit set

Because next byte on Tx FIFO
has been tagged with RESTART bit,
Master issues RESTART and

D6D7 …W

…

initiates new transmission

…

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

Figure 3-17 illustrates the same situation, but during operation as a master receiver.

Figure 3-17 Master Receiver — Restart Bit of IC_DATA_CMD Is Set (IC_EMPTYFIFO_HOLD_MASTER_EN = 1)

Figure 3-18 illustrates operation as a master transmitter where the Stop bit of the IC_DATA_CMD register is
set and the Tx FIFO is not empty (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 3-18 Master Transmitter — Stop Bit of IC_DATA_CMD Set/Tx FIFO Not Empty
(IC_EMPTYFIFO_HOLD_MASTER_EN=1)

Figure 3-19 illustrates operation as a master transmitter where the first byte loaded into the Tx FIFO is
allowed to go empty with the Restart bit set (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 3-19 Master Transmitter — First Byte Loaded Into Tx FIFO Allowed to Empty, Restart Bit Set
(IC_EMPTYFIFO_HOLD_MASTER_EN=1)

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

S

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Next command in Tx FIFO
has RESTART bit set

Because next command on Tx FIFO
has been tagged with RESTART bit,
Master issues RESTART and

D6D7 …R

…

initiates new transmission

…

Master issues NOT ACK
as required before RESTART
when operating as receiver

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

S

AckA6 A5 A4 A3 A2 A1 A0

Because more data is available
in Tx FIFO, a new transmission is
immediately initiated (provided

D6D7 …W

…

master is granted access to bus)

…

Because STOP bit was set on
last byte popped from Tx FIFO,
Master generates STOP conditionOne byte (not last one)

is popped from Tx FIFO
with STOP bit set

P

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Master issues RESTART
and initiates new

D6D7 …W

…

…

Because STOP bit

popped from Tx FIFO,
Master holds SCL low

Last byte popped
from Tx FIFO with
STOP bit not set

…
…

…

Tx FIFO loaded
with new data

was not set on last byte

transmission

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Figure 3-20 illustrates operation as a master receiver where the Stop bit of the IC_DATA_CMD register is set
and the Tx FIFO is not empty (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 3-20 Master Receiver — Stop Bit of IC_DATA_CMD Set/Tx FIFO Not Empty
(IC_EMPTYFIFO_HOLD_MASTER_EN=1 and IC_ULTRA_FAST_MODE=0)

Figure 3-21 illustrates operation as a master receiver where the first command loaded after the Tx FIFO is
allowed to empty and the Restart bit is set (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 3-21 Master Receiver — First Command Loaded After Tx FIFO Allowed to Empty/Restart Bit Set
(IC_EMPTYFIFO_HOLD_MASTER_EN=1 and IC_ULTRA_FAST_MODE=0)

3.6 Multiple Master Arbitration
The DW_apb_i2c bus protocol allows multiple masters to reside on the same bus. If there are two masters on
the same I²C-bus, there is an arbitration procedure if both try to take control of the bus at the same time by
generating a START condition at the same time. Once a master (for example, a microcontroller) has control
of the bus, no other master can take control until the first master sends a STOP condition and places the bus
in an idle state.

Arbitration takes place on the SDA line, while the SCL line is 1. The master, which transmits a 1 while the
other master transmits 0, loses arbitration and turns off its data output stage. The master that lost arbitration
can continue to generate clocks until the end of the byte transfer. If both masters are addressing the same
slave device, the arbitration could go into the data phase.

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

S

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

S

AckA6 A5 A4 A3 A2 A1 A0

One command (not last
one) is popped from

Because more commands are
available in Tx FIFO, a new
transmission is immediately

D6D7 …R

…

initiated (provided master is

…

P

Tx FIFO with STOP
bit set

Because STOP bit was

popped from Tx FIFO,
Master generates

set on last command

STOP condition granted access to bus)

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

S

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Last command popped
from Tx FIFO with

Master issues RESTART and
initiates new transmission

D6D7 …R

…

…

STOP bit not set

Because STOP bit was

popped from Tx FIFO,
Master holds SCL low

not set on last command

…
…

…

Tx FIFO loaded
with new command

Master issues NOT ACK as
required before RESTART
when operating as receiver

Next command loaded into
Tx FIFO has RESTART bit set

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

Upon detecting that it has lost arbitration to another master, the DW_apb_i2c will stop generating SCL
(ic_clk_oe).

Figure 3-22 illustrates the timing of when two masters are arbitrating on the bus.

Figure 3-22 Multiple Master Arbitration

For high-speed mode, the arbitration cannot go into the data phase because each master is programmed
with a unique high-speed master code. This 8-bitcode is defined by the system designer and is set by writing
to the High Speed Master Mode Code Address Register, IC_HS_MADDR. Because the codes are unique,
only one master can win arbitration, which occurs by the end of the transmission of the high-speed master
code.

Control of the bus is determined by address or master code and data sent by competing masters, so there is
no central master nor any order of priority on the bus.

SDA lines up
with DATA1
START condition

SDA

SCL

MSB

MSB

MSB

matching data

DATA1

DATA2

DATA1 loses arbitration

‘1’

‘0’

SDA mirrors DATA2

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Arbitration is not allowed between the following conditions:

■ A RESTART condition and a data bit

■ A STOP condition and a data bit

■ A RESTART condition and a STOP condition

Slaves are not involved in the arbitration process.

3.7 Clock Synchronization
When two or more masters try to transfer information on the bus at the same time, they must arbitrate and
synchronize the SCL clock. All masters generate their own clock to transfer messages. Data is valid only
during the high period of SCL clock. Clock synchronization is performed using the wired-AND connection
to the SCL signal. When the master transitions the SCL clock to 0, the master starts counting the low time of
the SCL clock and transitions the SCL clock signal to 1 at the beginning of the next clock period. However, if
another master is holding the SCL line to 0, then the master goes into a HIGH wait state until the SCL clock
line transitions to 1.

All masters then count off their high time, and the master with the shortest high time transitions the SCL
line to 0. The masters then counts out their low time and the one with the longest low time forces the other
master into a HIGH wait state. Therefore, a synchronized SCL clock is generated, which is illustrated in
Figure 3-23. Optionally, slaves may hold the SCL line low to slow down the timing on the I2C bus.

Figure 3-23 Multi-Master Clock Synchronization

NoteNoteNoteNote Multi-master arbitration is not applicable in Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) as single Master is present.

Wait State

Start counting HIGH period

CLKA

CLKB

SCL

SCL LOW transition
Resets all CLKs to start
counting their LOW periods

SCL transitions HIGH
when all CLKs are in HIGH state

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.8 Operation Modes
This section provides information on operation modes.

3.8.1 Slave Mode Operation

This section discusses slave mode procedures.

3.8.1.1 Initial Configuration

To use the DW_apb_i2c as a slave, perform the following steps:

1. Disable the DW_apb_i2c by writing a ‘0’ to bit 0 of the IC_ENABLE register.

2. Write to the IC_SAR register (bits 9:0) to set the slave address. This is the address to which the
DW_apb_i2c responds.

3. Write to the IC_CON register to specify which type of addressing is supported (7- or 10-bit by setting
bit 3). Enable the DW_apb_i2c in slave-only mode by writing a ‘0’ into bit 6 (IC_SLAVE_DISABLE)
and a ‘0’ to bit 0 (MASTER_MODE).

4. Enable the DW_apb_i2c by writing a ‘1’ in bit 0 of the IC_ENABLE register.

NoteNoteNoteNote Clock Synchronization is not supported in Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) as single master is present in the Ultra-Fast Mode
system.

NoteNoteNoteNote It is important to note that the DW_apb_i2c should only be set to operate as an I2C Master, or
I2C Slave, but not both simultaneously. This is achieved by ensuring that bit 6
(IC_SLAVE_DISABLE) and 0 (IC_MASTER_MODE) of the IC_CON register are never set to 0
and 1, respectively.

NoteNoteNoteNote Slaves and masters do not have to be programmed with the same type of addressing 7- or 10-
bit address. For instance, a slave can be programmed with 7-bit addressing and a master with
10-bit addressing, and vice versa.

NoteNoteNoteNote Depending on the reset values chosen, steps 2 and 3 may not be necessary because the
reset values can be configured. For instance, if the device is only going to be a master, there
would be no need to set the slave address because you can configure DW_apb_i2c to have
the slave disabled after reset and to enable the master after reset. The values stored are static
and do not need to be reprogrammed if the DW_apb_i2c is disabled.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

3.8.1.2 Slave-Transmitter Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and requests data, the DW_apb_i2c
acts as a slave-transmitter and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the slave address in
the IC_SAR register of the DW_apb_i2c.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to
indicate that it is acting as a slave-transmitter.

3. The DW_apb_i2c asserts the RD_REQ interrupt (bit 5 of the IC_RAW_INTR_STAT register) and
holds the SCL line low. It is in a wait state until software responds.

If the RD_REQ interrupt has been masked, due to IC_INTR_MASK[5] register (M_RD_REQ bit field)
being set to 0, then it is recommended that a hardware and/or software timing routine be used to
instruct the CPU to perform periodic reads of the IC_RAW_INTR_STAT register.

a. Reads that indicate IC_RAW_INTR_STAT[5] (R_RD_REQ bit field) being set to 1 must be treated
as the equivalent of the RD_REQ interrupt being asserted.

b. Software must then act to satisfy the I2C transfer.

c. The timing interval used should be in the order of 10 times the fastest SCL clock period the
DW_apb_i2c can handle. For example, for 400 kb/s, the timing interval is 25us.

4. If there is any data remaining in the Tx FIFO before receiving the read request, then the DW_apb_i2c
asserts a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register) to flush the old data from
the TX FIFO.

Attention
It is recommended that the DW_apb_i2c Slave be brought out of reset only when the I2C
bus is IDLE. De-asserting the reset when a transfer is ongoing on the bus causes internal
synchronization flip-flops used to synchronize SDA and SCL to toggle from a reset value
of 1 to the actual value on the bus. This can result in SDA toggling from 1 to 0 while SCL
is 1, thereby causing a false START condition to be detected by the DW_apb_i2c Slave.
This scenario can also be avoided by configuring the DW_apb_i2c with
IC_SLAVE_DISABLE = 1 and IC_MASTER_MODE = 1 so that the Slave interface is
disabled after reset. It can then be enabled by programming IC_CON[0] = 0 and
IC_CON[6] = 0 after the internal SDA and SCL have synchronized to the value on the
bus; this takes approximately 6 ic_clk cycles after reset de-assertion.

NoteNoteNoteNote The value of 10 is recommended here because this is approximately the amount of time
required for a single byte of data transferred on the I2C bus.

NoteNoteNoteNote Because the DW_apb_i2c’s Tx FIFO is forced into a flushed/reset state whenever a TX_ABRT
event occurs, it is necessary for software to release the DW_apb_i2c from this state by
reading the IC_CLR_TX_ABRT register before attempting to write into the Tx FIFO. See
register IC_RAW_INTR_STAT for more details.

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

If the TX_ABRT interrupt has been masked, due to of IC_INTR_MASK[6] register (M_TX_ABRT bit
field) being set to 0, then it is recommended that re-using the timing routine (described in the
previous step), or a similar one, be used to read the IC_RAW_INTR_STAT register.

a. Reads that indicate bit 6 (R_TX_ABRT) being set to 1 must be treated as the equivalent of the
TX_ABRT interrupt being asserted.

b. There is no further action required from software.

c. The timing interval used should be similar to that described in the previous step for the
IC_RAW_INTR_STAT[5] register.

5. Software writes to the IC_DATA_CMD register with the data to be written (by writing a ‘0’ in bit 8).

6. Software must clear the RD_REQ and TX_ABRT interrupts (bits 5 and 6, respectively) of the
IC_RAW_INTR_STAT register before proceeding.

If the RD_REQ and/or TX_ABRT interrupts have been masked, then clearing of the
IC_RAW_INTR_STAT register will have already been performed when either the R_RD_REQ or
R_TX_ABRT bit has been read as 1.

7. The DW_apb_i2c releases the SCL and transmits the byte.

8. The master may hold the I2C bus by issuing a RESTART condition or release the bus by issuing a
STOP condition.

3.8.1.3 Slave-Receiver Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and is sending data, the
DW_apb_i2c acts as a slave-receiver and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the DW_apb_i2c’s
slave address in the IC_SAR register.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to
indicate that the DW_apb_i2c is acting as a slave-receiver.

3. DW_apb_i2c receives the transmitted byte and places it in the receive buffer.

NoteNoteNoteNote Slave-Transmitter Operation for a Single Byte is not applicable in Ultra-Fast Mode
as Read transfers are not supported.

NoteNoteNoteNote If the Rx FIFO is completely filled with data when a byte is pushed, and
IC_RX_FULL_HLD_BUS_EN = 0, then an overflow occurs and the DW_apb_i2c continues
with subsequent I2C transfers. Because a NACK is not generated, software must recognize
the overflow when indicated by the DW_apb_i2c (by the R_RX_OVER bit in the
IC_INTR_STAT register) and take appropriate actions to recover from lost data. Hence, there
is a real time constraint on software to service the Rx FIFO before the latter overflows, as
there is no way to re-apply pressure to the remote transmitting master. You must select a deep
enough Rx FIFO depth to satisfy the interrupt service interval of the system.
If the Rx FIFO is completely filled with data when a byte is pushed, and
IC_RX_FULL_HLD_BUS_EN = 1, then the DW_apb_i2c slave holds the I2C SCL line low
until the Rx FIFO has some space, and then continues with the next read request.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

4. DW_apb_i2c asserts the RX_FULL interrupt (IC_RAW_INTR_STAT[2] register).

If the RX_FULL interrupt has been masked, due to setting IC_INTR_MASK[2] register to 0 or setting
IC_TX_TL to a value larger than 0, then it is recommended that a timing routine (described in
“Slave-Transmitter Operation for a Single Byte” on page 57) be implemented for periodic reads of the
IC_STATUS register. Reads of the IC_STATUS register, with bit 3 (RFNE) set at 1, must then be
treated by software as the equivalent of the RX_FULL interrupt being asserted.

5. Software may read the byte from the IC_DATA_CMD register (bits 7:0).

6. The other master device may hold the I2C bus by issuing a RESTART condition, or release the bus by
issuing a STOP condition.

3.8.1.4 Slave-Transfer Operation For Bulk Transfers

In the standard I2C protocol, all transactions are single byte transactions and the programmer responds to a
remote master read request by writing one byte into the slave’s TX FIFO. When a slave (slave-transmitter) is
issued with a read request (RD_REQ) from the remote master (master-receiver), at a minimum there should
be at least one entry placed into the slave-transmitter’s TX FIFO. DW_apb_i2c is designed to handle more
data in the TX FIFO so that subsequent read requests can take that data without raising an interrupt to get
more data. Ultimately, this eliminates the possibility of significant latencies being incurred between raising
the interrupt for data each time had there been a restriction of having only one entry placed in the TX FIFO.

This mode only occurs when DW_apb_i2c is acting as a slave-transmitter. If the remote master
acknowledges the data sent by the slave-transmitter and there is no data in the slave’s TX FIFO, the
DW_apb_i2c holds the I2C SCL line low while it raises the read request interrupt (RD_REQ) and waits for
data to be written into the TX FIFO before it can be sent to the remote master.

If the RD_REQ interrupt is masked, due to bit 5 (M_RD_REQ) of the IC_INTR_STAT register being set to 0,
then it is recommended that a timing routine be used to activate periodic reads of the IC_RAW_INTR_STAT
register. Reads of IC_RAW_INTR_STAT that return bit 5 (R_RD_REQ) set to 1 must be treated as the
equivalent of the RD_REQ interrupt referred to in this section. This timing routine is similar to that
described in “Slave-Transmitter Operation for a Single Byte” on page 57.

The RD_REQ interrupt is raised upon a read request, and like interrupts, must be cleared when exiting the
interrupt service handling routine (ISR). The ISR allows you to either write 1 byte or more than 1 byte into
the Tx FIFO. During the transmission of these bytes to the master, if the master acknowledges the last byte.
then the slave must raise the RD_REQ again because the master is requesting for more data.

If the programmer knows in advance that the remote master is requesting a packet of n bytes, then when
another master addresses DW_apb_i2c and requests data, the Tx FIFO could be written with n number
bytes and the remote master receives it as a continuous stream of data. For example, the DW_apb_i2c slave
continues to send data to the remote master as long as the remote master is acknowledging the data sent
and there is data available in the Tx FIFO. There is no need to hold the SCL line low or to issue RD_REQ
again.

If the remote master is to receive n bytes from the DW_apb_i2c but the programmer wrote a number of
bytes larger than n to the Tx FIFO, then when the slave finishes sending the requested n bytes, it clears the
Tx FIFO and ignores any excess bytes.

The the DW_apb_i2c generates a transmit abort (TX_ABRT) event to indicate the clearing of the Tx FIFO in
this example. At the time an ACK/NACK is expected, if a NACK is received, then the remote master has all
the data it wants. At this time, a flag is raised within the slave’s state machine to clear the leftover data in the

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

Tx FIFO. This flag is transferred to the processor bus clock domain where the FIFO exists and the contents of
the Tx FIFO is cleared at that time.

3.8.2 Master Mode Operation

This section discusses master mode procedures.

3.8.2.1 Initial Configuration

The initial configuration procedure for Master Mode Operation depends on the configuration parameter
I2C_DYNAMIC_TAR_UPDATE. When set to “Yes” (1), the target address and address format can be
changed dynamically without having to disable DW_apb_i2c. This parameter only applies to when
DW_apb_i2c is acting as a master because the slave requires the component to be disabled before any
changes can be made to the address. For more information about this parameter, see page 114. For more
information about how this parameter affects the IC_TAR register, see page 154.

The procedures are very similar and are only different with regard to where the IC_10BITADDR_MASTER
bit is set (either bit 4 of IC_CON register or bit 12 of IC_TAR register).

3.8.2.1.1 I2C_DYNAMIC_TAR_UPDATE = 0

To use the DW_apb_i2c as a master when the I2C_DYNAMIC_TAR_UPDATE configuration parameter is
set to “No” (0), perform the following steps:

1. Disable the DW_apb_i2c by writing 0 to bit 0 of the IC_ENABLE register.

2. Write to the IC_CON register to set the maximum speed mode supported (bits 2:1) and the desired
speed of the DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing (bit 4). Ensure
that bit 6 (IC_SLAVE_DISABLE) is written with a ‘1’ and bit 0 (MASTER_MODE) is written with
a ‘1’.

3. Write to the IC_TAR register the address of the I2C device to be addressed (bits 9:0). This register also
indicates whether a General Call or a START BYTE command is going to be performed by I2C.

4. Only applicable for high-speed mode transfers. Write to the IC_HS_MADDR register the desired master
code for the DW_apb_i2c. The master code is programmer-defined.

5. Enable the DW_apb_i2c by writing a 1 to bit 0 of the IC_ENABLE register.

6. Now write transfer direction and data to be sent to the IC_DATA_CMD register. If the
IC_DATA_CMD register is written before the DW_apb_i2c is enabled, the data and commands are
lost as the buffers are kept cleared when DW_apb_i2c is disabled.

NoteNoteNoteNote Slave Transmitter Operation for Bulk Transfers is not applicable in Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) as Master Read Transfers are not supported.

NoteNoteNoteNote Slaves and masters do not have to be programmed with the same type of addressing 7- or 10-
bit address. For instance, a slave can be programmed with 7-bit addressing and a master with
10-bit addressing, and vice versa.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

This step generates the START condition and the address byte on the DW_apb_i2c. Once
DW_apb_i2c is enabled and there is data in the TX FIFO, DW_apb_i2c starts reading the data.

3.8.2.1.2 I2C_DYNAMIC_TAR_UPDATE = 1

To use the DW_apb_i2c as a master when the I2C_DYNAMIC_TAR_UPDATE configuration parameter is
set to “Yes” (1), perform the following steps:

1. Disable the DW_apb_i2c by writing 0 to bit 0 of the IC_ENABLE register.

2. Write to the IC_CON register to set the maximum speed mode supported for slave operation (bits
2:1) and to specify whether the DW_apb_i2c starts its transfers in 7/10 bit addressing mode when the
device is a slave (bit 3).

3. Write to the IC_TAR register the address of the I2C device to be addressed. It also indicates whether a
General Call or a START BYTE command is going to be performed by I2C. The desired speed of the
DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing, is controlled by the
IC_10BITADDR_MASTER bit field (bit 12).

4. Only applicable for high-speed mode transfers. Write to the IC_HS_MADDR register the desired master
code for the DW_apb_i2c. The master code is programmer-defined.

5. Enable the DW_apb_i2c by writing a 1 to bit 0 of the IC_ENABLE register.

6. Now write the transfer direction and data to be sent to the IC_DATA_CMD register. If the
IC_DATA_CMD register is written before the DW_apb_i2c is enabled, the data and commands are
lost as the buffers are kept cleared when DW_apb_i2c is not enabled.

3.8.2.2 Dynamic IC_TAR or IC_10BITADDR_MASTER Update

The DW_apb_i2c supports dynamic updating of the IC_TAR (bits 9:0) and IC_10BITADDR_MASTER (bit
12) bit fields of the IC_TAR register. In order to perform a dynamic update of the IC_TAR register, the
I2C_DYNAMIC_TAR_UPDATE configuration parameter must be set to Yes (1). You can dynamically write
to the IC_TAR register provided the software ensures that there are no other commands in the Tx FIFO that
use the existing TAR address. If the software does not ensure this, then IC_TAR should be re-programmed
only if the following conditions are met:

■ DW_apb_i2c is not enabled (IC_ENABLE[0]=0);

NoteNoteNoteNote Depending on the reset values chosen, steps 2, 3, 4, and 5 may not be necessary because
the reset values can be configured. The values stored are static and do not need to be
reprogrammed if the DW_apb_i2c is disabled, with the exception of the transfer direction and
data.

NoteNoteNoteNote When a DW_apb_i2c Master is configured with IC_EMPTYFIFO_HOLD_MASTER_EN = 0,
then for multiple I2C transfers, perform additional writes to the Tx FIFO such that the Tx FIFO
does not become empty during the I2C transaction. If the Tx FIFO is completely emptied at
any stage, then further writes to the Tx FIFO results in an independent I2C transaction.

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

OR

DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND
DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND
DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND
there are NO entries in the Tx FIFO (IC_STATUS[2]=1);1

You can change the TAR address dynamically without losing the bus, only if the following conditions are
met.

■ DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND
IC_EMPTYFIFO_HOLD_MASTER_EN configuration parameter is set to 1; AND
DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND
there are NO entries in the Tx FIFO and the master is in HOLD state (IC_INTR_STAT[13]=1);1

3.8.2.3 Master Transmit and Master Receive

The DW_apb_i2c supports switching back and forth between reading and writing dynamically. To transmit
data, write the data to be written to the lower byte of the I2C Rx/Tx Data Buffer and Command Register
(IC_DATA_CMD). The CMD bit [8] should be written to 0 for I2C write operations. Subsequently, a read
command may be issued by writing “don’t cares” to the lower byte of the IC_DATA_CMD register, and a 1
should be written to the CMD bit. The DW_apb_i2c master continues to initiate transfers as long as there are
commands present in the transmit FIFO. If the transmit FIFO becomes empty—depending on the value of
IC_EMPTYFIFO_HOLD_MASTER_EN, the master either inserts a STOP condition after completing the
current transfers, or it checks to see if IC_DATA_CMD[9] is set to 1.

■ If set to 1, it issues a STOP condition after completing the current transfer.

■ If set to 0, it holds SCL low until next command is written to the transmit FIFO.

For more details, refer to “Tx FIFO Management and START, STOP and RESTART Generation” on page 48.

3.8.3 Disabling DW_apb_i2c

The register IC_ENABLE_STATUS is added to allow software to unambiguously determine when the
hardware has completely shutdown in response to bit 0 of the IC_ENABLE register being set from 1 to 0.

1. If the software or application is aware the the DW_apb_i2c is not using the TAR address for the pending commands in the
Tx FIFO, then it is possible to update the TAR address even while the Tx FIFO has entries (IC_STATUS[2]= 0).

NoteNoteNoteNote DW_apb_i2c uses the TAR address if either of the following conditions is true:

■ The command has either RESTART or STOP bit set.

■ The direction is changed in commands with a read command following a write command or
vice versa

The updated TAR address comes into effect only when the next START or RESTART occurs
on the bus.

NoteNoteNoteNote Master Receiver Mode is not supported in Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) as Master Read transfers are not supported.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Only one register is required to be monitored, as opposed to monitoring two registers (IC_STATUS and
IC_RAW_INTR_STAT) which is a requirement for DW_apb_i2c versions 1.05a or earlier.

3.8.3.1 Procedure

1. Define a timer interval (ti2c_poll) equal to the 10 times the signaling period for the highest I2C transfer
speed used in the system and supported by DW_apb_i2c. For example, if the highest I2C transfer
mode is 400 kb/s, then this ti2c_poll is 25us.

2. Define a maximum time-out parameter, MAX_T_POLL_COUNT, such that if any repeated polling
operation exceeds this maximum value, an error is reported.

3. Execute a blocking thread/process/function that prevents any further I2C master transactions to be
started by software, but allows any pending transfers to be completed.

4. The variable POLL_COUNT is initialized to zero.

5. Set bit 0 of the IC_ENABLE register to 0.

6. Read the IC_ENABLE_STATUS register and test the IC_EN bit (bit 0). Increment POLL_COUNT by
one. If POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant error code.

7. If IC_ENABLE_STATUS[0] is 1, then sleep for ti2c_poll and proceed to the previous step. Otherwise,
exit with a relevant success code.

3.8.4 Aborting I2C Transfers

The ABORT control bit of the IC_ENABLE register allows the software to relinquish the I2C bus before
completing the issued transfer commands from the Tx FIFO. In response to an ABORT request, the
controller issues the STOP condition over the I2C bus, followed by Tx FIFO flush. Aborting the transfer is
allowed only in master mode of operation.

3.8.4.1 Procedure

1. Stop filling the Tx FIFO (IC_DATA_CMD) with new commands.

2. When operating in DMA mode, disable the transmit DMA by setting TDMAE to 0.

3. Set bit 1 of the IC_ENABLE register (ABORT) to 1.

4. Wait for the M_TX_ABRT interrupt.

NoteNoteNoteNote When IC_EMPTYFIFO_HOLD_MASTER_EN = 1, the DW_apb_i2c Master can be disabled
only if the current command being processed—when the ic_enable de-assertion occurs—has
the STOP bit set to 1.
When an attempt is made to disable the DW_apb_i2c Master while processing a command
without the STOP bit set, the DW_apb_i2c Master continues to remain active, holding the SCL
line low until a new command is received in the Tx FIFO.

NoteNoteNoteNote This step can be ignored if DW_apb_i2c is programmed to operate as an I2C slave only.

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

5. Read the IC_TX_ABRT_SOURCE register to identify the source as ABRT_USER_ABRT.

3.9 Spike Suppression
The DW_apb_i2c contains programmable spike suppression logic that match requirements imposed by the
I2C Bus Specification for SS/FS (tSP, Table 9), HS (tSP, Table 11), and UFm (tSP, Table 13) modes.

This logic is based on counters that monitor the input signals (SCL and SDA), checking if they remain stable
for a predetermined amount of ic_clk cycles before they are sampled internally. There is one separate
counter for each signal (SCL and SDA). The number of ic_clk cycles can be programmed by the user and
should be calculated taking into account the frequency of ic_clk and the relevant spike length specification.

Each counter is started whenever its input signal changes its value. Depending on the behavior of the input
signal, one of the following scenarios occurs:

■ The input signal remains unchanged until the counter reaches its count limit value. When this
happens, the internal version of the signal is updated with the input value, and the counter is reset
and stopped. The counter is not restarted until a new change on the input signal is detected.

■ The input signal changes again before the counter reaches its count limit value. When this happens,
the counter is reset and stopped, but the internal version of the signal is not updated. The counter
remains stopped until a new change on the input signal is detected.

The timing diagram in Figure 3-24 illustrates the behavior described above.

Figure 3-24 Spike Suppression Example

The count limit value used in this example is 5 and was calculated for a 10 ns ic_clk period and for SS/FS
operation (50 ns spike suppression).

The I2C Bus Specification calls for different maximum spike lengths according to the operating mode—50 ns
for SS and FS; 10 ns for HS, 10 ns for UFm, so three registers are required to store the values needed for each
case:

■ Register IC_FS_SPKLEN holds the maximum spike length for SS and FS modes

■ Register IC_HS_SPKLEN holds the maximum spike value for HS mode.

NoteNoteNoteNote There is a 2-stage synchronizer on the SCL input, but for the sake of simplicity this
synchronization delay was not included in the timing diagram in Figure 3-24.

0 1 2 3 0 1 2 3 4 0

ic_clk

SCL

Spike length counter

Internal filtered SCL

5

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

■ Register IC_UFM_SPKLEN holds the maximum spike value for UFm.

These registers are 8 bits wide and accessible through the APB interface for read and write purposes;
however, they can be written to only when the DW_apb_i2c is disabled. The minimum value that can be
programmed into these registers is 1; attempting to program a value smaller than 1 results in the value 1
being written.

The default value for these registers is automatically calculated in coreConsultant based on the value of
ic_clk period, but this value can be overridden by the user when configuring the component.

3.10 Fast Mode Plus Operation
In fast mode plus, the DW_apb_i2c allows the fast mode operation to be extended to support speeds up to
1000 Kb/s. To enable the DW_apb_i2c for fast mode plus operation, perform the following steps before
initiating any data transfer:

1. Configure the Maximum Speed mode of DW_apb_i2c Master or Slave to Fast Mode or High Speed
mode (IC_MAX_SPEED_MODE> = 2).

2. Set ic_clk frequency greater than or equal to 32 MHz (refer to “Standard Mode (SM), Fast Mode (FM),
and Fast Mode Plus (FM+) with IC_CLK_FREQ_OPTIMIZATION = 0” on page 82).

3. Program the IC_CON register [2:1] = 2’b10 for fast mode or fast mode plus.

4. Program IC_FS_SCL_LCNT and IC_FS_SCL_HCNT registers to meet the fast mode plus SCL (refer to
“IC_CLK Frequency Configuration” on page 79).

NoteNoteNoteNote
■ IC_HS_SPKLEN is implemented only if the component is configured for HS operation; that

is, (IC_MAX_SPEED = High).

■ IC_UFM_SPKLEN is implemented only if the component is configured for Ultra-Fast mode;
that is, (IC_ULTRA_FAST_MODE=1).

■ IC_FS_SPKLEN and IC_HS_SPKLEN are not implemented when configured for Ultra-Fast
mode; that is, (IC_ULTRA_FAST_MODE=1).

NoteNoteNoteNote
■ Because the minimum value that can be programmed into the IC_FS_SPKLEN,

IC_HS_SPKLEN, and IC_UFM_SPKLEN registers is 1, the spike length specification can
be exceeded for low frequencies of ic_clk. Consider the simple example of a 10 MHz
(100 ns period) ic_clk; in this case, the minimum spike length that can be programmed is
100 ns, which means that spikes up to this length are suppressed.

■ Standard synchronization logic (two flip-flops in series) is implemented upstream of the
spike suppression logic and is not affected in any way by the contents of the spike length
registers or the operation of the spike suppression logic; the two operations
(synchronization and spike suppression) are completely independent.

Because the SCL and SDA inputs are asynchronous to ic_clk, there is one ic_clk cycle
uncertainty in the sampling of these signals; that is, depending on when they occur relative
to the rising edge of ic_clk, spikes of the same original length might show a difference of
one ic_clk cycle after being sampled.

■ Spike suppression is symmetrical; that is, the behavior is exactly the same for transitions
from 0 to 1 and from 1 to 0.

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

5. Program the IC_FS_SPKLEN register to suppress the maximum spike of 50ns.

6. Program the IC_SDA_SETUP register to meet the minimum data setup time (tSU; DAT).

3.11 Bus Clear Feature
DWC_apb_i2c supports the bus clear feature that provides graceful recovery of data (SDA) and clock (SCL)
lines during unlikely events in which either the clock or data line is stuck at LOW.

The following sections describes the SDA and SCL lines stuck at LOW recovery mechanisms:

■ “SDA Line Stuck at LOW Recovery” on page 66

■ “SCL Line is Stuck at LOW” on page 67

3.11.1 SDA Line Stuck at LOW Recovery

In case of SDA line stuck at LOW, the master performs the following actions to recover as shown in
Figure 3-25 and Figure 3-26:

1. Master sends a maximum of 9 clock pulses to recover the bus LOW within those 9 clocks.

❑ The number of clock pulses will vary with the number of bits that remain to be sent by the slave.
As the maximum number of bits is 9, master sends up to 9 clock pluses and allows the slave to
recover it.

❑ The master attempts to assert a Logic 1 on the SDA line and check whether SDA is recovered. If
the SDA is not recovered, it will continue to send a maximum of 9 SCL clocks.

2. If SDA line is recovered within 9 clock pulses then the master will send the STOP to release the bus.

3. If SDA line is not recovered even after the 9th clock pulse then system needs a hardware reset.

The detailed flow to recover the SDA stuck at LOW is explained in the section “Programming Flow for SCL
and SDA Bus Recovery” on page 256.

Figure 3-25 SDA Recovery with 9 SCL Clocks

 0Recovery Clocks

SDA

SCL

1 2 3 4 5 6 7 8 9 10

MST_SDA

Master drives 9 clocks to recover SDA stuck at low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Figure 3-26 SDA Recovery with 6 SCL Clocks

3.11.2 SCL Line is Stuck at LOW

In the unlikely event (due to an electric failure of a circuit) where the clock (SCL) is stuck to LOW, there is no
effective method to overcome this problem but to reset the bus using the hardware reset signal. The detailed
flow to recover the SCL stuck at LOW is explained in “Programming Flow for SCL and SDA Bus Recovery”
on page 256.

3.12 Device ID
A Device ID field is an optional 3-byte read-only (24 bits) word, which provides the following information:

■ Twelve bits with the manufacturer’s name, which is unique for every manufacturer.

■ Nine bits with the part identification, which is assigned by the manufacturer.

■ Three bits with the die revision, which is assigned by the manufacturer.

Figure 3-27 shows the Device ID field structure.

Figure 3-27 Device ID Field Structure

For reading the Device ID of a particular slave, the master can follow the procedure in “Programming Flow
for Reading the Device ID” on page 257. The Device ID that is read will be available in RX FIFO, which can
be read using IC_DATA_CMD register.

In case of a slave, the user has to configure the Device ID using the IC_DEVICE_ID_VALUE coreConsultant
parameter and user can read the Device ID of the slave using IC_DEVICE_ID register.

 0Recovery Clocks

SDA

SCL

1 2 3 4 5 6 7

MST_SDA

Master drives 6 clocks to recover SDA stuck at low

manufacturer’s name

part identification

revision

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.13 Ultra-Fast Speed Mode
The Ultra-Fast Speed mode is a variant of I2C Bus Speed mode that operates from DC (0) to 5 MHz
transmitting data in one direction. It is useful for speeds greater than 1 MHz to drive LED controllers and
other gaming systems that do not need feedback.

Ultra-Fast speed mode is based on the standard I2C Protocol, which consists of START, slave address,
command bit, ninth clock (ACK cycle) and a STOP bit. The command bit should be always 'write' (0) only
since it is a unidirectional bus (except for the START byte). The data bit on the ninth (ACK) cycle is driven
high by the master, ignoring the ACK cycle due to unidirectional nature of bus. The driver used for Ultra-
Fast Mode is push-pull driver.

The Master consists of serial clock (ic_clk_oe, USCL) and a serial data (ic_data_oe, USDA) output signals.
The Output signals are Active-Low in nature.

The Slave consists of serial clock (ic_clk_in_a, USCL) and serial data (ic_data_in_a, USDA) input signals.
The input signals are Active-High in nature.

The UFm I2C-bus does not have the multi-master capability and hence, it does not consist of wired-AND
open-drain driver. In the UFm I2C bus, the master is the only device that initiates a data transfer (write
transfer) on the bus and provides the clock signals to support that transfer. All other devices are considered
as slaves. Because of single master support, the arbitration, synchronization, clock stretching mechanisms
are not applicable.

The Byte format, START and STOP generation are same as in other modes of the I2C Protocol except for the
ignorance of ACK cycle. The Slave never drives anything on the bus hence, the master always drives NACK
during the ninth cycle of the transfer as shown in Figure 3-28.

Figure 3-28 UFm-l2C Byte Transfer

In UFm-I2C mode, the slave is not allowed to hold the clock LOW if it cannot receive another complete byte
of data or while it is performing some other function, for example, servicing an internal interrupt. The ninth
clock cycle that represents ACK/NACK of the byte is not applicable as slave will not respond and it is
preserved in UFm to be compatible with the I2C Protocol. The 8th bit of the address that represents Read or

NoteNoteNoteNote Device ID is not supported for 10-bit addressing and High Speed transfers (HS mode).

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

write transfer should be always set to write (0), since Read is not supported in UFm (except for the START
Byte).

The Combined format of I2C Protocol is not supported in UFm-I2C mode. The 10-bit addressing that
expands the number of possible devices is supported in UFm-I2C mode and it behaves similar to other
modes as shown in Figure 3-29 (Only write transfer is supported).

Figure 3-29 10-bit addressing write transfer

The UFm-I2C mode supports START byte and general call features similar to other I2C modes. If the slave is
not responsive (determined through external feedback and not through UFm I2C-bus), then the slave can
reset through software reset or external hardware reset.

3.14 SMBus/PMBus
The SMBus is designed to provide a predictable communication line between a system and its devices. It
describes the Device timeout definitions and their conditions.

3.14.1 tTimeout,MIN Parameter

This Parameter allows a master or slave to conclude that a defective device is holding the clock low
indefinitely or a master is intentionally trying to drive devices off the bus. It is highly recommended that a
slave device release the bus (stop driving the bus and let SMBCLK and SMBDAT float high) when it detects
any single clock held low longer than tTIMEOUT,MIN. Devices that have detected this condition must reset
their communication interface and be able to receive a new START condition in no later than
tTIMEOUT,MAX.

The DW_apb_i2c enables the Bus clear feature in SMBus mode and the user can use the
IC_SCL_STUCK_TIMEOUT Register to program the tTIMEOUT,MIN Value to detect the SMBCLK low
timeout.

The DW_apb_i2c slave device will reset its communication interface and release both SCL and SDA lines
after detecting the SCL_STUCK_TIMEOUT interrupt.

The DW_apb_i2c master has a provision to generate the Abort which completes the current transfer and
generate STOP condition on the bus through programming the IC_ENABLE[1] register bit.

3.14.2 Master Device Clock Extension

The interval tLOW: MEXT is defined as the cumulative time a master device is allowed to extend its clock
cycles within one byte in a message as measured from:

■ START to ACK

■ ACK to ACK

S
1 1 1 1 0 X X
SLAVE ADDRESS

1st 7 BITS

0

W

write

A SLAVE ADDRESS
2nd BYTE

A DATA A DATA NA P

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

■ ACK to STOP.

The DW_apb_i2c Master uses the IC_SMBUS_CLOCK_LOW_MEXT register to detect the Master device
clock extension timeout and generates SMBUS_CLK_LOW_MEXT interrupt.

3.14.3 Slave Device Clock Extension

The interval tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in
one message from the initial START to the STOP.

The DW_apb_i2c Master uses the IC_SMBUS_CLOCK_LOW_SEXT register to detect the Slave device clock
extension timeout and generates SMBUS_CLK_LOW_SEXT interrupt.

A Master is allowed to abort the transaction in progress to any slave that violates the tLOW:SEXT or
tTIMEOUT,MIN specifications through the enabling the user abort (IC_ENABLE[1]).

3.14.4 SMBDAT Low Timeout

A malfunctioning device holds the SMBDAT line low indefinitely. This would prevent the master from
issuing a STOP condition and ending a transaction. If SMBDAT is still low tTIMEOUT,MAX after SMBCLK
has gone high at the end of a transaction the master should hold SMBCLK low for at least tTIMEOUT,MAX
in an attempt to reset the SMBus interface of all of the devices on the bus.

The DW_apb_i2c enables the Bus clear feature in SMBus mode and the user can use the
IC_SDA_STUCK_TIMEOUT Register to program the SMBDAT timeout value to detect the SMBDAT low
timeout. If SMBDAT line is stuck at low, the SDA_STUCK_TIMEOUT abort is generated and software can
enable the SMBUS_CLK_RESET register bit of IC_ENABLE register to hold the SCL low for
IC_SCL_STUCK_TIMEOUT which in turn resets the SMBus interface of all devices on the bus.

3.14.5 Bus Protocols

A typical SMBus device will have a set of commands by which data can be read and written. All commands
are one byte long while their arguments and return values can vary in length. In accordance with the SMBus
specification, the most significant bit (MSB) is transferred first. There are eleven possible command
protocols for any given device. These commands are Quick Command, Send Byte, Receive Byte, Write Byte,
Write Word, Read Byte, Read Word, Process Call, Block Read, Block Write, and Block Write-Block Read
Process Call.

SMBus protocols for message transactions are generally different from I2C data transfer commands. It is still
possible to program an SMBus master to deliver I2C data transfer commands. The following table describes
the derivation of SMBus Bus Protocols through Tx-FIFO commands in DW_apb_i2c.

In the SMBus Master mode, all the receive data bytes will be available in Rx-FIFO. In the SMBus Slave
mode, all the bus protocol command codes and data bytes will received in the Rx-FIF0 and read request
data bytes must be sent using Tx-FIFO, similar to the I2C mode.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Table 3-2 SMBus Bus Protocols Usage in DW_apb_i2c

Protocol
Required TxFIFO
Commands

Command/Data
(IC_DATA_CMD[7:0])

CMD bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CM
D[9]) Remarks

Quick
Command

1 Not Applicable Set the command
[R/W]

Set to 1 Set IC_TAR[11] and
IC_TAR[16] to 1

Send Byte 1 Data Byte Set to 0 Set to 1

Receive Byte 1 Not Applicable Set to 1 Set to 1

Write Byte 2
Command Code Set to 0 Set to 0

Data Byte Set to 0 Set to 1

Write Word 3

Command Code Set to 0 Set to 0

Data Byte Low Set to 0 Set to 0

Data Byte High Set to 0 Set to 1

Read Byte 2
Command Code Set to 0 Set to 0

Not Applicable Set to 1 Set to 1

Read Word 3

Command Code Set to 0 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 1

Process Call 5

Command Code Set to 0 Set to 0

Data Byte Low Set to 0 Set to 0

Data Byte High Set to 0 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 1

Block Write N+1

Command Code Set to 0 Set to 0

Data Byte Set to 0 Set to 0

N+1) Data Byte N Set to 0 Set to 1

Block Read N+1

Command Code Set to 0 Set to 0

Not Applicable Set to 0 Set to 0

N+1) Not Applicable Set to 0 Set to 1

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

DW_apb_i2c Slave can be enabled to receive only Quick command through enabling the
SLAVE_QUICK_CMD_EN bit in the IC_CON Register. Whenever this bit is selected the slave only receives
quick commands and will not accept other Bus Protocols. The DW_apb_i2c slave issues the
SMBUS_QUICK_DET interrupt upon receiving the QUICK command.

SMBus introduces a Packet Error checking Mechanism through appending PEC Byte at the end of the Bus
Protocol. This can be achieved through adding an extra command (PEC byte) while transferring and
decoding it while receiving by the software.

3.14.6 SMBUS Address Resolution Protocol

SMBus slave address conflicts can be resolved by dynamically assigning a new unique address to each slave
device by the Host. This feature allows the devices to be 'hot-plugged' in to the system.

SMBus introduces a 128-bit Unique Device ID (UDID) for each device in the system to isolate each device for
the purpose of address assignment. DW_apb_i2c uses the IC_SMBUS_UDID_MSB parameter for upper
constant 96 bits and 'IC_SMBUS_ARP_UDID_LSB' register for lower variable 32 bits of the UDID.

DW_apb_i2c uses the PERSISTANT_SLV_ADDR_EN register bit in IC_CON register to indicate whether
the DW_apb_i2c supports persistent slave address.

DW_apb_i2c master can issue general and directed Address Resolution Protocol (ARP) commands to assign
the dynamic address for the slaves in the SMBus system.

Table 3-3 describes the derivation of SMBus ARP commands through Tx-FIFO commands in DW_apb_i2c.

Block Write-
Block Read
Process Call

M+N+1

Command Code Set to 0 Set to 0

Data Byte 1 Set to 0 Set to 0

M+1) Data Byte M Set to 0 Set to 0

M+2) Not Applicable Set to 1 Set to 0

M+3) Not Applicable Set to 1 Set to 0

M+N+1) Not
Applicable

Set to 1 Set to 1

SMBUS Host
Notify
Protocol

3
Data Byte Low Set to 0 Set to 0 Set IC_TAR[6:0] to

SMB Host Address
(0001 000)Data Byte High Set to 0 Set to 1

Table 3-2 SMBus Bus Protocols Usage in DW_apb_i2c

Protocol
Required TxFIFO
Commands

Command/Data
(IC_DATA_CMD[7:0])

CMD bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CM
D[9]) Remarks

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Table 3-3 Derivation of SMBus ARP Command Through TxFIFO Commands in DW_apb_i2c

ARP
Command

Required
Tx_FIFO
Commands

Command/Data
(IC_DATA_CMD[7
:0])

CMD Bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CMD[9]) Remarks

Prepare for
ARP

2

Command = '0000
0001'

Set to 0 Set to 0 Set IC_TAR[6:0] to
SMB Default
Address (1100 001)PEC Byte Set to 0 Set to 1

Reset
Device
(General)

2

Command = '0000
0010'

Set to 0 Set to 0 Set IC_TAR[6:0] to
SMB Default
Address (1100 001)PEC Byte Set to 0 Set to 1

Get UDID
(General)

20 Command = '0000
0011'

Set to 0 Set to 0 1. Set IC_TAR[6:0]
to SMB Default
Address (1100
001).

2. 16 Reads to be
performed for the
128 UDID bytes.

3. Last read
command for the
slave address.

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

PEC Byte Set to 1 Set to 1

Assign
Address

20

Command = '0000
0011'

Set to 0 Set to 0 1. Set IC_TAR[6:0]
to SMB Default
Address (1100
001).

2. 16 Writes to be
performed for the
128 UDID byte.

3. Last Write
command for the
Assigned slave
address.

Byte Count = 17 Set to 0 Set to 0

UDID Byte 15 Set to 0 Set to 0

UDID Byte 14 Set to 0 Set to 0

Assigned Address Set to 0 Set to 0

PEC Byte Set to 01 Set to 1

Get UDID
(Directed)

19

Command = '0000
0011'

Set to 0 Set to 0 1. Set IC_TAR[6:0]
to SMB Default
Address (1100
001).

2. 16 Reads to be
performed for the
128 UDID byte.

3. Last Read
command for the
slave address.

Slave
address[6:0],1}

Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

PEC Byte Set to 1 Set to 1

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.14.6.1 Procedure to Perform ARP in Master Mode

To use the DW_apb_i2c as a SMBus Master/Host for assigning the unique address to each slave device to
resolve the slave address conflicts, perform the following steps:

1. After a reset or a cold power up, the SMBus host or master issues a "Prepare to ARP" command to
indicate that the master is carrying an ARP to assign dynamic addresses to all devices. Slave must
flush any pending host notify commands.

2. An acknowledgement received for the "Prepare to ARP" command indicates that ARP-capable
devices exist in the system and hte "Get UDID" command must be issued. A NACK indicates that
ARP-capable devices do not exist or currently all slaves have their addresses resoved. In this case, the
master must complete steps outlined from Step 8 onwards. The DW_apb_i2c master indicates NACK
reception through 'ABRT_7B_ADDR_NOACK' and ‘ABRT_TXDATA_NOACK’ bits of
IC_TX_ABRT_SOURCE register.

3. DW_apb_i2c Master issues ‘Get UDID’ to receive the UDID information of the slave for assigning the
dynamic address.

4. If the first three bytes of the "Get UDID" command are ACK'ed and the receive byte count is 0x11,
then the master issues the "Assign Address" command. Else, the master must complete steps outlined
in step 8 onwards to indicate that the ARP is complete. DW_apb_i2c Master indicates NACK
reception through ABRT_7B_ADDR_NOACK and ABRT_TXDATA_NOACK bits of the
IC_TX_ABRT_SOURCE register.

Reset
Device
(Directed)

2

command = {slave
address[6:0],0}

Set to 0 Set to 0 Set IC_TAR[6:0] to
SMB Default
Address (1100 001)PEC byte Set to 0 Set to 1

Notify ARP
Master

3

Device Address =
'1100 0010'

Set to 0 Set to 0

Set IC_TAR[6:0] to
SMB Host Address
(0001 000)

Data Byte Low =
'0000 0000'

Set to 0 Set to 0

Data Byte High =
'0000 0000'

Set to 0 Set to 1

NoteNoteNoteNote
■ DW_apb_i2c slave hardware:

- Handles the generation, detection, and NACKing of the wrong PEC (CRC8
C(X)=X8+X2+X1+1) for the ARP Commands.

- Does not handle the PEC for Non-ARP commands.

■ DW_apb_i2c master hardware does not handle PEC for both APR and non-
ARP commands.

Table 3-3 Derivation of SMBus ARP Command Through TxFIFO Commands in DW_apb_i2c

ARP
Command

Required
Tx_FIFO
Commands

Command/Data
(IC_DATA_CMD[7
:0])

CMD Bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CMD[9]) Remarks

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

5. The Master issues the "Assign Address" command to assign the Dynamic address to the slave whose
UDID is received through "Get UDID command".

6. If the assigned address packet is ACK'ed, then Master removes the assigned address from the
address pool and moves to Step 3 to get UDID of another slave. If the packet is not ACK'ed, then
master will not remove the address from the address pool and moves to Step 3 to get UDID of same
slave or another slave.

7. If the Assign Address is ACK'ed, then Master stores the assigned address in the used address pool
with the UDID characteristics of the device.

8. The Master moves to Step 3 to issue a 'Get UDID' command again to receive the UDID of another
slave. If it receives NACK for 'Get UDID', the Master moves to Step 9.

9. The DW_apb_i2c can be switched to Slave mode to detect device requests for Host Notify Protocol.

10. If the DW_apb_i2c switched to slave mode and DW_apb_i2c detects the Host Notify Protocol, then
this indicates that a slave is requesting for the dynamic address and the Master has to undergo the
ARP as outlined in Step 11.

11. If the DW_apb_i2c is in Master mode, then move to Step 3 for performing ARP procedure, otherwise
move to Step 12.

12. The DW_apb_i2c is switched to Master Mode and moves to Step 3 to perform ARP procedure.

The detailed flow diagram is explained in Figure 8-10 on page 260.

3.14.6.2 Procedure to Perform ARP in Slave Mode

The DW_apb_i2c as a SMBus Slave performs the following tasks:

■ Decodes the ARP commands and responds based on internal state flags
SMBUS_SLAVE_ADDR_VALID and 'SMBUS_SLAVE_ADDR_RESOLVED' of the IC_STATUS
register.

■ Generates and Validates the PEC byte of ARP commands

■ Generates ACK for the PEC byte only if it matches the CRC value calculated on data it received. If
not, NACK the PEC byte.

When another SMBus Master/Host device on the bus generates the ARP commands and requests to
participate in the ARP, the DW_apb_i2c acts as a SMBus slave and performs the following steps:

1. After a reset or a cold power up, the DW_apb_i2c slave device checks whether it supports a persistent
slave address.

2. If DW_apb_i2c has a persistent slave address (PSA), which is indicated by the Address Valid flag
being set, then PSA is set in the Slave Address Register (IC_SAR) register. If the flag is not set, then
proceed to Step 4.

3. DW_apb_i2c persistent slave stores the persistent address in IC_SAR and sets Address Valid flag to 1
and Address Resolved Flag to 0.

4. DW_apb_i2c Non Persistent slave (non-PSA) clears both Address Valid and Address Resolved Flags.

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

5. DW_apb_i2c Checks whether any Packet received has ARP Default address in the slave address field
of the packet to decide on ARP command or normal command. If there is a match then DW_apb_i2c
slave proceeds to Step 6, otherwise to Step 25.

6. If DW_apb_i2c detects a packet addressed to the SMBus Device Default Address, it checks the
command field to determine if this is the "Prepare to ARP" command. If so, then it proceeds to Step 7,
otherwise it proceeds to Step 8.

7. Upon receipt of the "Prepare to ARP" command, the DW_apb_i2c acknowledges the packet and
clears the Address Resolved flag in order to participate in the ARP Process. DW_apb_i2c proceeds to
Step 5 and waits for another SMBus Packet.

8. The DW_apb_i2c checks the command field to verify if the "Reset Device" command was issued. If
yes, the DW_apb_i2c proceeds to Step 9, otherwise it proceeds to Step 10.

9. Upon receipt of the "Reset Device" command, the DW_apb_i2c acknowledges the packet and clears
the Address Resolved and Address Valid (If non-PSA and ic_con[19]=0) flags. DW_apb_i2c procceds
to Step 5 and waits for another SMBus Packet.

10. The device checks the command to verify if the "Assign Address" command was issued. If yes, then it
proceeds to Step 11, otherwise proceeds to Step 13.

11. Upon receipt of the "Assign Address" command, the DW_apb_i2c compares its UDID with one its
received bytes. If any byte does not match, then DW_apb_i2c will not acknowledge that byte and
subsequent bytes also. If all bytes in the UDID matches, then the DEVICE proceeds to Step 12,
otherwise it proceeds to Step 5 and waits for another SMBus packet.

12. After the UDID is matched in Step 11, the DW_apb_i2c will receive the slave address and sets the
IC_SAR register with this slave address. The DW-apb_i2c sets its Address Valid and Address
Resolved flags, which means it has received the dynamic address and will no longer respond to the
"Get UDID" command unless it receives the "Prepare to ARP" or "Reset Device" commands.
DW_apb_i2c now proceeds to Step 5 and waits for another SMBus packet.

13. The DW_apb_i2c checks the command field to verify if the "Get UDID" command was issued. If yes,
then it proceeds to Step 14, otherwise to Step 19.

14. Upon receipt of the "Get UDID" command, the DW_apb_i2c checks its Address Resolved flag to
determine whether it must participate in an ARP process. If set, then its address has already been
resolved by the ARP Master, so the device proceeds to Step 5 and waits for another SMBus packet. If
the ARP Flag is cleared, then it proceeds to Step 15.

15. The DW_apb_i2c returns its UDID and monitors the SMBus data line for collisions. If a collision is
detected at any time, DW_apb_i2c generates the SLV_ARB_LOST bit and stops transmitting. Further,
it proceeds to Step 5 and waits for another SMBus packet. If collisions are not detected, then
DW_apb_i2c proceeds to Step 16.

16. The DW_apb_i2c check its Address Valid (AV) flag to determine the value to return for the Device
Slave Address field. If the AV flag is set, then it proceeds to Step 17, otherwise it proceeds to Step 18.

17. When the AV flag is set, the current IC_SAR is valid, therefore the device returns this for the Device
Slave Address field (with bit 0 set) and monitors the SMBus data line for collisions. DW_apb_i2c
proceeds to Step 5 and waits for another SMBus Packet.

18. When the AV flag is not set, the current slave address (IC_SAR) is invalid. Therefore, the
DW_apb_i2c returns a value of FFh and monitors the SMBus data line for collisions. The device

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

requires an address assignment if the ARP master receives the FFH value. DW_apb_i2c proceeds to
Step 5 and waits for another SMBus packet.

19. The DW_apb_i2c may be receiving a directed command. If the Address Valid flag is set and address
is the same as in IC_SAR, then proceed to Step 20 otherwise, proceed to Step 5 to wait for another
SMBus packet.

20. If the Address Valid flag is set, check if the command is a directed "Reset Device" command. If yes,
then proceed to Step 21, otherwise proceed to Step 22.

21. Upon receipt of the "Reset Device" command, the DW_apb_i2c acknowledges the packet and clears
the Address Resolved and Address Valid (If non-PSA and ic_con[19]=0) flags. DW_apb_i2c procceds
to Step 5 and waits for another SMBus Packet.

22. DW_apb_i2c checks whether the received command is a "Directed Get UDID" command. If yes, then
proceed to Step 23 and return the UDID information. If not, then proceed to Step 24.

23. If the received command is a "Directed Get UDID" command, then return the UDID information and
current slave address, proceed to Step 5 and wait for another SMBus Packet.

24. If the received command is a "Directed Get UDID" command, the DW_apb_i2c has not received a
valid ARP command and hence DW_apb_i2c NACKs the command and proceeds to Step 5 and wait
for another SMBus Packet.

25. If the Address Valid bit is set then it proceeds to Step 26, otherwise it proceeds to Step 5 and waits for
another SMBus Packet. The received address is not the SMBus Device Default Address and the
packet may be addresses to the DW_apb_i2c's core function. The device checks its Address Valid bit
to determine whether to respond.

26. When the address valid bit is set, DW_apb_i2c has a valid slave address. It compares the received
slave address to its slave address, and if there is s a match, DW_apb_i2c proceeds to Step 27,
otherwise it proceeds to Step 5 and waits for another SMBus Packet.

27. The Dw_apb_i2c receives a packet addresses to its core function and hence it acknowledges the
packet and processes it accordingly. DW_apb_i2c proceeds to step 5 and waits for another SMBus
Packet.

The detailed flow diagram is explained in Figure 8-11 on page 261.

3.14.7 SMBUS Additional Slave Address

DW_apb_i2c supports second optional slave address decode capability. It can be configured to contain an
extra slave address register IC_OPTIONAL_SAR. If configured with this additional register, user can write
any valid slave address to this register which will be matched against an incoming slave address on SMBus.
A match of incoming address with either IC_SAR register or IC_OPTIONAL_SAR register will cause
DW_apb_i2c to acknowledge the transaction and respond to it accordingly. Use of this additional slave
address register is controlled by OPTIONAL_SAR_CTRL (IC_CON[17]) bit. If OPTIONAL_SAR_CTRL bit
is programmed to be 1, then IC_OPTIONAL_SAR register will be used to match the incoming address. All
restrictions of IC_SAR register applies to IC_OPTIONAL_SAR register as well.

The default value that IC_OPTIONAL_SAR register obtains after reset can be configured by the
IC_OPTIONAL_SAR_DEFAULT parameter.

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.14.8 SMBUS Optional Signals

The SMBus standard supports these optional signals:

■ SMBus Suspend Signal

■ SMBus Alert Signal

As these signals are optional, DW_apb_i2c can be configured to include these signals through
IC_SMBUS_SUSPEND_ALERT parameter.

3.14.8.1 SMBus Suspend Signal

The SMBus suspend signal (SMBSUS#) is an optional signal which is asserted by the system controller
(mostly the Host) to indicate that the system should enter in low power suspend mode. It is output from the
system controller and input to all other devices. This signal is an active low signal. DW_apb_i2c implements
this functionality using following signals:

■ ic_smbsus_in_n

■ ic_smbsus_out_n

Output signal ic_smbsus_out_n is controlled directly by the SMBUS_SUS_CTRL bit (IC_ENABLE[17]). If
this bit is programmed to 1, ic_smbsus_out_n signal goes to 0 as soon as master finishes any ongoing
transfer. For coming out of the suspend mode, user needs to clear this bit, which deasserts the
ic_smbus_out_n signal.

Input signal ic_smbsus_in_n generates interrupt ic_smbsus_det_intr (or ic_smbsus_det_intr_n) on the
falling edge. This interrupt can be used by the software to enter the Low Power Mode. Current status of this
ic_smbsus_in_n can be read from SMBUS_SUSPEND_STATUS bit of IC_STATUS (19) register.

3.14.8.2 SMBus Alert Signal

The SMBus alter signal (SMBALERT#) is other optional signal specified by the SMBus standard. It can be
used by simple devices to request the attention of the host. Devices can use the SMBALERT# signal to
request the attention of the host with master functionality. This active low signal is input to host device and
output from all other devices. Since multiple devices may implement SMBALERT#, it is required to be a
wired-AND signal. Upon detecting a SMBALERT# signal, a host must send an alert response address which
is acknowledge by alerting the device and it sends the address to the host and deasserts the alert signal. If
host still detects an asserted alert signal, it repeats sending alert response address. DW_apb_i2c implements
this functionality using following signals:

■ ic_smbalert_in_n

■ ic_smbalert_oe

Output signal ic_smbalert_oe is open drain/open collector pull down driver and should be used similar to
ic_clk_oe and ic_data_oe on a system implementation. Assertion of ic_smbalert_oe is controlled by
SMBUS_ALERT_CTRL bit (IC_ENABLE[18]). Once asserted by user, DW_apb_i2c waits for alert response
address to be sent by master. Upon receiving it, contents of IC_SAR[7:0] register are sent to the master.
When successful, DW_apb_i2c clears the SMBUS_ALERT_CTRL bit and deasserts the ic_smbalert_oe signal.

Input signal ic_smbalert_in_n generates interrupt ic_smbalert_det_intr (or ic_smbalert_det_intr_n) on
falling edge. If working as host, user needs to service this interrupt by sending read byte command with
Alert Response Address. Current status of ic_smbalert_in_n can be read from SMBUS_ALERT_STATUS bit
(IC_STATUS[20])

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

3.15 IC_CLK Frequency Configuration
When the DW_apb_i2c is configured as a Standard (SS), Fast (FS)/Fast-Mode Plus (FM+), or High Speed
(HS) master, the *CNT registers must be set before any I2C bus transaction can take place in order to ensure
proper I/O timing. The *CNT registers are:

■ IC_SS_SCL_HCNT

■ IC_SS_SCL_LCNT

■ IC_FS_SCL_HCNT

■ IC_FS_SCL_LCNT

■ IC_HS_SCL_HCNT

■ IC_HS_SCL_LCNT

When the DW_apb_i2c is configured as a Ultra-Fast Mode master, the *CNT registers must be set before any
I2C bus transaction can take place in order to ensure proper I/O timing. The *CNT registers for this mode
are:

■ IC_UFM_SCL_HCNT

■ IC_UFM_SCL_LCNT

Table 3-4 lists the derivation of I2C timing parameters from the *CNT programming registers.

NoteNoteNoteNote The tBUF timing and setup/hold time of START, STOP and RESTART registers uses *HCNT/
*LCNT register settings for the corresponding speed mode.

NoteNoteNoteNote It is not necessary to program any of the *CNT registers if the DW_apb_i2c is enabled to
operate only as an I2C slave, since these registers are used only to determine the SCL timing
requirements for operation as an I2C master.

Table 3-4 Derivation of I2C Timing Parameters from *CNT Registers

Timing
Parameter Symbol Standard Speed

Fast Speed / Fast
Speed Plus High Speed (100 pf) High Speed (400 pf)

LOW period of
the SCL clock

tLOW IC_SS_SCL_LCNT IC_FS_SCL_LCNT IC_HS_SCL_LCNT IC_HS_SCL_LCNT

HIGH period of
the SCL clock

tHIGH IC_SS_SCL_HCNT IC_FS_SCL_HCNT IC_HS_SCL_HCNT IC_HS_SCL_HCNT

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.15.1 Minimum High and Low Counts in SS, FS, FM+ and HS Modes With
IC_CLK_FREQ_OPTIMIZATION = 0.

When the DW_apb_i2c operates as an I2C master, in both transmit and receive transfers:

■ IC_SS_SCL_LCNT and IC_FS_SCL_LCNT register values must be larger than IC_FS_SPKLEN + 7.

■ IC_SS_SCL_HCNT and IC_FS_SCL_HCNT register values must be larger than IC_FS_SPKLEN + 5.

■ If the component is programmed to support HS, IC_HS_SCL_LCNT register value must be larger
than IC_HS_SPKLEN + 7.

■ If the component is programmed to support HS, IC_HS_SCL_HCNT register value must be larger
than IC_HS_SPKLEN + 5.

Details regarding the DW_apb_i2c high and low counts are as follows:

■ The minimum value of IC_*_SPKLEN + 7 for the *_LCNT registers is due to the time required for the
DW_apb_i2c to drive SDA after a negative edge of SCL.

■ The minimum value of IC_*_SPKLEN + 5 for the *_HCNT registers is due to the time required for the
DW_apb_i2c to sample SDA during the high period of SCL.

■ The DW_apb_i2c adds one cycle to the programmed *_LCNT value in order to generate the low
period of the SCL clock; this is due to the counting logic for SCL low counting to (*_LCNT + 1).

Setup time for a
repeated START
condition

tSU;STA IC_SS_SCL_LCNT IC_FS_SCL_HCNT IC_HS_SCL_LCNT (IC_HS_SCL_LCNT)/
2

Hold time
(repeated)
START
condition*

tHD;STA IC_SS_SCL_HCNT IC_FS_SCL_HCNT IC_HS_SCL_LCNT (IC_HS_SCL_LCNT)/
2

Setup time for
STOP condition

tSU;STO IC_SS_SCL_HCNT IC_FS_SCL_HCNT IC_HS_SCL_LCNT (IC_HS_SCL_LCNT)/
2

Bus free time
between a STOP
and a START
condition

tBUF IC_SS_SCL_LCNT IC_FS_SCL_LCNT NA NA

Spike length tSP IC_FS_SPKLEN IC_FS_SPKLEN IC_HS_SPKLEN IC_HS_SPKLEN

Data hold time tHD;DAT IC_SDA_HOLD IC_SDA_HOLD IC_SDA_HOLD IC_SDA_HOLD

Data setup time tSU;DAT IC_SDA_SETUP IC_SDA_SETUP IC_SDA_SETUP IC_SDA_SETUP

Table 3-4 Derivation of I2C Timing Parameters from *CNT Registers

Timing
Parameter Symbol Standard Speed

Fast Speed / Fast
Speed Plus High Speed (100 pf) High Speed (400 pf)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

■ The DW_apb_i2c adds IC_*_SPKLEN + 7 cycles to the programmed *_HCNT value in order to
generate the high period of the SCL clock; this is due to the following factors:

❑ The counting logic for SCL high counts to (*_HCNT+1).

❑ The digital filtering applied to the SCL line incurs a delay of SPKLEN + 2 ic_clk cycles, where
SPKLEN is:

■ IC_FS_SPKLEN if the component is operating in SS or FS
■ IC_HS_SPKLEN if the component is operating in HS.

This filtering includes metastability removal and the programmable spike suppression on SDA
and SCL edges.

❑ Whenever SCL is driven 1 to 0 by the DW_apb_i2c—that is, completing the SCL high time—an
internal logic latency of three ic_clk cycles is incurred. Consequently, the minimum SCL low time
of which the DW_apb_i2c is capable is nine (9) ic_clk periods (7 + 1 + 1), while the minimum SCL
high time is thirteen (13) ic_clk periods (6 + 1 + 3 + 3).

Figure 3-30 Impact of SCL Rise Time and Fall Time on Generated SCL

NoteNoteNoteNote The total high time and low time of SCL generated by the DW_apb_i2c master is also
influenced by the rise time and fall time of the SCL line, as shown in the illustration and
equations in Figure 3-30 on page 81. It should be noted that the SCL rise and fall time
parameters vary, depending on external factors such as:

■ Characteristics of IO driver

■ Pull-up resister value

■ Total capacitance on SCL line, and so on

These characteristics are beyond the control of the DW_apb_i2c.

ic_clk

ic_clk_in_a/SCL

SCL
rise time

HCNT + IC_*_SPKLEN + 7

SCL
fall time

SCL
rise time

LCNT + 1

SCL_High_time = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time
SCL_Low_time = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.15.2 Minimum High and Low Counts in SS, FS, FM+ and HS Modes With
IC_CLK_FREQ_OPTIMIZATION = 1

The minimum high and low counts in SS, FS, FM+ and HS Modes with the
IC_CLK_FREQ_OPTIMIZATION parameter set to one is such that:

■ The total SCL LOW period is driven by DW_apb_i2c will be IC_*_LCNT register value. The hardware
does not support a value less than 6 to be written to the IC_*_LCNT register. Additionally, the
minimum SCL low time of which the DW_apb_i2c is capable is 6 ic_clk periods.

■ The total SCL HIGH period driven by DW_apb_i2c will be IC_*_HCNT register value + SPKLEN + 3.
Additionally, the minimum SCL high time of which the DW_apb_i2c is capable is 5 ic_clk periods
[1+1+3].

The total high time and low time of SCL generated by the DW_apb_i2c master is also influenced by the rise
time and fall time of the SCL line. The SCL rise and fall time parameters vary depending on external factors
such as:

■ Characteristics of IO driver

■ Pull-up resister value

■ Total capacitance on SCL line, and so on

These characteristics are beyond the control of the DW_apb_i2c.

3.15.3 Minimum High and Low counts in Ultra-Fast mode (IC_ULTRA_FAST_MODE = 1)

When the DW_apb_i2c operates as an I2C master:

■ The IC_UFM_SCL_HCNT register value must be equal or larger than 3.

■ The IC_UFM_SCL_LCNT register Value must be equal or larger than 5.

3.15.4 Minimum IC_CLK Frequency

This section describes the minimum ic_clk frequencies that the DW_apb_i2c supports for each speed mode,
and the associated high and low count values. In Slave mode, IC_SDA_HOLD (Thd;dat) and
IC_SDA_SETUP (Tsu:dat) need to be programmed to satisfy the I2C protocol timing requirements.

The following examples are for the case where IC_FS_SPKLEN and IC_HS_SPKLEN are programmed to 2.

3.15.4.1 Standard Mode (SM), Fast Mode (FM), and Fast Mode Plus (FM+) with
IC_CLK_FREQ_OPTIMIZATION = 0

This section details how to derive a minimum ic_clk value for standard and fast modes of the DW_apb_i2c.
Although the following method shows how to do fast mode calculations, you can also use the same method
in order to do calculations for standard mode and fast mode plus.

NoteNoteNoteNote The following computations do not consider the SCL_Rise_time and SCL_Fall_time.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Given conditions and calculations for the minimum DW_apb_i2c ic_clk value in fast mode:

■ Fast mode has data rate of 400kb/s; implies SCL period of 1/400khz = 2.5us

■ Minimum hcnt value of 14 as a seed value; IC_HCNT_FS = 14

■ Protocol minimum SCL high and low times:

❑ MIN_SCL_LOWtime_FS = 1300ns

❑ MIN_SCL_HIGHtime_FS = 600ns

Derived equations:

Combined, the previous equations produce the following:

Solving for IC_LCNT_FS:

The previous equation gives:

These calculations produce IC_LCNT_FS = 16 and IC_HCNT_FS = 14, giving an ic_clk value of:

Testing these results shows that protocol requirements are satisfied.

3.15.4.2 High-Speed (HS) Mode With IC_CLK_FREQ_OPTIMIZATION = 0

The method used for standard and fast modes can also be used to derive ic_clk values for high-speed
modes. For example, given a high-speed mode with a 100pf bus loading, using the standard and fast modes
method produces the following:

■ IC_LCNT_HS = 17

■ IC_HCNT_HS = 14

■ ic_clk = 105.4 Mhz

SCL_PERIOD_FS
IC_HCNT_FS IC_LCNT_FS+
--- IC_CLK_PERIOD=

IC_LCNT_FS IC_CLK_PERIOD× MIN_SCL_LOWtime_FS=

IC_LCNT_FS
SCL_PERIOD_FS

IC_LCNT_FS IC_HCNT_FS+
---× MIN_SCL_LOWtime_FS=

IC_LCNT_FS
2.5μs

IC_LCNT_FS 14+
--× 1.3μs=

IC_LCNT_FS roundup(15.166) 16= =

2.5 μs
16 14+
------------------ 83.3ns 12Mhz= =

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

Table 3-5 lists the minimum ic_clk values for all modes with high and low count values.

3.15.4.3 SM, FM, FM+ and HS Modes With IC_CLK_FREQ_OPTIMIZATION = 1

3.15.4.3.1 Master Mode

This section describes the minimum ic_clk frequencies that the DW_apb_i2c supports for each speed mode
and the associated high and low count values. The following examples are for the case where
IC_FS_SPKLEN = 1, IC_HS_SPKLEN = 1 and IC_CLK_FREQ_OPTIMIZATION = 1.

Below calculations show how to derive a minimum ic_clk value for fast mode of the DW_apb_i2c. Although
the following method shows how to do fast mode calculations, you can also use the same method in order
to do calculations for any speed mode.

Following are the conditions and calculations for the minimum DW_apb_i2c ic_clk value in fast mode:

■ Fast mode has data rate of 400kb/s; implies SCL period of 1/400KHz = 2.5 us

Table 3-5 ic_clk in Relation to High and Low Counts When IC_CLK_FREQ_OPTIMIZATION = 0

Speed
Mode

ic_clkfreq
(MHz)

Minimum
Value of
IC_*_SPK
LEN

SCL Low
Time in
ic_clks

SCL Low
Program
Value

SCL Low
Time

SCL High
Time in
ic_clks

SCL
High
Program
Value

SCL High
Time

SS 2.7 1 13 12 4.7 μs 14 6 5.2 μs

FS 12.0 1 16 15 1.33 μs 14 6 1.16 μs

FM+ 32 2 16 15 500 ns 16 7 500 ns

HS (400pf) 51 1 17 16 333 ns 14 6 274 ns

HS (100pf) 105.4 1 17 16 161 ns 14 6 132 ns

NoteNoteNoteNote
■ The IC_*_SCL_LCNT and IC_*_SCL_HCNT registers are programmed using the SCL low

and high program values in Table 3-5, which are calculated using SCL low count minus 1,
and SCL high counts minus 8, respectively.

The values in Table 3-5 are based on IC_SDA_RX_HOLD = 0. The maximum
IC_SDA_RX_HOLD value depends on the IC_*CNT registers in Master mode, as
described in “SDA Hold Timings in Receiver” on page 91.

■ In order to compute the HCNT and LCNT considering RC timings, use the following
equations:

IC_HCNT_* = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time
IC_LCNT_* = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

NoteNoteNoteNote The computation in this section does not consider SCL_Rise_time and
SCL_Fall_time.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

■ Minimum hcnt value of 5 as a seed value; IC_HCNT_FS = 5

■ Protocol minimum SCL high and low times:

❑ MIN_SCL_LOWtime_FS = 1300 ns

❑ MIN_SCL_HIGHtime_FS = 600 ns

Following are the derived equations:

SCL_PERIOD_FS/(IC_HCNT_FS + IC_LCNT_FS) = IC_CLK_PERIOD

IC_LCNT_FS × IC_CLK_PERIOD = MIN_SCL_LOWtime_FS

Following is the result of combining previous equations:

IC_LCNT_FS × SCL_PERIOD_FS /(IC_LCNT_FS + IC_HCNT_FS) = MIN_SCL_LOWtime_FS

By solving for IC_LCNT_FS:

IC_LCNT_FS × 2.5 µs /(IC_LCNT_FS + 5) = 1.3 µs

The previous equation provides:

IC_LCNT_FS = roundup(5.417) = 6

These calculations produce IC_LCNT_FS = 6 and IC_HCNT_FS = 5, providing an ic_clk value of:

2.5 µs/(6 + 5) = 227.27ns = 4.4 MHz

Testing these results shows that the protocol requirements are satisfied.

Table 3-6 lists the minimum ic_clk values for all modes with high and low count values.

NoteNoteNoteNote Minimum IC_*_LCNT value should be equal 6. If derived value is less
than 6, consider IC_LCNT_FS as 6 only.

Table 3-6 ic_clk in Relation to High and Low Counts When IC_CLK_FREQ_OPTIMIZATION = 1

Speed
Mode

ic_clk
Frequency
(MHz)

Minimum
Value of
IC_*_SPKL
EN

SCL Low
Time in
ic_clks

SCL Low
Program
Value

SCL Low
Time in ns

SCL High
Time in
ic_clks

SCL High
Program
Value

SCL High
Time in ns

SS 1.1 1 6 6 5454.545 5 1 4545.455

FS 4.4 1 6 6 1363.636 5 1 1136.364

FM+ 11 1 6 6 545.4545 5 1 454.5455

HS (400pf) 18.7 1 6 6 320.8527 5 1 267.3773

HS (100pf) 37.4 1 6 6 160.4236 5 1 133.6864

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.15.4.3.2 Slave Mode

DW_apb_i2c in slave mode requires minimum 5 ic_clk cycles [SPKLEN + 3 (Metastability removal, worst
case) + 1] to drive SDA after a falling edge of SCL. Therefore, the ic_clk frequency must be selected such that
the maximum data hold time (thd;dat)/data valid time (tVD;DAT) is not violated.

For example, in high-speed mode with a 100pf bus loading (SCLH clock frequency upto 3.4 MHz), the
maximum data hold time is 70 ns. Therefore, the minimum frequency in which DW_apb_i2c can operate in
slave mode without violating thd;dat is 70ns/5 = 14ns = 71.42 MHz.

Table 3-7 lists the minimum IC_CLK frequency in slave mode when IC_CLK_FREQ_OPTIMIZATION is set
to 1.

3.15.4.4 ULTRA-FAST Mode

3.15.4.4.1 Master mode

This section describes the minimum ic_clk frequency that the DW_apb_i2c supports for Ultra-Fast speed
mode and the associated high and low count values.

NoteNoteNoteNote
■ The IC_*_SCL_LCNT and IC_*_SCL_HCNT registers are programmed using

the SCL low and high program values in Table 3-6, which are calculated as
SCL low count, and SCL high count minus 4, respectively. The values in
Table 3-6 are based on IC_SDA_RX_HOLD = 0. The maximum
IC_SDA_RX_HOLD value depends on the IC_*CNT registers in master mode,
as described in “SDA Hold Timings in Receiver” on page 91.

■ To compute the HCNT and LCNT considering RC timings, use the following
equations:

IC_HCNT_* = [(HCNT + IC_*_SPKLEN + 3) * ic_clk] + SCL_Fall_time
IC_LCNT_* = [LCNT * ic_clk] - SCL_Fall_time + SCL_Rise_time

Table 3-7 Minimum IC_CLK Frequency in Slave Mode When IC_CLK_FREQ_OPTIMIZATION=1

Speed Mode
ic_clk
Frequency (MHz)

Minimum Value of
IC_*_SPKLEN

Minimum data
hold time in
ic_clks

Maximum data
hold time

SS 1.45 1 5 3.45 µs

FS 5.56 1 5 0.9 µs

FM+ 11.11 1 5 0.45 µs

HS (400pf) 35.71 1 5 140 ns

HS (100pf) 71.42 1 5 70 ns

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

The following calculations show how to derive a minimum ic_clk value.

Given conditions and calculations for the minimum DW_apb_i2c ic_clk value in Ultra-Fast mode:

■ Fast mode has data rate of 5000kb/s; implies SCL period of 1/5000khz = 200ns

■ Minimum hcnt value of 3 as a seed value; IC_UFM_SCL_HCNT = 3

■ Protocol minimum SCL high and low times:

❑ MIN_SCL_LOWtime_UFm = 50 ns

❑ MIN_SCL_HIGHtime_UFm = 50ns

Derived equations:

■ SCL_PERIOD_UFm/(IC_HCNT_UFm + IC_LCNT_UFm) = IC_CLK_PERIOD

■ IC_LCNT_UFm × IC_CLK_PERIOD = MIN_SCL_LOWtime_UFm

Combined, the previous equations produce the following:

IC_LCNT_UFm × SCL_PERIOD_UFm /(IC_LCNT_UFm + IC_HCNT_UFm) =
MIN_SCL_LOWtime_UFm

Solving for IC_LCNT_UFm:

IC_LCNT_UFm × 200ns /(IC_LCNT_UFm + 3) = 50ns

The previous equation gives:

IC_LCNT_UFm = 1

These calculations produce IC_LCNT_UFm = 5 and IC_HCNT_UFm = 3, giving an ic_clk value of:

200 ns/(5 + 3) = 25ns = 40Mhz

Testing these results shows that protocol requirements are satisfied.

Table 3-8 describes the relation between the High and Low counts with ic_clk frequency

NoteNoteNoteNote The following computations do not consider the SCL_Rise_time and
SCL_Fall_time.

NoteNoteNoteNote Minimum IC_SCL_UFM_LCNT value should be equal 5. If derived value
is less than 5, consider IC_LCNT_UFm as 5 only.

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

3.15.4.4.2 Slave mode

DW_apb_i2c in slave mode requires minimum of 2 ic_clk cycles for SCL High period and SCL Low Period.
Therefore, the minimum ic_clk frequency for the slave mode is 40 MHz.

3.15.4.5 Calculating High and Low Counts with IC_CLK_FREQ_OPTIMIZATION = 0

The calculations below show how to calculate SCL high and low counts for each speed mode in the
DW_apb_i2c. For the calculations to work, the ic_clk frequencies used must not be less than the minimum
ic_clk frequencies specified in Table 3-5.

The DW_apb_i2c coreConsultant GUI can automatically calculate SCL high and low count values. By
specifying an integer ic_clk period value in nanoseconds for the IC_CLK_PERIOD parameter, SCL high and
low count values are automatically calculated for each speed mode. The ic_clk period must not specify a
clock of a lower frequency than required for all supported speed modes. It is possible that the automatically
calculated values may result in a baud rate higher than the maximum rate specified by the protocol. If this
happens, either the low or high count values can be scaled up to reduce the baud rate.

The equation to calculate the proper number of ic_clk signals required for setting the proper SCL clocks
high and low times is as follows:

IC_xCNT = (ROUNDUP(MIN_SCL_xxxtime*OSCFREQ,0))
 ROUNDUP is an explicit Excel function call that is used to convert a real number to its
equivalent integer number.
 MIN_SCL_HIGHtime = Minimum High Period
 MIN_SCL_HIGHtime = 4000 ns for 100 kbps
 600 ns for 400 kbps
 260 ns for 1000 kbps

Table 3-8 ic_clk in relation to High and Low Counts when IC_ULTRA_FAST_MODE=1

Speed

ic_clk
(freq)

(Mhz)

SCL Low
Program
Value

SCL Low
Time in
ic_clks

SCL Low
Time

SCL High
Program
Value

SCL
HighTime
in ic_clks

SCL
HighTime

UltraFast
Mode

40 5 5 125 ns 3 3 75 ns

NoteNoteNoteNote
■ The IC_UFM_SCL_LCNT and IC_UFM_SCL_HCNT registers are programmed

using the SCL low and high program values in Table 3-8, which are calculated as
SCL low count, and SCL high count, respectively. The values in Table 3-8 are
based on IC_SDA_RX_HOLD = 0. The maximum IC_SDA_RX_HOLD value
depends on the IC_UFM_SCL_LCNT registers in Master mode, as described in
“SDA Hold Timings in Receiver” on page 91.

■ In order to compute the HCNT and LCNT considering RC timings, use the following
equations:

IC_UFM_SCL_HCNT = [HCNT * ic_clk] + SCL_Fall_time
IC_UFM_SCL_LCNT = [LCNT * ic_clk] - SCL_Fall_time + SCL_Rise_time

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

 60 ns for 3.4 Mbs, bus loading = 100pF
 120 ns for 3.4 Mbs, bus loading = 400pF

 MIN_SCL_LOWtime = Minimum Low Period
 MIN_SCL_LOWtime = 4700 ns for 100 kbps
 1300 ns for 400 kbps
 500 ns for 1000 kbps
 160 ns for 3.4Mbs, bus loading = 100pF
 320 ns for 3.4Mbs, bus loading = 400pF

OSCFREQ = ic_clk Clock Frequency (Hz).

For example:

 OSCFREQ = 100 MHz
 I2Cmode = fast, 400 kbit/s
 MIN_SCL_HIGHtime = 600 ns.
 MIN_SCL_LOWtime = 1300 ns.

IC_xCNT = (ROUNDUP(MIN_SCL_HIGH_LOWtime*OSCFREQ,0))

IC_HCNT = (ROUNDUP(600 ns * 100 MHz,0))
IC_HCNTSCL PERIOD = 60
IC_LCNT = (ROUNDUP(1300 ns * 100 MHz,0))
IC_LCNTSCL PERIOD = 130
Actual MIN_SCL_HIGHtime = 60*(1/100 MHz) = 600 ns
Actual MIN_SCL_LOWtime = 130*(1/100 MHz) = 1300 ns

3.15.4.6 Calculating High and Low counts with IC_CLK_FREQ_OPTIMIZATION = 1

The calculations below show how to calculate SCL high and low counts for each speed mode in the
DW_apb_i2c. For the calculations to work, the ic_clk frequencies used must not be less than the minimum
ic_clk frequencies specified in Table 3-6.

The DW_apb_i2c coreConsultant GUI can automatically calculate SCL high and low count values. By
specifying an integer ic_clk period value in nanoseconds for the IC_CLK_PERIOD parameter, SCL high and
low count values are automatically calculated for each speed mode. The ic_clk period must not specify a
clock of a lower frequency than required for all supported speed modes. It is possible that the automatically
calculated values may result in a baud rate higher than the maximum rate specified by the protocol. If this
happens, either the low or high count values can be scaled up to reduce the baud rate. For more
information, see “Master Mode” on page 84.

The equation to calculate the proper number of ic_clk signals required for setting the proper SCL clocks
high and low times is as follows:

IC_xCNT = (ROUNDUP(MIN_SCL_xxxtime*OSCFREQ,0))
 ROUNDUP is an explicit Excel function call that is used to convert a real number to its
equivalent integer number.
 MIN_SCL_HIGHtime = Minimum High Period

NoteNoteNoteNote Once the default values for SCL HighCount and LowCount are computed by the
coreConsultant GUI, check that the values are consistent with the required baud rate. In case
the computed values do not match with the required values, you can manually scale the
values, as described in the section “High-Speed (HS) Mode With
IC_CLK_FREQ_OPTIMIZATION = 0” on page 83.

https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

 MIN_SCL_HIGHtime = 4000 ns for 100 kbps
 600 ns for 400 kbps
 260 ns for 1000 kbps
 60 ns for 3.4 Mbps, bus loading = 100pF
 160 ns for 3.4 Mbps, bus loading = 400pF
 MIN_SCL_LOWtime = Minimum Low Period
 MIN_SCL_LOWtime = 4700 ns for 100 kbps
 1300 ns for 400 kbps
 500 ns for 1000 kbps
 120 ns for 3.4Mbps, bus loading = 100pF
 320 ns for 3.4Mbps, bus loading = 400pF
OSCFREQ = ic_clk Clock Frequency (Hz).

For example:

 OSCFREQ = 100 MHz
 I2Cmode = fast, 400 kbit/s
 MIN_SCL_HIGHtime = 600 ns.
 MIN_SCL_LOWtime = 1300 ns.

IC_xCNT = (ROUNDUP(MIN_SCL_HIGH_LOWtime*OSCFREQ,0))

IC_HCNT = (ROUNDUP(600 ns * 100 MHz,0))
IC_HCNTSCL PERIOD = 60
IC_LCNT = (ROUNDUP(1300 ns * 100 MHz,0))
IC_LCNTSCL PERIOD = 130
Actual MIN_SCL_HIGHtime = 60*(1/100 MHz) = 600 ns
Actual MIN_SCL_LOWtime = 130*(1/100 MHz) = 1300 ns

3.16 SDA Hold Time
The I2C protocol specification requires 300ns of hold time on the SDA signal (tHD;DAT) in standard mode
and fast mode, and a hold time long enough to bridge the undefined part between logic 1 and logic 0 of the
falling edge of SCL in high speed mode and fast mode plus.

Board delays on the SCL and SDA signals can mean that the hold-time requirement is met at the I2C master,
but not at the I2C slave (or vice-versa). As each application encounters differing board delays, the
DW_apb_i2c contains a software programmable register (IC_SDA_HOLD) to enable dynamic adjustment of
the SDA hold-time.

The bits [15:0] are used to control the hold time of SDA during transmit in both slave and master mode
(after SCL goes from HIGH to LOW).

The bits [23:16] are used to extend the SDA transition (if any) whenever SCL is HIGH in the receiver (in
either master or slave mode).

NoteNoteNoteNote When the default values for SCL HighCount and LowCount are
computed by the coreConsultant GUI, check that the values are consistent
with the required baud rate. In case the computed values do not match
with the required values, you can manually scale the values, as described
in “Master mode” on page 86.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Figure 3-31 IC_SDA_HOLD Register

If different SDA hold times are required for different speed modes, the IC_SDA_HOLD register must be
reprogrammed when the speed mode is being changed. The IC_SDA_HOLD register can be programmed
only when the DW_apb_i2c is disabled (IC_ENABLE[0] = 0).

The reset value of the IC_SDA_HOLD register can be set via the coreConsultant parameter
IC_DEFAULT_SDA_HOLD

3.16.1 SDA Hold Timings in Receiver

When DW_apb_i2c acts as a receiver, according to the I2C protocol, the device should internally hold the
SDA line to bridge undefined gap between logic 1 and logic 0 of SCL.

IC_SDA_RX_HOLD can be used to alter the internal hold time which DW_apb_i2c applies to the incoming
SDA line. Each value in the IC_SDA_RX_HOLD register represents a unit of one ic_clk period. The
minimum value of IC_SDA_RX_HOLD is 0. This hold time is applicable only when SCL is HIGH. The
receiver does not extend the SDA after SCL goes LOW internally.

Figure 3-32 shows the DW_apb_i2c as receiver with IC_SDA_RX_HOLD programmed to greater than or
equal to 3.

Figure 3-32

If IC_SDA_RX_HOLD is greater than 3, DW_apb_i2c does not hold SDA beyond 3 ic_clk cycles, because
SCL goes LOW internally.

Figure 3-33 shows the DW_apb_i2c as receiver with IC_SDA_RX_HOLD programmed to 2.

31:24

Reserved
IC_SDA_RX_HOLD
IC_SDA_TX_HOLD

23:16 15:0

IC_SDA_RX_HOLD >= 3

ic_clk

scl_int
(Internal SCL after filter logic)

sda_post_spk_suppression
(Internal signal after filter logic)

sda_int
(SDA signal after filter and hold)

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

Figure 3-33

The maximum values of IC_SDA_RX_HOLD that can be programmed in the register for the respective
speed modes are derived from the equations show in Table 3-9.

3.16.2 SDA Hold Timings in Transmitter

The IC_SDA_TX_HOLD register can be used to alter the timing of the generated SDA (ic_data_oe) signal by
the DW_apb_i2c. Each value in the IC_SDA_TX_HOLD register represents a unit of one ic_clk period.

When the DW_apb_i2c is operating in Master Mode, the minimum tHD:DAT timing is one ic_clk period.
Therefore even when IC_SDA_TX_HOLD has a value of zero, the DW_apb_i2c will drive SDA (ic_data_oe)
one ic_clk cycle after driving SCL (ic_clk_oe) to logic 0. For all other values of IC_SDA_TX_HOLD, the
following is true:

■ Drive on SDA (ic_data_oe) occurs IC_SDA_TX_HOLD ic_clk cycles after driving SCL (ic_clk_oe) to
logic 0

Table 3-9 Maximum Values for IC_SDA_RX_HOLD

Speed Mode Maximum IC_SDA_RX_HOLD Value

Standard Mode IC_SS_SCL_HCNT – IC_FS_SPKLEN – 3

Fast Mode or Fast Mode
Plus

IC_FS_SCL_HCNT – IC_FS_SPKLEN – 3

High Speed
(IC_CAP_LOADING =100)

Min {IC_FS_SCL_HCNT – IC_FS_SPKLEN – 3 , IC_HS_SCL_LCNT – IC_HS_SPKLEN – 3}

High Speed
(IC_CAP_LOADING =400)

Min {IC_FS_SCL_HCNT – IC_FS_SPKLEN – 3 , (IC_HS_SCL_LCNT/2) – IC_HS_SPKLEN – 3}

NoteNoteNoteNote The maximum values in Table 3-9 is applicable in Master mode. In Slave mode, make sure the
IC_SDA_RX_HOLD does not exceed the maximum SCL fall time (tf in SS and FS mode or tfcl
in HS Mode).

IC_SDA_RX_HOLD = 2

ic_clk

scl_int
(Internal SCL after filter logic)

sda_post_spk_suppression
(Internal signal after filter logic)

sda_int
(SDA signal after filter and hold)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

When the DW_apb_i2c is operating in Slave Mode, the minimum tHD:DAT timing is SPKLEN + 7 ic_clk
periods, where SPKLEN is:

■ IC_FS_SPKLEN if the component is operating in standard mode, fast mode, or fast mode plus

■ IC_HS_SPKLEN if the component is operating in high speed mode

This delay allows for synchronization and spike suppression on the SCL (ic_clk_in_a) sample. Therefore,
even when IC_SDA_TX_HOLD has a value less than SPKLEN + 7, the DW_apb_i2c drives SDA (ic_data_oe)
SPKLEN + 7 ic_clk cycles after SCL (ic_clk_in) has transitioned to logic 0. For all other values of
IC_SDA_TX_HOLD, the following is true:

■ Drive on SDA (ic_data_oe) occurs IC_SDA_TX_HOLD ic_clk cycles after SCL (ic_clk_in_a) has
transitioned to logic 0.

Figure 3-34 shows the tHD:DAT timing generated by the DW_apb_i2c operating in Master Mode when
IC_SDA_TX_HOLD = 3.

Figure 3-34 DW_apb_i2c Master Implementing tHD;DAT with IC_SDA_HOLD = 3

3.17 DMA Controller Interface
The DW_apb_i2c has an optional built-in DMA capability that can be selected at configuration time; it has a
handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform
the data transfer to or from the DMA. While the DW_apb_i2c DMA operation is designed in a generic way
to fit any DMA controller as easily as possible, it is designed to work seamlessly, and best used, with the
DesignWare DMA Controller, the DW_ahb_dmac. The settings of the DW_ahb_dmac that are relevant to
the operation of the DW_apb_i2c are discussed here, mainly bit fields in the DW_ahb_dmac channel control
register, CTLx, where x is the channel number.

NoteNoteNoteNote The programmed SDA hold time cannot exceed at any time the duration of the low part of scl.
Therefore the programmed value cannot be larger than N_SCL_LOW-2, where N_SCL_LOW
is the duration of the low part of the scl period measured in ic_clk cycles.

IC_SDA_TX_HOLD = 3

ic_clk

ic_data_oe

ic_clk_oe

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

The relevant DMA settings are discussed in the following sections.

3.17.1 Enabling the DMA Controller Interface

To enable the DMA Controller interface on the DW_apb_i2c, you must write the DMA Control Register
(IC_DMA_CR). Writing a 1 into the TDMAE bit field of IC_DMA_CR register enables the DW_apb_i2c
transmit handshaking interface. Writing a 1 into the RDMAE bit field of the IC_DMA_CR register enables
the DW_apb_i2c receive handshaking interface.

3.17.2 Overview of Operation

As a block flow control device, the DMA Controller is programmed by the processor with the number of
data items (block size) that are to be transmitted or received by DW_apb_i2c; this is programmed into the
BLOCK_TS field of the DW_ahb_dmac CTLx register.

The block is broken into a number of transactions, each initiated by a request from the DW_apb_i2c. The
DMA Controller must also be programmed with the number of data items (in this case, DW_apb_i2c FIFO
entries) to be transferred for each DMA request. This is also known as the burst transaction length and is
programmed into the SRC_MSIZE/DEST_MSIZE fields of the DW_ahb_dmac CTLx register for source and
destination, respectively.

Figure 3-35 shows a single block transfer, where the block size programmed into the DMA Controller is 12
and the burst transaction length is set to 4. In this case, the block size is a multiple of the burst transaction
length. Therefore, the DMA block transfer consists of a series of burst transactions. If the DW_apb_i2c
makes a transmit request to this channel, four data items are written to the DW_apb_i2c TX FIFO. Similarly,
if the DW_apb_i2c makes a receive request to this channel, four data items are read from the DW_apb_i2c

NoteNoteNoteNote When the DW_apb_i2c interfaces to the DW_ahb_dmac, the DW_ahb_dmac is always a flow
controller; that is, it controls the block size. This must be programmed by software in the
DW_ahb_dmac. The DW_ahb_dmac always transfers data using DMA burst transactions if
possible, for efficiency. For more information, refer to the DesignWare DW_ahb_dmac
Databook. Other DMA controllers act in a similar manner.

NoteNoteNoteNote The DMA output dma_finish is a status signal to indicate that the DMA block transfer is
complete. DW_apb_i2c does not use this status signal, and therefore does not appear in the
I/O port list.

http://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf
http://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

RX FIFO. Three separate requests must be made to this DMA channel before all 12 data items are written or
read.

Figure 3-35 Breakdown of DMA Transfer into Burst Transactions

DMA Burst DMA Burst DMA Burst

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

Transaction 1 Transaction 2 Transaction 3

12 Data Items

DMA
Multi-block Transfer

Level

12 Data Items

Block Size: DMA.CTLx.BLOCK_TS=12
Number of data items per source burst transaction: DMA.CTLx.SRC_MSIZE = 4
I2C receive FIFO watermark level: I2C.DMARDLR + 1 = DMA.CTLx.SRC_MSIZE = 4
 (for more information, refer to discussion on page 99)

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

When the block size programmed into the DMA Controller is not a multiple of the burst transaction length,
as shown in Figure 3-36, a series of burst transactions followed by single transactions are needed to
complete the block transfer.

Figure 3-36 Breakdown of DMA Transfer into Single and Burst Transactions

3.17.3 Transmit Watermark Level and Transmit FIFO Underflow

During DW_apb_i2c serial transfers, transmit FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the transmit FIFO is less than or equal to the DMA Transmit Data Level Register
(IC_DMA_TDLR) value; this is known as the watermark level. The DW_ahb_dmac responds by writing a
burst of data to the transmit FIFO buffer, of length CTLx.DEST_MSIZE.

If IC_EMPTYFIFO_HOLD_MASTER_EN parameter is set to 0, data should be fetched from the DMA often
enough for the transmit FIFO to perform serial transfers continuously; that is, when the FIFO begins to
empty another DMA request should be triggered. Otherwise, the FIFO will run out of data causing a STOP
to be inserted on the I2C bus. To prevent this condition, the user must set the watermark level correctly.

3.17.4 Choosing the Transmit Watermark Level

Consider the example where the assumption is made:

DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit
FIFO. Consider two different watermark level settings.

15 Data Items

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

DMA Burst DMA SingleDMA SingleDMA Single
Transaction 1

DMA Burst
Transaction2

DMA Burst
Transaction 3

1 Data Item 1 Data Item 1 Data Item

Transaction 1 Transaction 2 Transaction 3

15 Data Items

DMA
Multi-Block Transfer

Level

Block Size: DMA.CTLx.BLOCK_TS=15
Number of data items per burst transaction: DMA.CTLx.DEST_MSIZE = 4
I2C transmit FIFO watermark level: I2C.IC_DMA_TDLR = DMA.CTLx.DEST_MSIZE = 4
 (for more information, refer to discussion on page 98)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

3.17.4.1 Case 1: IC_DMA_TDLR = 2

■ Transmit FIFO watermark level = I2C.IC_DMA_TDLR = 2

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR = 6

■ I2C transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Figure 3-37 Case 1 Watermark Levels

Therefore, the number of burst transactions needed equals the block size divided by the number of data
items per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/6 = 5

The number of burst transactions in the DMA block transfer is 5. But the watermark level,
I2C.IC_DMA_TDLR, is quite low. Therefore, the probability of an I2C underflow is high where the I2C serial
transmit line needs to transmit data, but where there is no data left in the transmit FIFO. This occurs because
the DMA has not had time to service the DMA request before the transmit FIFO becomes empty.

3.17.4.2 Case 2: IC_DMA_TDLR = 6

■ Transmit FIFO watermark level = I2C.IC_DMA_TDLR = 6

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR = 2

■ I2C transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Figure 3-38 Case 2 Watermark Levels

Number of burst transactions in Block:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/2 = 15

FIFO_DEPTH = 8

I2C.IC_DMA_TDLR = 2

FIFO_DEPTH - I2C.IC_DMA_TDLR = 6

FULL

EMPTY

I2C Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

FIFO_DEPTH = 8 I2C.IC_DMA_TDLR = 6

FIFO_DEPTH - I2C.iC_DMA_TDLR = 2

FULL

EMPTY

I2C Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

In this block transfer, there are 15 destination burst transactions in a DMA block transfer. But the watermark
level, I2C.IC_DMA_TDLR, is high. Therefore, the probability of an I2C underflow is low because the DMA
controller has plenty of time to service the destination burst transaction request before the I2C transmit FIFO
becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions per
block. This provides a potentially greater amount of AMBA bursts per block and worse bus utilization than
the former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while
at the same time keeping the probability of an underflow condition to an acceptable level. In practice, this is
a function of the ratio of the rate at which the I2C transmits data to the rate at which the DMA can respond
to destination burst requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the DMA
master interface to the highest priority master in the AMBA layer, increases the rate at which the DMA
controller can respond to burst transaction requests. This in turn allows the user to decrease the watermark
level, which improves bus utilization without compromising the probability of an underflow occurring.

3.17.5 Selecting DEST_MSIZE and Transmit FIFO Overflow

As can be seen from Figure 3-38 on page 97, programming DMA.CTLx.DEST_MSIZE to a value greater than
the watermark level that triggers the DMA request may cause overflow when there is not enough space in
the I2C transmit FIFO to service the destination burst request. Therefore, the following equation must be
adhered to in order to avoid overflow:

DMA.CTLx.DEST_MSIZE <= I2C.FIFO_DEPTH - I2C.IC_DMA_TDLR (1)

In Case 2: IC_DMA_TDLR = 6, the amount of space in the transmit FIFO at the time the burst request is
made is equal to the destination burst length, DMA.CTLx.DEST_MSIZE. Thus, the transmit FIFO may be
full, but not overflowed, at the completion of the burst transaction.

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that triggers a
transmit DMA request; that is:

DMA.CTLx.DEST_MSIZE = I2C.FIFO_DEPTH - I2C.IC_DMA_TDLR (2)

This is the setting used in Figure 3-36 on page 96.

Adhering to equation (2) reduces the number of DMA bursts needed for a block transfer, and this in turn
improves AMBA bus utilization.

3.17.6 Receive Watermark Level and Receive FIFO Overflow

During DW_apb_i2c serial transfers, receive FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the receive FIFO is at or above the DMA Receive Data Level Register; that is,
IC_DMA_RDLR+1. This is known as the watermark level. The DW_ahb_dmac responds by fetching a burst
of data from the receive FIFO buffer of length CTLx.SRC_MSIZE.

NoteNoteNoteNote The transmit FIFO will not be full at the end of a DMA burst transfer if the I2C has successfully
transmitted one data item or more on the I2C serial transmit line during the transfer.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers
continuously; that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO
will fill with data (overflow). To prevent this condition, the user must correctly set the watermark level.

3.17.7 Choosing the Receive Watermark level

Similar to choosing the transmit watermark level described earlier, the receive watermark level,
IC_DMA_RDLR+1, should be set to minimize the probability of overflow, as shown in Figure 3-39. It is a
trade-off between the number of DMA burst transactions required per block versus the probability of an
overflow occurring.

3.17.8 Selecting SRC_MSIZE and Receive FIFO Underflow

As can be seen in Figure 3-39, programming a source burst transaction length greater than the watermark
level may cause underflow when there is not enough data to service the source burst request. Therefore,
equation 3 below must be adhered to avoid underflow.

If the number of data items in the receive FIFO is equal to the source burst length at the time the burst
request is made – DMA.CTLx.SRC_MSIZE – the receive FIFO may be emptied, but not underflowed, at the
completion of the burst transaction. For optimal operation, DMA.CTLx.SRC_MSIZE should be set at the
watermark level; that is:

DMA.CTLx.SRC_MSIZE = I2C.IC_DMA_RDLR + 1 (3)

Adhering to equation (3) reduces the number of DMA bursts in a block transfer, which in turn can avoid
underflow and improve AMBA bus utilization.

Figure 3-39 I2C Receive FIFO

3.17.9 Handshaking Interface Operation

The following sections discuss the handshaking interface.

3.17.9.1 dma_tx_req, dma_rx_req

The request signals for source and destination, dma_tx_req and dma_rx_req, are activated when their
corresponding FIFOs reach the watermark levels as discussed earlier.

NoteNoteNoteNote The receive FIFO will not be empty at the end of the source burst transaction if the I2C has
successfully received one data item or more on the I2C serial receive line during the burst.

I2C.IC_DMA_RDLR + 1FULL

EMPTY

I2C Receive FIFO

DMA
Controller

Data In

Data Out

Receive FIFO
Watermark level

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

The DW_ahb_dmac uses rising-edge detection of the dma_tx_req signal/dma_rx_req to identify a request
on the channel. Upon reception of the dma_tx_ack/dma_rx_ack signal from the DW_ahb_dmac to indicate
the burst transaction is complete, the DW_apb_i2c de-asserts the burst request signals,
dma_tx_req/dma_rx_req, until dma_tx_ack/dma_rx_ack is de-asserted by the DW_ahb_dmac.

When the DW_apb_i2c samples that dma_tx_ack/dma_rx_ack is de-asserted, it can re-assert the
dma_tx_req/dma_rx_req of the request line if their corresponding FIFOs exceed their watermark levels
(back-to-back burst transaction). If this is not the case, the DMA request lines remain de-asserted.
Figure 3-40 shows a timing diagram of a burst transaction where pclk = hclk.

Figure 3-40 Burst Transaction – pclk = hclk

Figure 3-41 shows two back-to-back burst transactions where the hclk frequency is twice the pclk frequency.

Figure 3-41 Back-to-Back Burst Transactions – hclk = 2*pclk

The handshaking loop is as follows:

dma_tx_req/dma_rx_req asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac

-> dma_tx_req/dma_rx_req de-asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac

-> dma_tx_req/dma_rx_req reasserted by DW_apb_i2c, if back-to-back transaction is required

burst transaction request

burst transaction complete

pclk

hclk

dma_tx_req

dma_tx_ack

dma_tx_single not sampled by the DW_ahb_dmac for burst transactions

burst transaction request

burst transaction complete

burst transaction request

burst transaction complete

hclk

pclk

dma_rx_req

dma_rx_ack

dma_rx_single not sampled by the DW_ahb_dmac for burst transactions

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

Two things to note here:

1. The burst request lines, dma_tx_req signal/dma_rx_req, once asserted remain asserted until their
corresponding dma_tx_ack/dma_rx_ack signal is received even if the respective FIFO’s drop below
their watermark levels during the burst transaction.

2. The dma_tx_req/dma_rx_req signals are de-asserted when their corresponding
dma_tx_ack/dma_rx_ack signals are asserted, even if the respective FIFOs exceed their watermark
levels.

3.17.9.2 dma_tx_single, dma_rx_single

The dma_tx_single signal is a status signal. It is asserted when there is at least one free entry in the transmit
FIFO and cleared when the transmit FIFO is full. The dma_rx_single signal is a status signal. It is asserted
when there is at least one valid data entry in the receive FIFO and cleared when the receive FIFO is empty.

These signals are needed by only the DW_ahb_dmac for the case where the block size, CTLx.BLOCK_TS,
that is programmed into the DW_ahb_dmac is not a multiple of the burst transaction length,
CTLx.SRC_MSIZE, CTLx.DEST_MSIZE, as shown in Figure 3-36 on page 96. In this case, the DMA single
outputs inform the DW_ahb_dmac that it is still possible to perform single data item transfers, so it can
access all data items in the transmit/receive FIFO and complete the DMA block transfer. The DMA single
outputs from the DW_apb_i2c are not sampled by the DW_ahb_dmac otherwise. This is illustrated in the
following example.

Consider first an example where the receive FIFO channel of the DW_apb_i2c is as follows:

DMA.CTLx.SRC_MSIZE = I2C.iC_DMA_RDLR + 1 = 4

DMA.CTLx.BLOCK_TS = 12

For the example in Figure 3-35 on page 95, with the block size set to 12, the dma_rx_req signal is asserted
when four data items are present in the receive FIFO. The dma_rx_req signal is asserted three times during
the DW_apb_i2c serial transfer, ensuring that all 12 data items are read by the DW_ahb_dmac. All DMA
requests read a block of data items and no single DMA transactions are required. This block transfer is made
up of three burst transactions.

Now, for the following block transfer:

DMA.CTLx.SRC_MSIZE = I2C.IC_DMA_RDLR + 1 = 4

DMA.CTLx.BLOCK_TS = 15

The first 12 data items are transferred as already described using three burst transactions. But when the last
three data frames enter the receive FIFO, the dma_rx_req signal is not activated because the FIFO level is
below the watermark level. The DW_ahb_dmac samples dma_rx_single and completes the DMA block

NoteNoteNoteNote The burst transaction request signals, dma_tx_req and dma_rx_req, are generated in the
DW_apb_i2c off pclk and sampled in the DW_ahb_dmac by hclk. The acknowledge signals,
dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac off hclk and sampled in
the DW_apb_i2c of pclk. The handshaking mechanism between the DW_ahb_dmac and the
DW_apb_i2c supports quasi-synchronous clocks; that is, hclk and pclk must be
phase-aligned, and the hclk frequency must be a multiple of the pclk frequency.

https://solvnet.synopsys.com
www.designware.com

102 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

transfer using three single transactions. The block transfer is made up of three burst transactions followed
by three single transactions.

Figure 3-42 shows a single transaction. The handshaking loop is as follows:

dma_tx_single/dma_rx_single asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac

-> dma_tx_single/dma_rx_single de-asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac.

Figure 3-42 Single Transaction

Figure 3-43 shows a burst transaction, followed by three back-to-back single transactions, where the hclk
frequency is twice the pclk frequency.

Figure 3-43 Burst Transaction + 3 Back-to-Back Singles – hclk = 2*pclk

NoteNoteNoteNote The single transaction request signals, dma_tx_single and dma_rx_single, are generated in
the DW_apb_i2c on the pclk edge and sampled in DW_ahb_dmac on hclk. The acknowledge
signals, dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac on the hclk edge
hclk and sampled in the DW_apb_i2c on pclk. The handshaking mechanism between the
DW_ahb_dmac and the DW_apb_i2c supports quasi-synchronous clocks; that is, hclk and
pclk must be phase aligned and the hclk frequency must be a multiple of pclk frequency.

m0 m1 m2 n0 n1 n2 n3 n4

single transaction complete

pclk

hclk

dma_rx_req

dma_rx_ack

dma_rx_single

hclk

pclk

dma_tx_req

dma_tx_ack

dma_tx_single

burst transaction request

burst transaction complete
Single transaction complete

Single transaction complete
Single transaction complete

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 103SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Functional Description

3.18 APB Interface
The host processor accesses data, control, and status information on the DW_apb_i2c through the APB
interface. The DW_apb_i2c supports APB data bus widths of 8, 16, and 32 bits.

For more information about the APB Interface and data widths, refer to “Integration Considerations” on
page 275.

https://solvnet.synopsys.com
www.designware.com

104 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Functional Description DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 105

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

4
Parameters

This chapter describes the configuration parameters used by the DW_apb_i2c. The settings of the
configuration parameters determine the I/O signal list of the DW_apb_i2c peripheral.

4.1 Parameter Descriptions
You use coreConsultant or coreAssembler to configure the following parameters and generate the
configured code.

In the following tables, the values 0 and 1 occasionally appear in parentheses in the descriptions for the
parameters. These are the logical values for parameter settings that appear in the coreConsultant and
coreAssembler GUIs as check boxes, drop-down lists, a multiple selection, and so on.

4.2 Configuration Parameters
Table 4-1 lists the DW_apb_i2c parameter descriptions.

Attention
When using coreConsultant or coreAssembler, you can right-click on a parameter label to
access a “What’s This” popup dialog that will tell you the details for that particular
parameter. The information in each What’s This dialog essentially matches the
information in the parameter descriptions below.

Table 4-1 Top-Level Parameters

coreConsultant Field Label Parameter Definition

System Configuration

APB data bus width Parameter Name: APB_DATA_WIDTH
Legal Values: 8, 16, or 32
Default Value: 8
Dependencies: None
Description: Width of the APB data bus.

https://solvnet.synopsys.com
www.designware.com

106 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

Device Configuration

Highest speed I2C mode supported Parameter Name: IC_MAX_SPEED_MODE
Legal Values: Standard Mode (1), Fast Mode or Fast Mode Plus (2), High
Speed Mode (3)
Default Value: High Speed Mode (3)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Maximum I2C mode supported. Controls the reset value of the
SPEED bit field [2:1] of the I2C Control Register (IC_CON). Count registers are
used to generate the outgoing clock SCL on the I2C interface. For speed
modes faster than the configured maximum speed mode, the corresponding
registers are not present in the top-level RTL as described as follows:

■ If this parameter is set to “Standard,” then the IC_FS_SCL_*,
IC_HS_MADDR, and IC_HS_SCL_* registers are not present.

■ If this parameter is set to “Fast,” then the IC_HS_MADDR, and
IC_HS_SCL_* registers are not present.

Has I2C default slave address of? Parameter Name: IC_DEFAULT_SLAVE_ADDR
Legal Values: 0x000 to 0x3ff
Default Value: 0x055
Description: Reset value of DW_apb_i2c slave address. Controls the reset
value of the I2C Slave Address Register (IC_SAR). The default values cannot
be any of the reserved address locations: 0x00 to 0x07 or 0x78 to 0x7f.

Has I2C default target slave address
of?

Parameter Name: IC_DEFAULT_TAR_SLAVE_ADDR
Legal Values: 0x000 to 0x3ff
Default Value: 0x055
Description: Reset value of DW_apb_i2c target slave address. Controls the
reset value of the IC_TAR bit field (9:0) of the I2C Target Address Register
(IC_TAR). The default values cannot be any of the reserved address locations:
0x00 to 0x07 or 0x78 to 0x7f.

Has High Speed mode master code
of?

Parameter Name: IC_HS_MASTER_CODE
Legal Values: 0x0 to 0x7
Default Value: 0x1
Dependencies: This parameter is enabled if IC_MAX_SPEED_MODE is set to
High (3).
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: High-speed mode master code of DW_apb_i2c. Controls the
reset value of the I2C HS Master Mode Code Address Register
(IC_HS_MADDR). This is a unique code that alerts other masters on the I2C
bus that a high-speed mode transfer is going to begin. For more information
about this code, refer to “Multiple Master Arbitration” on page 53.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 107SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Is an I2C master? Parameter Name: IC_MASTER_MODE
Legal Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Controls whether DW_apb_i2c is enabled to be a master after
reset. This parameter controls the reset value of bit 0 of the I2C Control
Register (IC_CON). To enable the component to be a master, you must write a
1 in bit 0 of the IC_CON register.
NOTE: If this parameter is checked (1), then you must ensure that the
parameter IC_SLAVE_DISABLE is checked (1) as well.

Disable Slave after reset? Parameter Name: IC_SLAVE_DISABLE
Legal Values: Unchecked (0), Checked (1)
Default Value: Checked (1)
Dependencies: None.
Description: Controls whether DW_apb_i2c has its slave enabled or disabled
after reset. If checked, the DW_apb_i2c slave interface is disabled after reset.
The slave also can be disabled by programming a 1 into bit 6 of the I2C Control
Register (IC_CON). By default, the slave is enabled.
NOTE: If this parameter is unchecked (0), then you must ensure that the
parameter IC_MASTER_MODE is unchecked (0) as well.

Supports 10-bit addressing in
master mode?

Parameter Name: IC_10BITADDR_MASTER
Legal Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Controls whether DW_apb_i2c supports 7- or 10-bit addressing
on the I2C interface after reset when acting as a master. Controls the reset
value of bit 4 of the I2C Control Register (IC_CON).
Master-generated transfers use this number of address bits. Additionally, it can
be reprogrammed by software by writing to the IC_CON register.

Supports 10-bit addressing in slave
mode?

Parameter Name: IC_10BITADDR_SLAVE
Legal Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Controls whether DW_apb_i2c slave supports 7- or 10-bit
addressing on the I2C interface after reset when acting as a slave. Controls
reset value of part of the IC_CON register. DW_apb_i2c responds to this
number of address bits when acting as a slave; it can be programmed by
software.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

108 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

Depth of transmit buffer is? Parameter Name: IC_TX_BUFFER_DEPTH
Legal Values: 2 to 256
Default Value: 8
Dependencies: None
Description: Depth of the transmit buffer. The buffer is 9-bits wide; 8 bits for
the data, and 1 bit for the read or write command.

Depth of receive buffer is? Parameter Name: IC_RX_BUFFER_DEPTH
Legal Values: 2 to 256
Default Value: 8
Dependencies: None
Description: Depth of receive buffer; the buffer is 8 bits wide.

Transmit buffer threshold level is? Parameter Name: IC_TX_TL
Legal Values: 0 to (IC_TX_BUFFER_DEPTH – 1)
Default Value: 0
Dependencies: None
Description: Reset value for the threshold level of the transmit buffer. This
parameter controls the reset value of the I2C Transmit FIFO Threshold Level
Register (IC_TX_TL).

Receive buffer threshold value is? Parameter Name: IC_RX_TL
Legal Values: 0 to (IC_RX_BUFFER_DEPTH – 1)
Default Value: 0
Dependencies: None
Description: Reset value for the threshold level of the receive buffer. This
parameter controls the reset value of the I2C Receive FIFO Threshold Level
Register (IC_RX_TL).

Allow restart conditions to be sent
when acting as a master?

Parameter Name: IC_RESTART_EN
Legal Values: Checked (1) or Unchecked (0)
Default Value: Checked (1)
Dependencies: None
Description: Controls the reset value of bit 5 (IC_RESTART_EN) in the
IC_CON register. By default, this parameter is checked, which allows
RESTART conditions to be sent when DW_apb_i2c is acting as a master.
Some older slaves do not support handling RESTART conditions; however,
RESTART conditions are used in several I2C operations. When the RESTART
is disabled, the DW_apb_i2c master is incapable of performing the following
functions:

■ Sending a START BYTE

■ Performing any high-speed mode operation

■ Performing direction changes in combined format mode

■ Performing a read operation with a 10-bit address

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 109SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Hardware reset value for
IC_SDA_SETUP register

Parameter Name: IC_DEFAULT_SDA_SETUP
Legal Values: 0x02 to 0xff
Default Value: 0x64
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Determines the reset value for the IC_SDA_SETUP register,
which in turn controls the time delay—in terms of the number of ic_clk
periods—introduced in the rising edge of SCL relative to SDA changing when a
read-request is serviced.

Hardware reset value for
IC_SDA_HOLD register

Parameter Name: IC_DEFAULT_SDA_HOLD
Legal Values: 0x01 to 0xffffff
Default Value: 0x1
Dependencies: None
Description: Determines the reset value for the IC_SDA_HOLD register, which
in turn controls the SDA hold time implemented by DW_apb_i2c (when
transmitting or receiving, as either master or slave). The relevant I2C
requirement is tHD;DAT as detailed in the I2C Bus Specifications.
The programmed SDA hold time as transmitter cannot exceed at any time the
duration of the low part of scl. Therefore it is recommended that the configured
default value should not be larger than N_SCL_LOW-2, where N_SCL_LOW is
the duration of the low part of the scl period measured in ic_clk cycles, for the
maximum speed mode the component is configured for.

IC_ACK_GENERAL_CALL set to
acknowledge I2C general calls on
reset

Parameter Name: IC_DEFAULT_ACK_GENERAL_CALL
Legal Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Assigns the default reset value for the IC_ACK_GENERAL_CALL
register.

External Configuration

Include DMA handshaking interface
signals?

Parameter Name: IC_HAS_DMA
Legal Values: Checked (1) or Unchecked (0)
Default Value: Unchecked (0)
Dependencies: None
Description: When checked, includes the DMA handshaking interface signals
at the top-level I/O. For more information about these signals, see “Signal
Descriptions” on page 125.

Single Interrupt output port present? Parameter Name: IC_INTR_IO
Legal Values: Unchecked (0) or Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: If unchecked, each interrupt source has its own output. If
checked, all interrupt sources are combined into a single output.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

110 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

Polarity of interrupts is active high? Parameter Name: IC_INTR_POL
Legal Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: By default, the polarity of the output interrupt lines is active high
(checked).

Internal Configuration

Add Encoded Parameters Parameter Name: IC_ADD_ENCODED_PARAMS
Legal Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Adding the encoded parameters gives firmware an easy and
quick way of identifying the DesignWare component within an I/O memory map.
Some critical design-time options determine how a driver should interact with
the peripheral. There is a minimal area overhead by including these
parameters.
When bit 7 of the IC_COMP_PARAM_1 is read and contains a ‘1,’ the encoded
parameters can be read via software. If this bit is a ‘0,’ then the entire register is
‘0’ regardless of the setting of any of the other parameters that are encoded in
the register’s bits. For details about this register, see the IC_COMP_PARAM_1
register on page 225.
Note: Unique drivers must be developed for each configuration of the
DW_apb_i2c. Based on the configuration, the registers in the IP can differ; thus
the same driver cannot be used with different configurations of the IP.

Specify clock counts directly instead
of supplying clock frequency?

Parameter Name: IC_USE_COUNTS
Legal Values: Checked (1) or Unchecked (0)
Default Value: Unchecked (0)
Dependencies: None
Description: Determines whether *CNT values are provided directly or by
specifying the ic_clk clock frequency and letting coreConsultant (or
coreAssembler) calculate the count values.
When this parameter is checked, the reset values of the *CNT registers are
specified by the corresponding *COUNT configuration parameters, which may
be user-defined or derived (see the standard mode, fast mode or fast mode
plus, and high speed mode parameters later in this table).
When unchecked (default setting), the reset values of the *CNT registers are
calculated from the configuration parameter IC_CLOCK_PERIOD.
Note: For fast mode plus, reprogram the IC_FS_SCL_*CNT register to achieve
the required data rate when unchecked.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 111SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Hard code the count values for each
mode?

Parameter Name: IC_HC_COUNT_VALUES
Legal Values: Checked (1) or Unchecked (0)
Default Value: Unchecked (0)
Dependencies: None.
Description: By checking this parameter, the *CNT registers are set to read
only. Unchecking this parameter (default setting) allows the *CNT registers to
be writable.
Regardless of the setting, the *CNT registers are always readable and have
reset values from the corresponding *COUNT configuration parameters, which
may be user-defined or derived (see standard, fast, fast mode plus, or high
speed mode parameters later in this table). The count registers begin on
page 175.
Note: Since the DW_apb_i2c uses the same high and low count registers for
fast mode and fast mode plus, if this parameter is checked (1) the
IC_FS_SCL_*CNT registers are hard coded to either fast mode or fast mode
plus. Consequently, DW_apb_i2c can operate in either fast mode or fast mode
plus, but not in both modes simultaneously.
For fast mode plus, it is recommended that this parameter be Unchecked (0).

ic_clk has a period of? (ns integers
only)

Parameter Name: IC_CLOCK_PERIOD
Legal Values: 2 to 2147483647 (ns)
Default Value: 10 (ns) – high-speed mode
Dependencies: This parameter is disabled if the IC_USE_COUNTS
parameter is checked (1).
Description: Specifies the period of incoming ic_clk, which is used to generate
outgoing I2C interface SCL clock (ns integers only). When the count values are
used to generate the IC_CLOCK_PERIOD, then the IC_MAX_SPEED_MODE
setting determines the actual period:
 IC_MAX_SPEED_MODE = Standard => 500 ns
 IC_MAX_SPEED_MODE = Fast => 100 ns
 IC_MAX_SPEED_MODE = High => 10 ns
 IC_ULTRA_FAST_MODE =1 => 25ns
Note: For fast mode plus, reprogram the IC_FS_SCL_*CNT register to achieve
the required data rate.

Relationship between pclk and ic_clk
is?

Parameter Name: IC_CLK_TYPE
Legal Values: Identical (0), Asynchronous (1)
Default Value: Asynchronous (1)
Dependencies: None.
Description: Specifies the relationship between pclk and ic_clk.
NOTE: ic_clk frequency must be greater than or equal to pclk frequency.
Identical (0): clocks are identical; no metastability flops are used for data
passing between clock domains.
Asynchronous (1): clocks may be completely asynchronous to each other,
metastability flops are used for data passing between clock domains.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

112 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

Standard Speed Mode Configuration

Std speed SCL high count is? Parameter Name: IC_SS_SCL_HIGH_COUNT
Legal Values: Hex value in range 0x0006 to 0xffff
Default Value: 0x0190 (400 based on 100 MHz ic_clk)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of Standard Speed I2C Clock SCL High Count
register (IC_SS_SCL_HCNT). The value must be calculated based on the I2C
data rate desired and I2C clock frequency. For more information, see the
IC_SS_SCL_HCNT register on page 175.

Std speed SCL low count is? Parameter Name: IC_SS_SCL_LOW_COUNT
Legal Values: Hex value in range 0x0008 to 0xffff
Default Value: 0x01d6 (470 based on 100 MHz ic_clk)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of Standard Speed I2C Clock SCL Low Count
register (IC_SS_SCL_HCNT). Value must be calculated based on I2C data rate
desired and I2C clock frequency. For more information, see IC_SS_SCL_LCNT
register on page 176. When parameter IC_USE_COUNTS = 0, this parameter
is automatically calculated using the IC_CLK_PERIOD parameter.

Fast Mode or Fast Mode Plus

Fast Mode or Fast Mode Plus SCL
high count is?

Parameter Name: IC_FS_SCL_HIGH_COUNT
Legal Values: Hex value in range 0x0006 to 0xffff
Default Value: 0x003c (60 based on 100 MHz ic_clk in Fast Mode)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard,” this parameter is disabled.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of Fast Mode or Fast Mode Plus I2C Clock SCL High
Count register (IC_FS_SCL_HCNT). Value must be calculated based on I2C
data rate desired and I2C clock frequency. For more information, see
IC_FS_SCL_HCNT register on page 177.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 113SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Fast Mode or Fast Mode Plus SCL
low count is?

Parameter Name: IC_FS_SCL_LOW_COUNT
Legal Values: Hex value in range 0x0008 to 0xffff
Default Value: 0x0082 (130 based on 100 MHz ic_clk in Fast Mode)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard,” this parameter is disabled.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of Fast Mode or Fast Mode Plus I2C Clock SCL Low
Count register (IC_FS_SCL_LCNT). Value must be calculated based on I2C
data rate and I2C clock frequency. For more information, see the
IC_FS_SCL_LCNT register on page 178.

High Speed Mode

For high speed mode systems the
I2C bus loading is? (pF)

Parameter Name: IC_CAP_LOADING
Legal Values: 100 or 400
Default Value: 100
Dependencies: This parameter is not present in non-high speed mode
systems (IC_MAX_SPEED_MODE != high).
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: For high-speed mode, the bus loading affects the high and low
pulse width of SCL.

High speed SCL high count is? Parameter Name: IC_HS_SCL_HIGH_COUNT
Legal Values: Hex value in range 0x0006 to 0xffff
Default Value: 0x006 (6 based on 100 MHz ic_clk, 400 pF bus loading)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard” or “fast”, this parameter is irrelevant.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of High Speed I2C Clock SCL High Count register
(IC_HS_SCL_HCNT). Value must be calculated based on I2C data rate desired
and high speed I2C clock frequency. For more information, see
IC_HS_SCL_HCNT register on page 179.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

114 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

High speed SCL low count is? Parameter Name: IC_HS_SCL_LOW_COUNT
Legal Values: Hex value in range 0x0008 to 0xffff
Default Value: 0x0010 (16 based on 100 MHz ic_clk, 400 pF bus loading)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard” or “fast”, this parameter is irrelevant.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of High Speed I2C Clock SCL Low Count register
(IC_HS_SCL_LCNT). The value must be calculated based on I2C data rate
and I2C clock frequency. For more information, see IC_HS_SCL_LCNT
register on page 180.

Spike Suppression Configuration

Maximum length (in ic_clk cycles) of
suppressed spikes in Standard
Mode, Fast Mode, and Fast Mode
Plus

Parameter Name: IC_DEFAULT_FS_SPKLEN
Legal Values: Hex value in range 0x01 to 0xFF
Default Value: Max(1,ceiling(50/IC_CLOCK_PERIOD))
Dependencies: Initial value automatically calculated using IC_CLK_PERIOD.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of maximum suppressed spike length register in
Standard Mode, Fast Mode, and Fast Mode Plus (IC_FS_SPKLEN register).
Spike length is expressed in ic_clk cycles, and this value is calculated based on
the value of IC_CLOCK_PERIOD

Maximum length (in ic_clk cycles) of
suppressed spikes in HS mode

Parameter Name: IC_DEFAULT_HS_SPKLEN
Legal Values: Hex value in range 0x01 to 0xFF
Default Value: Max(1,ceiling(10/IC_CLOCK_PERIOD))
Dependencies: Initial value automatically calculated using IC_CLK_PERIOD.
If MAX_SPEED_MODE is set to standard or fast, this parameter is irrelevant.
This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Reset value of maximum suppressed spike length register in HS
modes (IC_HS_SPKLEN register). Spike length is expressed in ic_clk cycles,
and this value is calculated based on the value of IC_CLOCK_PERIOD.

Additional Features

Allow dynamic updating of the TAR
address?

Parameter Name: I2C_DYNAMIC_TAR_UPDATE
Legal Values: Unchecked (0) or Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: When checked, allows the IC_TAR register to be updated
dynamically. Setting this parameter affects the operation of DW_apb_i2c when
it is in master mode. For more details, see “Master Mode Operation” on
page 60.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 115SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Enable register to generate NACKs
for data received by Slave?

Parameter Name: IC_SLV_DATA_NACK_ONLY
Legal Values: Unchecked (0) or Checked (1)
Default Value: Unchecked (0)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Enables an additional register to control whether DW_apb_i2c
generates a NACK after a data byte has been transferred to it. This NACK
generation only occurs when DW_apb_i2c is a slave-receiver. If this register is
set to a value of 1, it can only generate a NACK after a data byte is received;
hence, the data transfer is aborted and the data received is not pushed to the
receive buffer.
When the register is set to a value of 0, it generates NACK/ACK, depending on
normal criteria. If this option is selected, the default value of the
IC_SLV_DATA_NACK_ONLY register is always 0. The register must be
explicitly programmed to a value of 1 if NACKs are to be generated. The
register can only be written to successfully if DW_apb_i2c is disabled
(IC_ENABLE[0] = 0) or the slave part is inactive (IC_STATUS[6] = 0).

Hold transfer when Tx FIFO is
empty?

Parameter Name: IC_EMPTYFIFO_HOLD_MASTER_EN
Legal Values: Unchecked (0) or Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: If this parameter is set, the master only completes a transfer—
that is, issues a STOP—when it finds a Tx FIFO entry tagged with a Stop bit. If
the Tx FIFO empties and the last byte does not have the Stop bit set, the
master stalls the transfer by holding the SCL line low.
If this parameter is not set, the master completes a transfer when the Tx FIFO
is empty. In SMbus Mode (IC_SMBUS=1),
IC_EMPTYFIFO_HOLD_MASTER_EN should be always enabled.

When Rx FIFO is physically full, hold
the bus till Rx FIFO has space
available?

Parameter Name: IC_RX_FULL_HLD_BUS_EN
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: When the Rx FIFO is physically full to its RX_BUFFER_DEPTH,
this parameter provides a hardware method to hold the bus till the Rx FIFO
data is read out and there is space available in the FIFO.
This parameter can be used when DW_apb_i2c is either a slave-receiver (that
is, data is written to the device) or a master-receiver (that is, the device reads
data from a slave).
NOTE: If this parameter is checked, then the RX_OVER interrupt is never set to
1 as the criteria to set this interrupt are never met. The RX_OVER interrupt can
be found in the IC_INTR_STAT and IC_RAW_INTR_STAT registers. It is also
an optional output signal, ic_rx_over_intr(_n).

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

116 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

Enable restart detect interrupt in
slave mode?

Parameter Name: IC_SLV_RESTART_DET_EN
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: When checked, allows the slave to detect and issue the restart
interrupt when the slave is addressed. Setting this parameter affects the
operation of DW_apb_i2c only when it is in slave mode. This controls the
RESTART_DET bit in the IC_RAW_INTR_STAT, IC_INTR_MASK,
IC_INTR_STAT, and IC_CLR_RESTART_DET registers. This also controls the
ic_restart_det_intr(_n) and ic_intr(_n) signals.

Generate STOP_DET interrupt only
if Master is active?

Parameter Name: IC_STOP_DET_IF_MASTER_ACTIVE
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: Controls whether DW_apb_i2c generates a STOP_DET interrupt
when the master is active.

■ Checked (1): Allows the master to detect and issue the stop interrupt when
the master is active.

■ Unchecked (0): The master always dectects and issues the stop interrupt
irrespective of whether it is active.

This parameter affects the operation of DW_apb_i2c when it is in master mode.
This controls the STOP_DET bit of the C_RAW_INTR_STAT, IC_INTR_MASK,
IC_INTR_STAT, and IC_CLR_STOP_DET registers. This parameter also
controls the ic_stop_det_intr(_n) and ic_intr(_n) signals.

Include Status bits to indicate the
reason for clock stretching?

Parameter Name: IC_STAT_FOR_CLK_STRETCH
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: If this parameter is set, the DW_apb_i2c consists of Status bits
that indicate the reason for clock stretching in the IC_STATUS Register.

Include programmable bit for
blocking Master commands?

Parameter Name: IC_TX_CMD_BLOCK
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: Controls whether DW_apb_i2c transmits data on I2C bus as soon
as data is available in the Tx FIFO. When checked, allows the master to hold
the transmission of data on the I2C bus when the Tx FIFO has data to transmit.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 117SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Enable blocking Master commands
after reset?

Parameter Name: IC_TX_CMD_BLOCK_DEFAULT
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: IC_TX_CMD_BLOCK=1
Description: Controls whether DW_apb_i2c has its transmit command block
enabled or disabled after reset. If checked, the DW_apb_i2c blocks the
transmission of data on the I2C bus.

Include First data byte indication in
IC_DATA_CMD register?

Parameter Name: IC_FIRST_DATA_BYTE_STATUS
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: Controls whether DW_apb_i2c generates the
FIRST_DATA_BYTE status bit in the IC_DATA_CMD register. When checked,
the master/slave receiver sets the FIRST_DATA_BYTE status bit in the
IC_DATA_CMD register to indicate whether the data present in the
IC_DATA_CMD register is the first data byte after the address phase of a
receive transfer.
Note: In the case when APB_DATA_WIDTH is set to 8, you must perform two
APB reads to the IC_DATA_CMD register to get status on bit 11.

Avoid Rx FIFO Flush on Transmit
Abort?

Parameter Name: IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: This Parameter controls the Rx FIFO Flush during the Transmit
Abort. If this parameter is checked(1), only the Tx FIFO is flushed (not the Rx
FIFO) on the Transmit Abort. If this parameter is unchecked(0). both the Tx
FIFO and Rx FIFO are flushed on Transmit Abort.

Enable IC_CLK Frequency
Reduction?

Parameter Name: IC_CLK_FREQ_OPTIMIZATION
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Description: This parameter is used to reduce the system clock frequency
(ic_clk) by reducing the internal latency required to generate the high period
and low period of the SCL line
Dependencies: DWC-APB-Advanced-Source License

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

118 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

I2C 3.0 Parameters

Include Bus Clear feature? Parameter Name: IC_BUS_CLEAR_FEATURE
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled. In SMbus Mode (IC_SMBUS=1), this
feature is always enabled.
Description: If this parameter is set:

■ If an SDA line is stuck at low for IC_SDA_STUCK_LOW_TIMEOUT period
of ic_clk, DW_apb_i2c master generates a master transmit abort
(IC_TX_ABRT_SOURCE[17]: ABRT_SDA_STUCK_AT_LOW) to indicate
SDA stuck at low.

User can enable the SDA_STUCK_RECOVERY_EN (IC_ENABLE[3])
register bit to recover the SDA by sending at most 9 SCL clocks.
If SDA line is recovered, then the master generates a STOP and auto clear
the 'SDA_STUCK_RECOVERY_EN' register bit and resume the normal I2C
transfers.
If an SDA line is not recovered, then the master auto clears the
SDA_STUCK_RECOVERY_EN register bit and asserts the
SDA_STUCK_NOT_RECOVERED (IC_STATUS[12]) status bit to indicate
the SDA is not recovered after sending 9 SCL clocks which intimate the user
for system reset.

■ If SCL line is stuck at low for IC_SCL_STUCK_LOW_TIMEOUT period of
ic_clk, DW_apb_i2c Master will generate an SCL_STUCK_AT_LOW
(IC_INTR_RAW_STATUS[14]) interrupt to intimate the user for system
reset..

Has SCL Stuck Timeout value of? Parameter Name: IC_SCL_STUCK_TIMEOUT_DEFAULT
Legal Values: 0x00000000 to 0xFFFFFFFF
Default Value: 0xFFFFFFFF
Dependencies: IC_BUS_CLEAR_FEATURE=1
Description: Default value of the IC_SCL_STUCK_LOW_TIMEOUT Register

Has SDA Stuck Timeout value of? Parameter Name: IC_SDA_STUCK_TIMEOUT_DEFAULT
Legal Values: 0x00000000 to 0xFFFFFFFF
Default Value: 0xFFFFFFFF
Dependencies: IC_BUS_CLEAR_FEATURE=1
Description: Default value of the IC_SDA_STUCK_LOW_TIMEOUT Register

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 119SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Enable DEVICE ID Feature? Parameter Name: IC_DEVICE_ID
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: This Parameter is not applicable when Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) is enabled.
Description: If this parameter is enabled, the DW_apb_i2c Slave includes a
24-bit IC_DEVICE_ID Register to store the value of Device ID and transmits
whenever master is requested.
The Master mode includes a DEVICE_ID bit 13 in IC_TAR register to initiate
the Device ID read for a particular slave address mentioned in IC_TAR[6:0]
register.

Has I2C slave DEVICE ID value of? Parameter Name: IC_DEVICE_ID_VALUE
Legal Values: 0x000000 to 0xFFFFFF
Dependencies: This Parameter is enabled if IC_DEVICE_ID=1
Default Value: 0x000000
Dependencies: IC_DEVICE_ID=1
Description: Device ID Value of the I2C Slave (24 bit, MSB is transferred first
on the Device ID read from the master).

I2C 6.0 Parameters

Enable Ultra-Fast mode? Parameter Name: IC_ULTRA_FAST_MODE
Legal Values: Unchecked (0) or Checked (1)
Dependencies: DWC-APB-Advanced-Source License Required
Default Value: Unchecked (0)
Description: Controls whether DW_apb_i2c supports Ultra-Fast speed mode
or not.
If this Parameter is enabled, the Master:

■ Disables the Arbitration, clock synchronization features,

■ Supports only write Transfers,

■ Does not check the validity of ACK/NACK for each byte,

The Slave:

■ Supports only Write transfers,

■ Disables the logic to generate ACK/NACK after the end of each byte,

■ Disables the logic to stretch the clock if RX-FIFO is full.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

120 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

Ultra-Fast speed SCL high count is? Parameter Name: IC_UFM_SCL_HIGH_COUNT
Legal Value: Hex value in range 0x0003 to 0xffff
Dependencies: This parameter is active when the IC_USE_COUNTS and
IC_ULTRA_FAST_MODE parameters are checked (1); otherwise, this value is
automatically calculated using the IC_CLK_PERIOD parameter.
Default Value: 0x5 (5 based on 100 MHz ic_clk)
Description: Reset value of Ultra-Fast Speed I2C Clock SCL High Count
register (IC_UFM_SCL_HCNT). The value must be calculated based on the
I2C data rate desired and I2C clock frequency.

Ultra-Fast speed SCL Low count is? Parameter Name: IC_UFM_SCL_LOW_COUNT
Legal Value: Hex value in range 0x0005 to 0xffff
Dependencies: This parameter is active when the IC_USE_COUNTS and
IC_ULTRA_FAST_MODE parameters are checked (1); otherwise, this value is
automatically calculated using the IC_CLK_PERIOD parameter.
Default Value: 0x5 (5 based on 100 MHz ic_clk)
Description: Reset value of Ultra-Fast Speed I2C Clock SCL Low Count
register (IC_UFM_SCL_LCNT). The value must be calculated based on the
I2C data rate desired and I2C clock frequency.

Maximum length (in ic_clk cycles) of
suppressed spikes in Ultra-Fast
mode

Parameter Name: IC_DEFAULT_UFM_SPKLEN
Legal Value: Hex value in range 0x01 to 0xFF
Dependencies: Included only if IC_ULTRA_FAST_MODE parameter is set to
1. Initial value automatically calculated using IC_CLK_PERIOD.
Default Value: Max(1,ceiling(10/IC_CLOCK_PERIOD))
Description: Reset value of maximum suppressed spike length register in
Ultra-Fast Mode (IC_UFM_SPKLEN register). Spike length is expressed in
ic_clk cycles, and this value is calculated based on the value of
IC_CLOCK_PERIOD

Has Ultra Fast mode tBuf count
Value of ?

Parameter Name: IC_UFM_TBUF_CNT_DEFAULT
Legal Value: Hex value in range 0x0000 to 0xFFFF
Dependencies: This parameter is active when the IC_USE_COUNTS and
IC_ULTRA_FAST_MODE parameters are checked (1); otherwise, this value is
automatically calculated using the IC_CLK_PERIOD parameter
Default Value: 0x0008
Description: Default value of the IC_UFM_TBUF_CNT Register.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 121SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

SMBus Parameters

Enable SMBus mode? Parameter Name: IC_SMBUS
Legal Values: Unchecked (0) or Checked (1)
Dependencies: DWC-APB-Advanced-Source License required.
Default Value: 0x0
Description: Controls whether DW_apb_i2c Master/Slave supports SMBus
mode. If checked, the DW_apb_i2c includes the SMBus mode-related
registers, real-time checks, timeout interrupts, and SMBus optional signals.

NOTE: If this parameter is selected (1), then the user can set the parameter
IC_MAX_SPEED_MODE to Standard mode(1) or Fast Mode/Fast Mode Plus
(2).

Has SMBus clock low Master extend
default Timeout value of?

Parameter Name: IC_SMBUS_CLK_LOW_MEXT_DEFAULT
Legal Values: 0x00000000 to 0xFFFFFFFF
Dependencies: IC_SMBUS=1
Default Value: 0xFFFFFFFF
Description: Specifies default value of the IC_SMBUS_CLK_LOW_MEXT
register.

Has SMBus clock low Slave extend
default Timeout value of?

Parameter Name: IC_SMBUS_CLK_LOW_SEXT_DEFAULT
Legal Values: 0x00000000 to 0xFFFFFFFF
Dependencies: IC_SMBUS=1
Default Value: 0xFFFFFFFF
Description: Specifies default value of the IC_SMBUS_CLK_LOW_SEXT
register.

Has SMBus Thigh;Max Idle count
Value of?

Parameter Name: IC_SMBUS_RST_IDLE_CNT_DEFAULT
Legal Values: 0x0000 to 0xFFFF
Dependencies: IC_SMBUS=1
Default Value: 0xFFFF
Description: Specifies default value of the
IC_SMBUS_THIGH_MAX_IDLE_COUNT register.

Include Optional Slave Address
Register?

Parameter Name: IC_OPTIONAL_SAR
Legal Values: Unchecked (0), Checked (1)
Dependencies: Enabled only if IC_SMBUS=1.
Default Value: Unchecked (0),
Description: Controls whether to include Optional Slave Address Register in
SMBus Mode.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

122 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

Has I2C Default Optional Slave
address of?

Parameter Name: IC_OPTIONAL_SAR_DEFAULT
Legal Values: 0x0 to 0x7f
Default Value: Unchecked (0)
Dependencies: Enabled only if IC_OPTIONAL_SAR=1.
Description: Controls whether to include Optional Slave Address Register in
SMBus Mode.
A user is not allowed to assign any reserved addresses. The reserved address
are as follows:
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x78 0x79 0x7a 0x7b 0x7c 0x7d 0x7e 0x7f

Enable SMBUS Optional Signals? Parameter Name: IC_SMBUS_SUSPEND_ALERT
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0),
Dependencies: Enabled only if IC_SMBUS=1.
Description: Controls whether DW_apb_i2c includes Optional SMBus
Suspend and Alert signals on the interface.

Enable Address Resolution
Protocol?

Parameter Name: IC_SMBUS_ARP
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: Enabled only if IC_SMBUS=1.
Description: Controls whether DW_apb_i2c includes logic to detect and
respond ARP commands in Slave mode. It also includes logic to
generate/validate the PEC byte at the end of the transfer in Slave mode only.

Has SMBUS Unique device identifier
(MSB 96 bits) value of?

Parameter Name: IC_SMBUS_UDID_MSB
Legal Values: 0 to 2^96 -1
Default Value: 0,
Dependencies: Enabled only if IC_SMBUS_ARP=1.
Description: Stores the Static Unique Device Identifier used for Dynamic
Address Resolution process in SMBus ARP Mode (Upper 96bits of UDID).

Has Default SMBus Unique device
identifier (LSB 32 bits) value of?

Parameter Name: IC_SMBUS_UDID_LSB_DEFAULT
Legal Values: 0 to 2^32 -1
Default Value: 0,
Dependencies: Enabled only if IC_SMBUS_ARP=1.
Description: Specifies default value of the IC_SMBUS_UDID_LSB register
used for Dynamic Address Resolution process in SMBus ARP mode (Lower
32bits of UDID).

Has Default Persistent Slave
Address register bit Value of?

Parameter Name: IC_PERSISTANT_SLV_ADDR_DEFAULT
Legal Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0),
Dependencies: Enabled only if IC_SMBUS_ARP=1.
Description: Default value of the Persistent Slave Address register bit in
IC_CON register.

Table 4-1 Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 123SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Parameters

Table 4-2 includes parameters that are derived from the user selected parameters in coreConsultant.

These constants in the table are derived using the following equation:

X= IC_TX_BUFFER_DEPTH

Log2(IC_TX_BUFFER_DEPTH) rounded up to the nearest integer

Table 4-2 Derived Parameters

Parameter Legal Range Description

TX_ABW 1 to 8
Default: 3

Transmit data width of FIFO (for writes).

RX_ABW 1 to 8
Default: 3

Receive data width of FIFO (for reads)

https://solvnet.synopsys.com
www.designware.com

124 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Parameters DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 125SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

5
Signal Descriptions

This chapter details all possible I/O signals in the core. For configurable IP titles, your actual configuration
might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
core. It is for reference purposes only.

When you configure the core in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

The I/O signals are grouped as follows:

■ Interrupts on page 127

■ I2C Interface (Master/Slave) on page 142

■ APB Slave Interface on page 145

■ DMA Interface on page 147

■ SMBus Interface on page 149

■ I2C Debug on page 150

https://solvnet.synopsys.com
www.designware.com

126 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

5.1 Interrupts Signals

- ic_intr
- ic_mst_on_hold_intr
- ic_start_det_intr
- ic_stop_det_intr
- ic_restart_det_intr
- ic_scl_stuck_at_low_intr
- ic_smbus_clk_sext_intr
- ic_smbus_clk_mext_intr
- ic_smbus_quick_cmd_det_intr
- ic_smbus_arp_prepare_intr
- ic_smbus_arp_reset_intr
- ic_smbus_arp_get_udid_intr
- ic_smbus_arp_assign_address_intr
- ic_smbus_host_notify_intr
- ic_smbus_slv_rx_pec_nack_intr
- ic_smbalert_det_intr
- ic_smbsus_det_intr
- ic_activity_intr
- ic_rx_done_intr
- ic_tx_abrt_intr
- ic_rd_req_intr
- ic_tx_empty_intr
- ic_tx_over_intr
- ic_rx_full_intr
- ic_rx_over_intr
- ic_rx_under_intr
- ic_gen_call_intr
- ic_intr_n
- ic_mst_on_hold_intr_n
- ic_start_det_intr_n
- ic_stop_det_intr_n
- ic_restart_det_intr_n
- ic_scl_stuck_at_low_intr_n
- ic_smbus_clk_sext_intr_n
- ic_smbus_clk_mext_intr_n
- ic_smbus_quick_cmd_det_intr_n
- ic_smbus_arp_prepare_intr_n
- ic_smbus_arp_reset_intr_n
- ic_smbus_arp_get_udid_intr_n
- ic_smbus_arp_assign_address_intr_n
- ic_smbus_host_notify_intr_n
- ic_smbus_slv_rx_pec_nack_intr_n
- ic_smbalert_det_intr_n
- ic_smbsus_det_intr_n
- ic_activity_intr_n
- ic_rx_done_intr_n
- ic_tx_abrt_intr_n
- ic_rd_req_intr_n
- ic_tx_empty_intr_n
- ic_tx_over_intr_n
- ic_rx_full_intr_n
- ic_rx_over_intr_n
- ic_rx_under_intr_n
- ic_gen_call_intr_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 127SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

Table 5-1 Interrupts Signals

Port Name I/O Description

ic_intr O Optional. Combined active high interrupt. This signal is included on
the interface when the configuration parameter IC_INTR_IO is
checked (1) to indicate that only one interrupt line appears on the I/O
(as opposed to individual interrupt signals).
Exists: (IC_INTR_IO==1) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: No

ic_mst_on_hold_intr O Optional. Optional. Master on hold I2C active high interrupt. This
signal is included on the interface when the configuration parameters
I2C_DYNAMIC_TAR_UPDATE and
IC_EMPTYFIFO_HOLD_MASTER_EN are checked (1) and the
configuration parameter IC_INTR_IO is unchecked (0), indicating
that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(I2C_DYNAMIC_TAR_UPDATE==1 &&
IC_EMPTYFIFO_HOLD_MASTER_EN==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_start_det_intr O Optional. Start condition detect on I2C active high interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_stop_det_intr O Optional. Stop condition detect on I2C active high interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

https://solvnet.synopsys.com
www.designware.com

128 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_restart_det_intr O Optional. Restart condition detect on I2C active high interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SLV_RESTART_DET_EN==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_scl_stuck_at_low_intr O Optional. SCL Stuck condition detect on I2C active high interrupt.
This signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_BUS_CLEAR_FEATURE==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbus_clk_sext_intr O Optional. SMBUS Slave clock extend timeout detect active high
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbus_clk_mext_intr O Optional. SMBUS Master clock extend timeout detect active high
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 129SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_smbus_quick_cmd_det_intr O Optional. SMBUS Quick Command detect active high interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbus_arp_prepare_intr O Optional. SMBUS ARP Prepare Command detect active high
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS_ARP==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbus_arp_reset_intr O Optional. SMBUS ARP Reset Command detect active high interrupt.
This signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS_ARP==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbus_arp_get_udid_intr O Optional. SMBUS ARP Get UDID Command detect active high
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS_ARP==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

130 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_smbus_arp_assign_address_intr O Optional. SMBUS ARP Assign Command detect active high
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS_ARP==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbus_host_notify_intr O Optional. SMBUS ARP Host Notify Command detect active high
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbus_slv_rx_pec_nack_intr O Optional. SMBUS ARP Slave Received incorrect PEC Byte and
generated Nack active high interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS_ARP==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_smbalert_det_intr O Optional. SMBUS Alert detect active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS_SUSPEND_ALERT==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 131SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_smbsus_det_intr O Optional. SMBUS Suspend detect active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_SMBUS_SUSPEND_ALERT==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high).
Synchronous to: pclk
Registered: Yes

ic_activity_intr O Optional. I2C activity active high interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_rx_done_intr O Optional. Receive done active high interrupt. This signal is included
on the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_ULTRA_FAST_MODE==0)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_tx_abrt_intr O Optional. Transmit abort active high interrupt.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

132 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_rd_req_intr O Optional. Slave read request interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1) &&
(IC_ULTRA_FAST_MODE==0)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_tx_empty_intr O Optional. Transmit buffer empty active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When bit 0 of the IC_ENABLE register is 0, the TX FIFO is flushed
and held in reset, where it looks like it has no data within it. The
ic_tx_empty_intr bit is raised when bit 0 of the IC_ENABLE register is
0, provided there is activity in the master or slave state machines.
When there is no longer activity, then this interrupt bit is masked with
ic_en.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_tx_over_intr O Optional. Transmit buffer overflow active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 133SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_rx_full_intr O Optional. Receive buffer full active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When bit 0 of the IC_ENABLE register is 0, the RX FIFO is flushed
and held in resetthe RX FIFO is not fullso this ic_rx_full_intr bit is
cleared once the ic_enable bit is programmed with a 0, regardless of
the activity that continues.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_rx_over_intr O Optional. Receive buffer overflow active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_rx_under_intr O Optional. Receive buffer underflow active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

134 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_gen_call_intr O Optional. General Call received active high interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==1)
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked(1) = active high).
Synchronous to: pclk
Registered: Yes

ic_intr_n O Optional. Combined active low interrupt. This signal is included on
the interface when the configuration parameter IC_INTR_IO is
unchecked (0) to indicate that only one interrupt line appears on the
I/O (as opposed to individual interrupt signals).
Exists: (IC_INTR_IO==1) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: No

ic_mst_on_hold_intr_n O Optional. Optional. Master on hold I2C active low interrupt. This
signal is included on the interface when the configuration parameters
I2C_DYNAMIC_TAR_UPDATE and
IC_EMPTYFIFO_HOLD_MASTER_EN are checked (1) and the
configuration parameter IC_INTR_IO is unchecked (0), indicating
that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(I2C_DYNAMIC_TAR_UPDATE==1 &&
IC_EMPTYFIFO_HOLD_MASTER_EN==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_start_det_intr_n O Optional. Start condition detect on I2C active low interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 135SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_stop_det_intr_n O Optional. Stop condition detect on I2C active low interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_restart_det_intr_n O Optional. Restart condition detect on I2C active low interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SLV_RESTART_DET_EN==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_scl_stuck_at_low_intr_n O Optional. SCL Stuck condition detect on I2C active low interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_BUS_CLEAR_FEATURE==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbus_clk_sext_intr_n O Optional. SMBUS Slave clock extend timeout detect active low
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

136 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_smbus_clk_mext_intr_n O Optional. SMBUS Master clock extend timeout detect active low
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbus_quick_cmd_det_intr_n O Optional. SMBUS ARP Quick Command detect active low interrupt.
This signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbus_arp_prepare_intr_n O Optional. SMBUS ARP Prepare Command detect active low
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS_ARP==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbus_arp_reset_intr_n O Optional. SMBUS ARP Reset Command detect active low interrupt.
This signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS_ARP==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 137SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_smbus_arp_get_udid_intr_n O Optional. SMBUS ARP Get UDID Command detect active low
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS_ARP==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbus_arp_assign_address_intr_n O Optional. SMBUS ARP Assign Command detect active low interrupt.
This signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS_ARP==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbus_host_notify_intr_n O Optional. SMBUS ARP Host Notify Command detect active low
interrupt. This signal is included on the interface when the
configuration IC_INTR_IO parameter is unchecked (0), which
indicates that individual interrupt lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbus_slv_rx_pec_nack_intr_n O Optional. SMBUS ARP Slave Received incorrect PEC Byte and
generated Nack active low interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS_ARP==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

138 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_smbalert_det_intr_n O Optional. SMBUS Alert detect active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS_SUSPEND_ALERT==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_smbsus_det_intr_n O Optional. SMBUS Suspend detect active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_SMBUS_SUSPEND_ALERT==1)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked = active low).
Synchronous to: pclk
Registered: Yes

ic_activity_intr_n O Optional. I2C activity active low interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_rx_done_intr_n O Optional. Receive done active low interrupt. This signal is included
on the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_ULTRA_FAST_MODE==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 139SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_tx_abrt_intr_n O Optional. Transmit abort active low interrupt.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_rd_req_intr_n O Optional. Slave read request active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0) &&
(IC_ULTRA_FAST_MODE==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_tx_empty_intr_n O Optional. Transmit buffer empty active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When bit 0 of the IC_ENABLE register is 0, the TX FIFO is flushed
and held in reset, where it looks like it has no data within it. The
ic_tx_empty_intr_n bit is raised when bit 0 of the IC_ENABLE
register is 0, provided there is activity in the master or slave state
machines. When there is no longer activity, then this interrupt bit is
masked with ic_en.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_tx_over_intr_n O Optional. Transmit buffer overflow active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

140 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_rx_full_intr_n O Optional. Receive buffer full active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When bit 0 of the IC_ENABLE register is 0, the RX FIFO is flushed
and held in resetthe RX FIFO is not fullso this ic_rx_full_intr_n bit is
cleared once the ic_enable bit is programmed with a 0, regardless of
the activity that continues.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_rx_over_intr_n O Optional. Receive buffer overflow active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

ic_rx_under_intr_n O Optional. Receive buffer underflow active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 141SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_gen_call_intr_n O Optional. General Call received active low interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: (IC_INTR_IO==0) && (IC_INTR_POL==0)
Active State: Low. Polarity is set by the configuration parameter
IC_INTR_POL (unchecked(0) = active low).
Synchronous to: pclk
Registered: Yes

Table 5-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

142 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

5.2 I2C Interface (Master/Slave) Signals

ic_clk - - ic_current_src_en
ic_clk_in_a - - ic_clk_oe

ic_data_in_a - - ic_data_oe
ic_rst_n - - ic_en

Table 5-2 I2C Interface (Master/Slave) Signals

Port Name I/O Description

ic_current_src_en O Optional. Current source pull-up. Controls the polarity of the current
source pull-up on the SCLH. This pull-up is used to shorten the rise
time on SCLH by activating an user-supplied external current source
pull-up circuit. It is disabled after a RESTART condition and after
each A/A bit when acting as the active master.
 This signal enables other devices to delay the serial transfer by
stretching the LOW period of the SCLH signal. The active master re-
enables its current source pull-up circuit again when all devices have
released and the SCLH signal reaches high level, therefore,
shortening the last part of the SCLH signal's rise time.
Exists: (IC_MAX_SPEED_MODE==3)
Active State: High
Synchronous to: ic_clk
Registered: Yes

ic_clk I Peripheral clock. DW_apb_i2c runs on this clock and is used to clock
transfers in standard, fast, and high-speed mode.
 NOTE: ic_clk frequency must be greater than or equal to pclk
frequency.
Exists: Always
Active State: N/A
Synchronous to: The configuration parameter IC_CLK_TYPE
indicates the relationship between pclk and ic_clk. It can be
asynchronous (1) or identical (0).
Registered: N/A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 143SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_clk_in_a I In (IC_ULTRA_FAST_MODE = 0) mode - Incoming I2C clock. This is
the input SCL signal. Double-registered for metastability
synchronization.
 NOTE: DW_apb_i2c provides filtering on the SDA (ic_data_in_a)
and SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes
with durations less than one ic_clk period.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Incoming I2C
clock. This is the input SCL signal. Double-registered for
metastability synchronization.
 NOTE: DW_apb_i2c provides filtering on the SDA (ic_data_in_a)
and SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes
with durations less than one ic_clk period. This signal is used as
USCL input for slave device.
Exists: Always
Active State: High
Synchronous to: This signal is asynchronous to ic_clk.
Registered: Yes

ic_data_in_a I In (IC_ULTRA_FAST_MODE = 0) mode - Incoming I2C Data. It is the
input SDA signal. Double-registered for metastability
synchronization.
 NOTE: DW_apb_i2c provides filtering on the SDA (ic_data_in_a)
and SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes
with durations less than one ic_clk period.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Incoming I2C
Data. It is the input SDA signal. Double-registered for metastability
synchronization.
 NOTE: DW_apb_i2c provides filtering on the SDA (ic_data_in_a)
and SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes
with durations less than one ic_clk period.This signal is used as
USDA input for slave device.
Exists: Always
Active State: High
Synchronous to: This signal is asynchronous to ic_clk.
Registered: Yes

ic_rst_n I I2C reset. Used to reset flip-flops that are clocked by the ic_clk clock.
 NOTE: This signal does not reset DW_apb_i2c control,
configuration, and status registers.
Exists: Always
Active State: Low
Synchronous to: The signal is asserted asynchronously, but is
deasserted synchronously after the rising edge of ic_clk. The
synchronization must be provided external to this component.
Registered: N/A

Table 5-2 I2C Interface (Master/Slave) Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

144 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_clk_oe O In (IC_ULTRA_FAST_MODE = 0) mode - Outgoing I2C clock. Open
drain synchronous with ic_clk.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Outgoing I2C
clock, inverted. This signal is used as USCL out from master device.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

ic_data_oe O In (IC_ULTRA_FAST_MODE = 0) mode - Outgoing I2C Data. Open
Drain Synchronous to ic_clk.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Outgoing I2C
Data, inverted. This signal is used as USDA out from master device.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

ic_en O I2C interface enable. Indicates whether DW_apb_i2c is enabled; this
signal is set to 0 when IC_ENABLE[0] is set to 0 (disabled). Because
DW_apb_i2c always finishes its current transfer before turning off
ic_en, this signal may be used by a clock generator to control
whether the DW_apb_i2c ic_clk is active or inactive.
Exists: Always
Active State: Low
Synchronous to: pclk
Registered: Yes

Table 5-2 I2C Interface (Master/Slave) Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 145SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

5.3 APB Slave Interface Signals

pclk - - prdata
presetn -

psel -
penable -

pwrite -
paddr -

pwdata -

Table 5-3 APB Slave Interface Signals

Port Name I/O Description

pclk I APB clock for the bus interface unit.
 NOTE: ic_clk frequency must be greater than or equal to pclk
frequency.
Exists: Always
Active State: N/A
Synchronous to: The configuration parameter IC_CLK_TYPE
indicates the relationship between pclk and ic_clk. It can be
asynchronous (1) or identical (0).
Registered: N/A

presetn I An APB interface domain reset.
Exists: Always
Active State: Low
Synchronous to: The signal is asserted asynchronously, but is
deasserted synchronously after the rising edge of pclk. The
synchronization must be provided external to this component.
Registered: N/A

psel I APB peripheral select that lasts for two pclk cycles. When asserted,
indicates that the peripheral has been selected for a read/write
operation.
Exists: Always
Active State: High
Synchronous to: pclk
Registered: No

penable I APB enable control. Asserted for a single pclk cycle and used for
timing read/write operations.
Exists: Always
Active State: High
Synchronous to: pclk
Registered: No

https://solvnet.synopsys.com
www.designware.com

146 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

pwrite I APB write control. When high, indicates a write access to the
peripheral; when low, indicates a read access.
Exists: Always
Active State: N/A
Synchronous to: pclk
Registered: No

paddr[IC_ADDR_SLICE_LHS:0] I APB address bus. Uses lower 7 bits of the address bus for register
decode.
Exists: Always
Active State: N/A
Synchronous to: pclk
Registered: No

pwdata[(APB_DATA_WIDTH-1):0] I APB write data bus. Driven by the bus master (DW_ahb to DW_apb
bridge) during write cycles. Can be 8, 16, or 32 bits wide depending
on APB_DATA_WIDTH parameter.
Exists: Always
Active State: N/A
Synchronous to: pclk
Registered: No

prdata[(APB_DATA_WIDTH-1):0] O APB readback data. Driven by the selected peripheral during read
cycles. Can be 8, 16, or 32 bits wide depending on
APB_DATA_WIDTH parameter.
Exists: Always
Active State: N/A
Synchronous to: pclk
Registered: Yes

Table 5-3 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 147SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

5.4 DMA Interface Signals

dma_tx_ack - - dma_tx_req
dma_rx_ack - - dma_tx_single

- dma_rx_req
- dma_rx_single

Table 5-4 DMA Interface Signals

Port Name I/O Description

dma_tx_ack I Optional. DMA Transmit Acknowledgement. Sent by the DMA
Controller to acknowledge the end of each APB transfer burst to the
transmit FIFO.
Exists: (IC_HAS_DMA==1)
Active State: High
Synchronous to: pclk
Registered: No

dma_tx_req O Optional. Transmit FIFO DMA Request. Asserted when the transmit
FIFO requires service from the DMA Controller; that is, the transmit
FIFO is at or below the watermark level.
 0 not requesting
 1 requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the DEST_MSIZE field
of the CTLx register.
Exists: (IC_HAS_DMA==1)
Active State: High
Synchronous to: pclk
Registered: Yes

dma_tx_single O Optional. DMA Transmit FIFO Single Signal. This DMA status output
informs the DMA Controller that there is at least one free entry in the
transmit FIFO. This output does not request a DMA transfer.
 0: Transmit FIFO is full
 1: Transmit FIFO is not full
Exists: (IC_HAS_DMA==1)
Active State: High
Synchronous to: pclk
Registered: Yes

https://solvnet.synopsys.com
www.designware.com

148 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

dma_rx_ack I Optional. DMA Receive Acknowledgement. Sent by the
DMAcontroller to acknowledge the end of each APB transfer burst
from the receive FIFO.
Exists: (IC_HAS_DMA==1)
Active State: High
Synchronous to: pclk
Registered: No

dma_rx_req O Optional. Receive FIFO DMA Request. Asserted when the receive
FIFO requires service from the DMA Controller; that is, the receive
FIFO is at or above the watermark level.
 0 not requesting
 1 requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the SRC_MSIZE field of
the CTLx register.
Exists: (IC_HAS_DMA==1)
Active State: High
Synchronous to: pclk
Registered: Yes

dma_rx_single O Optional. DMA Receive FIFO Single Signal. This DMA status output
informs the DMA Controller that there is at least one valid data entry
in the receive FIFO. This output does not request a DMA transfer.
 0: Receive FIFO is empty
 1: Receive FIFO is not empty
Exists: (IC_HAS_DMA==1)
Active State: High
Synchronous to: pclk
Registered: Yes

Table 5-4 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 149SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

5.5 SMBus Interface Signals

ic_smbsus_in_n - - ic_smbsus_out_n
ic_smbalert_in_n - - ic_smbalert_oe

Table 5-5 SMBus Interface Signals

Port Name I/O Description

ic_smbsus_in_n I Incoming SMBus Suspend signal. This is the input SMBSUS signal.
Double-registered for metastability synchronization.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Active State: Low
Synchronous to: This signal is asynchronous to pclk
Registered: Yes

ic_smbalert_in_n I Incoming SMBus Alert signal. This is the input SMBALERT signal.
Double-registered for metastability synchronization.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Active State: Low
Synchronous to: This signal is asynchronous to pclk
Registered: Yes

ic_smbsus_out_n O Outgoing SMBus Suspend Signal. This signal is used to suspend the
SMBus system, if DW_apb_i2c is used as SMBus Host.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Active State: Low
Synchronous to: pclk
Registered: Yes

ic_smbalert_oe O Outgoing SMBus Alert Signal. This signal is used to intimate the Host
that slave wants to talk, if DW_apb_i2c is used as SMBus Slave.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Active State: Low
Synchronous to: pclk
Registered: Yes

https://solvnet.synopsys.com
www.designware.com

150 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

5.6 I2C Debug Signals

- debug_s_gen
- debug_p_gen
- debug_data
- debug_addr
- debug_rd
- debug_wr
- debug_hs
- debug_master_act
- debug_slave_act
- debug_addr_10bit
- debug_mst_cstate
- debug_slv_cstate

Table 5-6 I2C Debug Signals

Port Name I/O Description

debug_s_gen O In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is driving a START condition on the bus.
Exists: Always
Active State: Low
Synchronous to: ic_clk
Registered: Yes

debug_p_gen O In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is driving a STOP condition on the bus.
Exists: Always
Active State: Low
Synchronous to: ic_clk
Registered: Yes

debug_data O In the master or slave mode of operation, this signal is set to 1 when
a byte of data is actively being read or written by DW_apb_i2c. This
bit remains 1 until the transaction has completed.
Exists: Always
Active State: High
Synchronous to: N/A
Registered: Yes

debug_addr O In the master or slave mode of operation, this signal is set to 1 when
the addressing phase is active on the I2C bus.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 151SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Signal Descriptions

debug_rd O In the master mode of operation, this signal is set to 1 whenever the
master is receiving data. This bit remains 1 until the transfer is
complete or until the direction changes.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

debug_wr O In the master mode of operation, this signal is set to 1 whenever the
master is transmitting data. This bit remains 1 until the transfer is
complete or the direction changes.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

debug_hs O In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is performing high-speed mode transfers. This bit is set
after the high-speed master code is transmitted and remains 1 until
the master leaves high-speed mode.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

debug_master_act O This bit is set to 1 when the master module is active.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

debug_slave_act O This bit is set to 1 when the slave module is active.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

debug_addr_10bit O In the Slave mode of operation, this signal is set if 10-bit addressing
is enabled and if the slave has received a matching 10-bit address
with respect to IC_SAR register.
 This signal is not applicable in Master Mode.
Exists: Always
Active State: High
Synchronous to: ic_clk
Registered: Yes

Table 5-6 I2C Debug Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

152 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Signal Descriptions DesignWare DW_apb_i2c Databook

debug_mst_cstate[4:0] O Master FSM state vector.
Exists: Always
Active State: N/A
Synchronous to: ic_clk
Registered: Yes

debug_slv_cstate[3:0] O Slave FSM state vector.
Exists: Always
Active State: N/A
Synchronous to: ic_clk
Registered: Yes

Table 5-6 I2C Debug Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 153

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

6
Registers

This section describes the programmable registers of the DW_apb_i2c.

6.1 Register Memory Map

Shipped with the DW_apb_i2c component is an address definition (memory map) C header file. This can be
used when the DW_apb_i2c is programmed in a C environment.

NoteNoteNoteNote There are references to both hardware parameters and software registers throughout this
chapter. Parameters and many of the register bits are prefixed with an IC_*. However, the
software register bits are distinguished in this chapter by italics. For instance,
IC_MAX_SPEED_MODE is a hardware parameter and configured once using Synopsys
coreConsultant, whereas the IC_SLAVE_DISABLE bit in the IC_CON register controls
whether I2C has its slave disabled.

NoteNoteNoteNote A read operation to an address location that contains unused bits results in a 0 value being
returned on each of the unused bits.

https://solvnet.synopsys.com
www.designware.com

154 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

Table 6-1 provides the details of the DW_apb_i2c memory map. Reset values are affected by the
configuration parameters specified in Table 4-1 on page 105.

Table 6-1 Memory Map of DW_apb_i2c

Name
Address
Offset Width R/W Description

IC_CON 0x00 20 bits R/W or
R-only
on bit 4
and bit 9
to 19.

I2C Control
R/W:

■ I2C_DYNAMIC_TAR_UPDATE=1, bit 4 is
read only.

■ IC_RX_FULL_HLD_BUS_EN =0, bit 9 is
read only.

■ IC_STOP_DET_IF_MASTER_ACTIVE =0,
bit 10 is read only.

■ IC_BUS_CLEAR_FEATURE=0, bit 11 is
read only

■ IC_OPTIONAL_SAR=0, bit 16 is read only

■ IC_SMBUS=0, bit 17 is read only

■ IC_SMBUS_ARP=0, bits 18 and 19 are
read only.

Reset Value:
19: IC_PERSISTANT_SLV_ADDR_DEFAULT
17 to 18 : 0
16: IC_OPTIONAL_SAR_DEFAULT
15 to 7: 0
6: IC_SLAVE_DISABLE
5: IC_RESTART_EN
4: IC_10BITADDR_MASTER
3: IC_10BITADDR_SLAVE
2:1:IC_MAX_SPEED_MODE
0: IC_MASTER_MODE

IC_TAR 0x04 12, 13, 14 or
16 bits

R/W I2C Target Address
Width:
If I2C_DYNAMIC_TAR_UPDATE=1, 13 bits
If IC_DEVICE_ID=1, 14 bits
If IC_SMBUS=1, 17 bits
otherwise 12 bits
Reset Value: Reset values for the four bit fields
correspond to the following:
13: 0x0
12: IC_10BITADDR_MASTER configuration
parameter
11: 0x0
10: 0x0
9:0: IC_DEFAULT_TAR_SLAVE_ADDR

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 155SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

IC_SAR 0x08 10 bits R/W I2C Slave Address
Reset Value: IC_DEFAULT_SLAVE_ADDR

IC_HS_MADDR 0x0C 3 bits R/W I2C HS Master Mode Code Address
Reset Value: IC_HS_MASTER_CODE

IC_DATA_CMD 0x10 Refer to
Description

R/W I2C Rx/Tx Data Buffer and Command
Reset Value: 0x0
Width:
Write:

■ 11 bits when
IC_EMPTYFIFO_HOLD_MASTER_EN=1

■ 9 bits when
IC_EMPTYFIFO_HOLD_MASTER_EN=0

Read:

■ 12 bits when
IC_FIRST_DATA_BYTE_STATUS =1

■ 8 bits when
IC_FIRST_DATA_BYTE_STATUS = 0

Notes:

■ With nine or eleven bits required for writes,
the DW_apb_i2c requires 16-bit data on the
APB bus transfers when writing into the
transmit FIFO. Eight-bit transfers remain for
reads from the receive FIFO.

■ In order for the DW_apb_i2c to continue
acknowledging reads, a read command
should be written for every byte that is to be
received; otherwise the DW_apb_i2c will
stop acknowledging.

IC_SS_SCL_HCNT 0x14 16 bits R/W Standard speed I2C Clock SCL High Count
Reset Value: IC_SS_SCL_HIGH_COUNT

IC_SS_SCL_LCNT 0x18 16 bits R/W Standard speed I2C Clock SCL Low Count
Reset Value: IC_SS_SCL_LOW_COUNT

IC_FS_SCL_HCNT 0x1C 16 bits R/W Fast Mode and Fast Mode Plus I2C Clock SCL
High Count
Reset Value: IC_FS_SCL_HIGH_COUNT

IC_FS_SCL_LCNT 0x20 16 bits R/W Fast Mode and Fast Mode Plus I2C Clock SCL
Low Count
Reset Value: IC_FS_SCL_LOW_COUNT

Table 6-1 Memory Map of DW_apb_i2c

Name
Address
Offset Width R/W Description

https://solvnet.synopsys.com
www.designware.com

156 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

IC_HS_SCL_HCNT 0x24 16 bits R/W High speed I2C Clock SCL High Count
Reset Value: IC_HS_SCL_HIGH_COUNT

IC_HS_SCL_LCNT 0x28 16 bits R/W High speed I2C Clock SCL Low Count
Reset Value: IC_HS_SCL_LOW_COUNT

IC_INTR_STAT 0x2C 15 bits R I2C Interrupt Status
Reset Value: 0x0

IC_INTR_MASK 0x30 15 bits R/W or
Read-
only on
bits 12 to
14

I2C Interrupt Mask
Reset Value:
If IC_BUS_CLEAR_FEATURE=0, 14'h8ff
If IC_BUS_CLEAR_FEATURE=1, 15'h48ff

IC_RAW_INTR_STAT 0x34 15 bits R I2C Raw Interrupt Status
Reset Value: 0x0

IC_RX_TL 0x38 8 bits R/W I2C Receive FIFO Threshold
Reset Value: IC_RX_TL configuration
parameter

IC_TX_TL 0x3C 8 bits R/W I2C Transmit FIFO Threshold
Reset Value: IC_TX_TL configuration
parameter

IC_CLR_INTR 0x40 1 bit R Clear Combined and Individual Interrupts
Reset Value: 0x0

IC_CLR_RX_UNDER 0x44 1 bit R Clear RX_UNDER Interrupt
Reset Value: 0x0

IC_CLR_RX_OVER 0x48 1 bit R Clear RX_OVER Interrupt
Reset Value: 0x0

IC_CLR_TX_OVER 0x4C 1 bit R Clear TX_OVER Interrupt
Reset Value: 0x0

IC_CLR_RD_REQ 0x50 1 bit R Clear RD_REQ Interrupt
Reset Value: 0x0

IC_CLR_TX_ABRT 0x54 1 bit R Clear TX_ABRT Interrupt
Reset Value: 0x0

IC_CLR_RX_DONE 0x58 1 bit R Clear RX_DONE Interrupt
Reset Value: 0x0

IC_CLR_ACTIVITY 0x5c 1 bit R Clear ACTIVITY Interrupt
Reset Value: 0x0

Table 6-1 Memory Map of DW_apb_i2c

Name
Address
Offset Width R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 157SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

IC_CLR_STOP_DET 0x60 1 bit R Clear STOP_DET Interrupt
Reset Value: 0x0

IC_CLR_START_DET 0x64 1 bit R Clear START_DET Interrupt
Reset Value: 0x0

IC_CLR_GEN_CALL 0x68 1 bit R Clear GEN_CALL Interrupt
Reset Value: 0x0

IC_ENABLE 0x6C Refer to
Description

R/W I2C Enable
Width:

■ 2 bits if IC_TX_CMD_BLOCK = 0

■ 3 bits if IC_TX_CMD_BLOCK = 1

■ 4 bits if IC_BUS_CLEAR_FEATURE=1

■ 17 bits if IC_SMBUS=1.

■ 19 bits if
IC_SMBUS_SUSPEND_ALERT=1.

Reset Value: 0x0

IC_STATUS 0x70 Refer to
Description

R I2C Status register
Width:

■ 7 bits if IC_STAT_FOR_CLK_STRETCH = 0

■ 11 bits if IC_STAT_FOR_CLK_STRETCH
=1

■ 12 bits if IC_BUS_CLEAR_FEATURE=1

■ 17 bits if IC_SMBUS=1

■ 19 bits if IC_SMBUS_ARP=1

■ 21 bits if IC_SMBUS_SUSPEND_ALERT=1

Reset Value: 0x6

IC_TXFLR 0x74 TX_ABW+1 R Transmit FIFO Level Register
Reset Value: 0x0

IC_RXFLR 0x78 RX_ABW+1 R Receive FIFO Level Register
Reset Value: 0x0

IC_SDA_HOLD 0x7C 24 bits R/W SDA hold time length register
Reset Value: IC_DEFAULT_SDA_HOLD

IC_TX_ABRT_SOURCE 0x80 32 bits R I2C Transmit Abort Status Register
Reset Value: 0x0

IC_SLV_DATA_NACK_ONLY 0x84 1 bit R/W Generate SLV_DATA_NACK Register
Reset Value: 0x0

Table 6-1 Memory Map of DW_apb_i2c

Name
Address
Offset Width R/W Description

https://solvnet.synopsys.com
www.designware.com

158 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

IC_DMA_CR 0x88 2 bits R/W DMA Control Register for transmit and receive
handshaking interface
Reset Value: 0x0

IC_DMA_TDLR 0x8c TX_ABW R/W DMA Transmit Data Level
Reset Value: 0x0

IC_DMA_RDLR 0x90 RX_ABW R/W DMA Receive Data Level
Reset Value: 0x0

IC_SDA_SETUP 0x94 8 bits R/W I2C SDA Setup Register
Reset Value: IC_DEFAULT_SDA_SETUP
configuration parameter

IC_ACK_GENERAL_CALL 0x98 1 bit R/W I2C ACK General Call Register
Reset Value:
IC_DEFAULT_ACK_GENERAL_CALL
configuration parameter

IC_ENABLE_STATUS 0x9C 3 bits R I2C Enable Status Register
Reset Value: 0x0

IC_FS_SPKLEN 0xA0 8 bits R/W ISS and FS spike suppression limit
Reset Value: IC_DEFAULT_FS_SPKLEN
configuration parameter

IC_HS_SPKLEN 0xA4 8 bits R/W HS spike suppression limit
Reset Value: IC_DEFAULT_HS_SPKLEN
configuration parameter

IC_CLR_RESTART_DET 0xA8 1 bit R Clear RESTART_DET Interrupt
Reset Value: 0x0

IC_COMP_PARAM_1 0xf4 32 bits R Component Parameter Register
Reset Value: Reset value depends on
configuration parameters. For more information
on component parameters and the values
therefore set by them, refer to Table 4-1 on
page 105.

IC_COMP_VERSION 0xf8 32 bits R Component Version ID
Reset Value: See the releases table in the
AMBA 2 release notes

IC_COMP_TYPE 0xfc 32 bits R DesignWare Component Type Register
Reset Value: 0x44570140

Table 6-1 Memory Map of DW_apb_i2c

Name
Address
Offset Width R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 159SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

IC_SCL_STUCK_AT_LOW_TI
MEOUT

0xAC 32 bits R/W I2C SCL stuck at low timeout register
Reset Value:
IC_SCL_STUCK_TIMEOUT_DEFAULT

IC_SDA_STUCK_AT_LOW_TI
MEOUT

0xB0 32 bits R/W I2C SDA Stuck at Low Timeout
Reset Value:
IC_SDA_STUCK_TIMEOUT_DEFAULT

IC_CLR_SCL_STUCK_DET 0xB4 1 bit R Clear SCL Stuck at Low Detect Interrupt
Register
Reset Value: 0x0

IC_DEVICE_ID 0xb8 24 bits R I2C Device ID
Reset Value: IC_DEVICE_ID_VALUE

IC_UFM_SCL_HCNT 0x14 16 bits R/W Ultra-Fast mode I2C Clock High Count Register
Reset Value: IC_UFM_SCL_HIGH_COUNT

IC_UFM_SCL_LCNT 0x18 16 bits R/W Ultra-Fast mode I2C Clock Low Count Register
Reset Value: IC_UFM_SCL_LOW_COUNT

IC_UFM_TBUF_CNT 0x1c 16 bits R/W Ultra-Fast mode TBuf Idle Count Register
Reset Value: IC_UFM_TBUF_CNT_DEFAULT

IC_UFM_SPKLEN 0xA0 8 bits R/W I2C Ultra-Fast mode Spike suppression
Register
Reset Value: IC_DEFAULT_UFM_SPKLEN

IC_SMBUS_CLOCK_LOW_S
EXT

0xBC 32 bits R/W SMBUS Slave Clock Extend Timeout Register

IC_SMBUS_CLOCK_LOW_M
EXT

0xC0 32 bits R/W SMBUS Master extend clock Timeout Register

IC_SMBUS_THIGH_MAX_IDL
E_COUNT

0xC4 16 bits R/W SMBus Thigh MAX Bus-Idle count Register

IC_SMBUS_INTR_STAT 0xC8 32 bits R I2C SMBUS Interrupt Status Register

IC_SMBUS_INTR_MASK 0xcc 32 bits R/W I2C Interrupt Mask Register

IC_SMBUS_INTR_RAW_STAT
US

0xd0 32 bits R I2C SMBUS Raw Interrupt Status Register

IC_CLR_SMBUS_INTR 0xD4 32 bits W Clear SMBUS Interrupt Register

IC_OPTIONAL_SAR 0xD8 7 bits R/W I2C Optional Slave Address Register

IC_SMBUS_UDID_LSB 0xDC 32 bits R/W SMBUS ARP UDID LSB Register

Table 6-1 Memory Map of DW_apb_i2c

Name
Address
Offset Width R/W Description

https://solvnet.synopsys.com
www.designware.com

160 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.2 Operation of Interrupt Registers
Table 6-2 lists the operation of the DW_apb_i2c interrupt registers and how they are set and cleared. Some
bits are set by hardware and cleared by software, whereas other bits are set and cleared by hardware.

Figure 6-1 shows the operation of the interrupt registers where the bits are set by hardware and cleared by
software.

Figure 6-1 Interrupt Scheme

Table 6-2 Clearing and Setting of Interrupt Registers

Interrupt Bit Fields
Set by Hardware/
Cleared by Software Set and Cleared by Hardware

MST_ON_HOLD ✘ ✓

RESTART_DET ✓ ✘

GEN_CALL ✓ ✘

START_DET ✓ ✘

STOP_DET ✓ ✘

ACTIVITY ✓ ✘

RX_DONE ✓ ✘

TX_ABRT ✓ ✘

RD_REQ ✓ ✘

TX_EMPTY ✘ ✓

TX_OVER ✓ ✘

RX_FULL ✘ ✓

RX_OVER ✓ ✘

RX_UNDER ✓ ✘

IC_RAW_INTR_STATUS

pwdata[i]

register_en

i = register bit field

(decoded from paddr)

S/W Access

i2c_en

0

1

0

1

0
1

0

1clr_read_en

0

H/W set

{to Register
IC_INTR_MASK

ic_intr_stat

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 161SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3 Registers and Field Descriptions
This section describes the registers listed in Table 6-1 on page 154. Registers are on the pclk domain, but
status bits reflect actions that occur in the ic_clk domain. Therefore, there is delay when the pclk register
reflects the activity that occurred on the ic_clk side.

Some registers may be written only when the DW_apb_i2c is disabled, programmed by the IC_ENABLE
register. Software should not disable the DW_apb_i2c while it is active. If the DW_apb_i2c is in the process
of transmitting when it is disabled, it stops as well as deletes the contents of the transmit buffer after the
current transfer is complete. The slave continues receiving until the remote master aborts the transfer, in
which case the DW_apb_i2c could be disabled. Registers that cannot be written to when the DW_apb_i2c is
enabled are indicated in their descriptions.

Unless the clocks pclk and ic_clk are identical (IC_CLK_TYPE = 0), there is a two-register delay for
synchronous and asynchronous modes.

6.3.1 IC_CON

■ Name: I2C Control Register

■ Size: 20 bits

■ Address Offset: 0x00

■ Read/Write Access:

❑ If configuration parameter I2C_DYNAMIC_TAR_UPDATE=1, bit 4 is read only.

❑ If configuration parameter IC_RX_FULL_HLD_BUS_EN =0, bit 9 is read only.

❑ If configuration parameter IC_STOP_DET_IF_MASTER_ACTIVE =0, bit 10 is read only.

❑ If configuration parameter IC_BUS_CLEAR_FEATURE=0, bit 11 is read only

❑ If configuration parameter IC_OPTIONAL_SAR=0, bit 16 is read only

❑ If configuration parameter IC_SMBUS=0, bit 17 is read only

❑ If configuration parameter IC_SMBUS_ARP=0, bits 18 and 19 are read only.

This register can be written only when the DW_apb_i2c is disabled, which corresponds to IC_ENABLE[0]
being set to 0. Writes at other times have no effect.

31:20 2:1

Reserved
SMBUS_PERSISTANT_SLV_ADDR_EN

SMBUS_ARP_EN
SMBUS_SLAVE_QUICK_CMD_EN

OPTIONAL_SAR_CTRL
Reserved

BUS_CLEAR_FEATURE_CTRL
STOP_DET_IF_MASTER_ACTIVE

RX_FIFO_FULL_HLD_CTRL
TX_EMPTY_CTRL

STOP_DET_IFADDRESSED
IC_SLAVE_DISABLE

IC_RESTART_EN
IC_10BITADDR_MASTER(_rd_only)

IC_10BITADDR_SLAVE
SPEED

MASTER_MODE

6 5 4 3 0789101119 18 17 16 15:12

https://solvnet.synopsys.com
www.designware.com

162 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

Table 6-3 IC_CON Register Fields

Bits Name R/W Description

31:20 Reserved N/A Reserved

19 SMBUS_PERSISTANT_SLV_ADDR_
EN

This bit controls to enable DW_apb_i2c slave as persistent or
non-persistent slave.
If the slave is non-PSA then DW_apb_i2c slave device clears
the Address valid flag for both General and Directed Reset
ARP command else the address valid flag will always set to 1.
Dependencies: This register bit is applicable only when the
IC_SMBUS_ARP configuration parameter is set to 1.
This bit is applicable only in Slave mode.
Reset Value: IC_PERSISTANT_SLV_ADDR_DEFAULT

18 SMBUS_ARP_EN R/W This bit controls whether DW_apb_i2c should enable Address
Resolution Logic in SMBus Mode. The Slave mode will
decode the Address Resolution Protocol commands and
respond to it. The DW_apb_i2c slave also includes the
generation/validity of PEC byte for Address Resolution
Protocol commands.
This bit is applicable only in Slave mode.
Dependencies: This register bit is applicable only when the
IC_SMBUS_ARP configuration parameter is set to 1.
Reset Value: 0x0

17 SMBUS_SLAVE_QUICK_CMD_EN R/W If this bit is set to 1, DW_apb_i2c slave only receives Quick
commands in SMBus Mode.
If this bit is set to 0, DW_apb_i2c slave receives all bus
protocols but not Quick commands.
This bit is applicable only in slave mode.
Dependencies: This register bit is applicable only when the
IC_SMBUS configuration parameter is set to 1.
Reset Value: 0x0

16 OPTIONAL_SAR_CTRL R/W Enables the usage of IC_OPTIONAL_SAR register.
If IC_OPTIONAL_SAR =1, IC_OPTIONAL_SAR value is
used as additional slave address. User must program a valid
address in IC_OPTIONAL_SAR before writing 1 to this field.
If IC_OPTIONAL_SAR =0, IC_OPTIONAL_SAR value is not
used as additional slave address. In this mode only one I2C
slave address is used.
Dependencies: This register bit is valid only if configuration
parameter IC_OPTIONAL_SAR is set to 1
Reset Value: IC_OPTIONAL_SAR_DEFAULT

15:12 Reserved R.W Reserved

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 163SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

11 BUS_CLEAR_FEATURE_CTRL R/W In Master Mode:

■ 1'b1: Bus Clear Feature is enabled

■ 1'b0: Bus Clear Feature is disabled

In Slave Mode, this register bit is not applicable.
Reset Value: 1'b0
Dependencies: This register bit value is applicable only
when IC_BUS_CLEAR_FEATURE=1.
This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)

10 STOP_DET_IF_MASTER_ACTIVE R/W In Master mode

■ 1’b1: Issues the STOP_DET interrupt only when the
master is active

■ 1’b0: Issues the STOP_DET irrespective of whether the
master is active

Reset value: 1’b0
Dependencies: This Register bit value is applicable only
when IC_STOP_DET_IF_MASTER_ACTIVE=1.
This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)

9 RX_FIFO_FULL_HLD_CTRL R/W or
R

This bit controls whether DW_apb_i2c should hold the bus
when the Rx FIFO is physically full to its
RX_BUFFER_DEPTH, as described in the
IC_RX_FULL_HLD_BUS_EN parameter.
Dependencies: This register bit value is applicable only
when the IC_RX_FULL_HLD_BUS_EN configuration
parameter is set to 1. If IC_RX_FULL_HLD_BUS_EN = 0,
then this bit is read-only. If IC_RX_FULL_HLD_BUS_EN = 1,
then this bit can be read or write.
This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

8 TX_EMPTY_CTRL R/W This bit controls the generation of the TX_EMPTY interrupt,
as described in the IC_RAW_INTR_STAT register.
Reset value: 0x0

Table 6-3 IC_CON Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

164 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

7 STOP_DET_IFADDRESSED R/W In slave mode:
1’b1 – issues the STOP_DET interrupt only when it is
addressed.
1’b0 – issues the STOP_DET irrespective of whether it’s
addressed or not.
Dependencies: This register bit value is applicable in the
slave mode only (MASTER_MODE = 1’b0)
Reset value: 1’b0
NOTE: During a general call address, this slave does not
issue the STOP_DET interrupt if
STOP_DET_IF_ADDRESSED = 1’b1, even if the slave
responds to the general call address by generating ACK.
The STOP_DET interrupt is generated only when the
transmitted address matches the slave address (SAR).

6 IC_SLAVE_DISABLE R/W This bit controls whether I2C has its slave disabled, which
means once the presetn signal is applied, then this bit takes
on the value of the configuration parameter
IC_SLAVE_DISABLE. You have the choice of having the
slave enabled or disabled after reset is applied, which means
software does not have to configure the slave. By default, the
slave is always enabled (in reset state as well). If you need to
disable it after reset, set this bit to 1.
If this bit is set (slave is disabled), DW_apb_i2c functions only
as a master and does not perform any action that requires a
slave.
0: slave is enabled
1: slave is disabled
Reset value: IC_SLAVE_DISABLE configuration parameter
NOTE: Software should ensure that if this bit is written with
‘0,’ then bit 0 should also be written with a ‘0’.

Table 6-3 IC_CON Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 165SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

5 IC_RESTART_EN R/W Determines whether RESTART conditions may be sent when
acting as a master. Some older slaves do not support
handling RESTART conditions; however, RESTART
conditions are used in several DW_apb_i2c operations.
0: disable
1: enable
When the RESTART is disabled, the DW_apb_i2c master is
incapable of performing the following functions:

■ Sending a START BYTE

■ Performing any high-speed mode operation

■ Performing direction changes in combined format mode

■ Performing a read operation with a 10-bit address

By replacing RESTART condition followed by a STOP and a
subsequent START condition, split operations are broken
down into multiple DW_apb_i2c transfers. If the above
operations are performed, it will result in setting bit 6
(TX_ABRT) of the IC_RAW_INTR_STAT register.
Reset value: IC_RESTART_EN configuration parameter

4 IC_10BITADDR_MASTER or
IC_10BITADDR_MASTER_
rd_only

R/W or
R

If the I2C_DYNAMIC_TAR_UPDATE configuration parameter
is set to “No” (0), this bit is named IC_10BITADDR_MASTER
and controls whether the DW_apb_i2c starts its transfers in 7-
or 10-bit addressing mode when acting as a master.
If I2C_DYNAMIC_TAR_UPDATE is set to “Yes” (1), the
function of this bit is handled by bit 12 of IC_TAR register, and
becomes a read-only copy called
IC_10BITADDR_MASTER_rd_only.
0: 7-bit addressing
1: 10-bit addressing
Dependencies: If I2C_DYNAMIC_TAR_UPDATE = 1, then
this bit is read-only. If I2C_DYNAMIC_TAR_UPDATE = 0,
then this bit can be read or write.
Reset value: IC_10BITADDR_MASTER configuration
parameter

3 IC_10BITADDR_SLAVE R/W When acting as a slave, this bit controls whether the
DW_apb_i2c responds to 7- or 10-bit addresses.
0: 7-bit addressing. The DW_apb_i2c ignores transactions
that involve 10-bit addressing; for 7-bit addressing, only the
lower 7 bits of the IC_SAR register are compared.
1: 10-bit addressing. The DW_apb_i2c responds to only
10-bit addressing transfers that match the full 10 bits of the
IC_SAR register.
Reset value: IC_10BITADDR_SLAVE configuration
parameter

Table 6-3 IC_CON Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

166 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

Certain combinations of the IC_SLAVE_DISABLE (bit 6) and MASTER_MODE (bit 0) result in a
configuration error. Table 6-4 lists the states that result from the combinations of these two bits.

NoteNoteNoteNote
Bits 3 and 4 of this register can be programmed differently and in any combination depending on
which format is required for the transfers. For example, master mode can be configured with 10-bit
addressing and slave mode can be configured with 7-bit addressing.

2:1 SPEED R/W These bits control at which speed the DW_apb_i2c operates.
Hardware protects against illegal values being programmed
by software. register These bits must be programmed
appropriately for slave mode also, as it is used to capture
correct value of spike filter as per the speed mode.
This register should be programmed only with a value in the
range of 1 to IC_MAX_SPEED_MODE; otherwise, hardware
updates this register with the value of
IC_MAX_SPEED_MODE.

■ 1: standard mode (0 to 100 Kb/s)

■ 2: fast mode (≤ 400 Kb/s) or fast mode plus (≤ 1000 Kb/s)

■ 3: high speed mode (≤ 3.4 Mb/s)

NOTE: This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: IC_MAX_SPEED_MODE configuration

0 MASTER_MODE R/W This bit controls whether the DW_apb_i2c master is enabled.
0: master disabled
1: master enabled
Reset value: IC_MASTER_MODE configuration parameter
NOTE: Software should ensure that if this bit is written with
‘1,’ then bit 6 should also be written with a ‘1’.

Table 6-4 States for IC_SLAVE_DISABLE (bit 6) and MASTER_MODE (bit 0)

IC_SLAVE_DISABLE
(IC_CON[6])

MASTER_MODE
IC_CON[0] State

0 0 Slave Device

0 1 Config Error

1 0 Config Error

1 1 Master Device

Table 6-3 IC_CON Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 167SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

NoteNoteNoteNote Because the DW_apb_i2c should only be used either as an I2C master or I2C slave (but not
both) at any one time, care should be taken in software that certain combinations of the two
bits IC_SLAVE_DISABLE and IC_MASTER_MODE are not programmed into the “IC_CON”
on page 161 register. In particular, IC_SLAVE_DISABLE and IC_MASTER_MODE must not
be set to ‘0’ and ‘1,’ respectively at any given time.

https://solvnet.synopsys.com
www.designware.com

168 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.2 IC_TAR

■ Name: I2C Target Address Register

■ Size: 12 bits; when I2C_DYNAMIC_TAR_UPDATE = 0 and IC_DEVICE_ID = 0

 13 bits; when I2C_DYNAMIC_TAR_UPDATE = 1 and IC_DEVICE_ID = 0

 14 bits; when IC_DEVICE_ID = 1 irrespective of I2C_DYNAMIC_TAR_UPDATE is set

 17 bits; when IC_SMBUS=1

■ Address Offset: 0x04

■ Read/Write Access: Read/Write

If the configuration parameter I2C_DYNAMIC_TAR_UPDATE is set to “No” (0), this register is 12 bits
wide, and bits 31:12 are reserved. Writes to this register succeed only when IC_ENABLE[0] is set to 0.

However, if I2C_DYNAMIC_TAR_UPDATE = 1, then the register becomes 13 bits wide. In this case, writes
to IC_TAR succeed when one of the following conditions are true:

■ DW_apb_i2c is NOT enabled (IC_ENABLE[0] is set to 0); or

■ DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND
DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND
DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND
there are NO entries in the Tx FIFO (IC_STATUS[2]=1)1

You can change the TAR address dynamically without losing the bus, only if the following conditions are
met.

■ DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND IC_EMPTYFIFO_HOLD_MASTER_EN
configuration parameter is set to 1; AND DW_apb_i2c is enabled to operate in Master mode
(IC_CON[0]=1); AND there are NO entries in the Tx FIFO and the master is in HOLD state
(IC_INTR_STAT[13]=1);1

1. If the software or application is aware the the DW_apb_i2c is not using the TAR address for the pending commands in the
Tx FIFO, then it is possible to update the TAR address even while the Tx FIFO has entries (IC_STATUS[2]= 0).

31:17

Reserved
SMBUS_QUICK_CMD

Reserved
Device_ID

IC_10BITADDR_MASTER
SPECIAL

GC_OR_START
IC_TAR

11 10 9:0121316 15:14

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 169SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

Table 6-5 IC_TAR Register Fields

Bits Name R/W Description

31:17 Reserved N/A Reserved

16 SMBUS_QUICK_CMD R/W If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a
Quick command is to be performed by the DW_apb_i2c.
Dependencies: This register bit is applicable only when the
IC_SMBUS configuration parameter is set to 1.
Reset Value: 0x0

15:14 Reserved N/A Reserved

13 Device_ID R/W If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a
Device-ID of a particular slave mentioned in IC_TAR[6:0] is to be
performed by the DW_apb_i2c Master.

■ 0: Device-ID is not performed and checks ic_tar[10] to perform
either general call or START byte command.

■ 1: Device-ID transfer is performed and bytes based on the
number of read commands in the Tx-FIFO are received from the
targeted slave and put in the Rx-FIFO.

Dependencies: This field is not applicable in Ultra-Fast speed
mode (IC_ULTRA_FAST_MODE=1)
Reset Value: 0x0

12 IC_10BITADDR_MASTER R/W This bit controls whether the DW_apb_i2c starts its transfers in 7-or
10-bit addressing mode when acting as a master.

■ 0: 7-bit addressing

■ 1: 10-bit addressing

Dependencies: This bit exists in this register only if the
I2C_DYNAMIC_TAR_UPDATE configuration parameter is set to Yes
(1).
Reset value: IC_10BITADDR_MASTER configuration parameter

11 SPECIAL R/W This bit indicates whether software performs a Device-ID, General
Call or START BYTE command.

■ 0: ignore bit 10 GC_OR_START and use IC_TAR normally

■ 1: perform special I2C command as specified in Device-ID or
GC_OR_START bit

Reset value: 0x0

https://solvnet.synopsys.com
www.designware.com

170 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

10 GC_OR_START R/W If bit 11 (SPECIAL) is set to 1 and bit 13 (Device-ID) is set to 0, then
this bit indicates whether a General Call or START byte command is
to be performed by the DW_apb_i2c.

■ 0: General Call Address – after issuing a General Call, only
writes may be performed. Attempting to issue a read command
results in setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT
register. The DW_apb_i2c remains in General Call mode until
the SPECIAL bit value (bit 11) is cleared.

■ 1: START BYTE

Reset value: 0x0

9:0 IC_TAR R/W This is the target address for any master transaction. When
transmitting a General Call, these bits are ignored. To generate a
START BYTE, the CPU needs to write only once into these bits.
Reset value: IC_DEFAULT_TAR_SLAVE_ADDR configuration
parameter
If the IC_TAR and IC_SAR are the same, loopback exists but the
FIFOs are shared between master and slave, so full loopback is not
feasible. Only one direction loopback mode is supported (simplex),
not duplex. A master cannot transmit to itself; it can transmit to only
a slave.

NoteNoteNoteNote It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

Table 6-5 IC_TAR Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 171SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.3 IC_SAR

■ Name: I2C Slave Address Register

■ Size: 10 bits

■ Address Offset: 0x08

■ Read/Write Access: Read/Write

6.3.4 IC_HS_MADDR

■ Name: I2C High Speed Master Mode Code Address Register

■ Size: 3 bits

■ Address Offset: 0x0c

■ Read/Write Access: Read/Write

This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE = 1).

Table 6-6 IC_SAR Register Fields

Bits Name R/W Description

31:10 Reserved N/A Reserved

9:0 IC_SAR R/W The IC_SAR holds the slave address when the I2C is operating as a slave. For 7-bit
addressing, only IC_SAR[6:0] is used.
This register can be written only when the I2C interface is disabled, which corresponds
to IC_ENABLE[0] being set to 0. Writes at other times have no effect.
NOTE: The default values cannot be any of the reserved address locations: that is,
0x00 to 0x07, or 0x78 to 0x7f. The correct operation of the device is not guaranteed if
you program the IC_SAR or IC_TAR to a reserved value. Refer to Table 3-1 on page
44 for a complete list of these reserved values.
Reset value: IC_DEFAULT_SLAVE_ADDR configuration parameter

NoteNoteNoteNote It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
master only.

31:10

Reserved
IC_SAR

9:0

https://solvnet.synopsys.com
www.designware.com

172 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

Table 6-7 IC_HS_MADDR Register Fields

Bits Name R/W Description

31:3 Reserved N/A Reserved

2:0 IC_HS_MAR R/W This bit field holds the value of the I2C HS mode master code. HS-mode master
codes are reserved 8-bit codes (00001xxx) that are not used for slave addressing
or other purposes. Each master has its unique master code; up to eight high-
speed mode masters can be present on the same I2C bus system. Valid values
are from 0 to 7. This register goes away and becomes read-only returning 0’s if
the IC_MAX_SPEED_MODE configuration parameter is set to either Standard
(1) or Fast (2).
This register can be written only when the I2C interface is disabled, which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have no
effect.
Reset value: IC_HS_MASTER_CODE configuration parameter

NoteNoteNoteNote It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

31:3

Reserved
IC_HS_MAR

2:0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 173SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.5 IC_DATA_CMD

■ Name: I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when
filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO

■ Size:

❑ Write

■ 11 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=1
■ 9 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=0

❑ Read

■ 12 bits when IC_FIRST_DATA_BYTE_STATUS = 1
■ 8 bits when IC_FIRST_DATA_BYTE_STATUS = 0

■ Address Offset: 0x10

■ Read/Write Access: Read/Write

NoteNoteNoteNote In order for the DW_apb_i2c to continue acknowledging reads, a read command should be
written for every byte that is to be received; otherwise the DW_apb_i2c will stop
acknowledging.

31:12

Reserved
FIRST_DATA_BYTE

RESTART
STOP
CMD
DAT

7:0891011

https://solvnet.synopsys.com
www.designware.com

174 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

Table 6-8 IC_DATA_CMD Register Fields

Bits Name R/W Description

31:12 Reserved N/A Reserved

11 FIRST_DATA_BYTE R Indicates the first data byte received after the address phase for receive
transfer in Master receiver or Slave receiver mode.
Reset value: 0x0
Dependencies: This Register bit value is applicable only when
FIRST_DATA_BYTE_STATUS=1.
Note: In case of APB_DATA_WIDTH=8:
1. You must perform two APB Reads to IC_DATA_CMD to get status on 11

bit.

2. To read the 11 bit, you must perform the first data byte read [7:0] (offset
0x10) and then perform the second read[15:8](offset 0x11) to know the
status of 11 bit (whether the data received in previous read is a first data
byte).

3. The 11th bit is an optional read field. You can ignore 2nd byte read [15:8]
(offset 0x11) if not interested in the FIRST_DATA_BYTE status.

10 RESTART W This bit controls whether a RESTART is issued before the byte is sent or
received. This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN
is configured to 1.

■ 1 – If IC_RESTART_EN is 1, a RESTART is issued before the data is
sent/received (according to the value of CMD), regardless of whether or
not the transfer direction is changing from the previous command; if
IC_RESTART_EN is 0, a STOP followed by a START is issued instead.

■ 0 – If IC_RESTART_EN is 1, a RESTART is issued only if the transfer
direction is changing from the previous command; if IC_RESTART_EN
is 0, a STOP followed by a START is issued instead.

9 STOP W This bit controls whether a STOP is issued after the byte is sent or received.
This bit is available only if IC_EMPTYFIFO_HOLD_MASTER_EN is
configured to 1.

■ 1 – STOP is issued after this byte, regardless of whether or not the
Tx FIFO is empty. If the Tx FIFO is not empty, the master immediately
tries to start a new transfer by issuing a START and arbitrating for the
bus.

■ 0 – STOP is not issued after this byte, regardless of whether or not the
Tx FIFO is empty. If the Tx FIFO is not empty, the master continues the
current transfer by sending/receiving data bytes according to the value of
the CMD bit. If the Tx FIFO is empty, the master holds the SCL line low
and stalls the bus until a new command is available in the Tx FIFO.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 175SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.6 IC_SS_SCL_HCNT

■ Name: Standard Speed I2C Clock SCL High Count Register

■ Size: 16 bits

■ Address Offset: 0x14

■ Read/Write Access: Read/Write

This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE = 1).

8 CMD W This bit controls whether a read or a write is performed. This bit does not
control the direction when the DW_apb_i2c acts as a slave. It controls only
the direction when it acts as a master.

■ 1 = Read

■ 0 = Write

When a command is entered in the TX FIFO, this bit distinguishes the write
and read commands. In slave-receiver mode, this bit is a “don’t care”
because writes to this register are not required. In slave-transmitter mode, a
“0” indicates that the data in IC_DATA_CMD is to be transmitted.
When programming this bit, you should remember the following: attempting
to perform a read operation after a General Call command has been sent
results in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register),
unless bit 11 (SPECIAL) in the IC_TAR register has been cleared.
If a “1” is written to this bit after receiving a RD_REQ interrupt, then a
TX_ABRT interrupt occurs.
Dependencies: This field is not applicable in Ultra-Fast speed mode (
IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

7:0 DAT R/W This register contains the data to be transmitted or received on the I2C bus.
If you are writing to this register and want to perform a read, bits 7:0 (DAT)
are ignored by the DW_apb_i2c. However, when you read this register,
these bits return the value of data received on the DW_apb_i2c interface.
Reset value: 0x0

Table 6-8 IC_DATA_CMD Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

176 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.7 IC_SS_SCL_LCNT

■ Name: Standard Speed I2C Clock SCL Low Count Register

■ Size: 16 bits

■ Address Offset: 0x18

■ Read/Write Access: Read/Write

This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE = 1).

Table 6-9 IC_SS_SCL_HCNT Register Fields

Bits Name R/W Description

31:16 Reserved N/A Reserved

15:0 IC_SS_SCL_HCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock high-period count
for standard speed. For more information, refer to “IC_CLK Frequency
Configuration” on page 79.
This register can be written only when the I2C interface is disabled which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have no
effect.
The minimum valid value is 6; hardware prevents values less than this being
written, and if attempted results in 6 being set. For designs with
APB_DATA_WIDTH = 8, the order of programming is important to ensure the
correct operation of the DW_apb_i2c. The lower byte must be programmed
first. Then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this
register is read only.
NOTE: This register must not be programmed to a value higher than 65525,
because DW_apb_i2c uses a 16-bit counter to flag an I2C bus idle condition
when this counter reaches a value of IC_SS_SCL_HCNT + 10.
Reset value: IC_SS_SCL_HIGH_COUNT configuration parameter

1Read-only if IC_HC_COUNT_VALUES = 1.

15:0

Reserved
IC_SS_SCL_HCNT

31:16

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 177SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.8 IC_FS_SCL_HCNT

■ Name: Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register

■ Size: 16 bits

■ Address Offset: 0x1c

■ Read/Write Access: Read/Write

This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE = 1).

Table 6-10 IC_SS_SCL_LCNT Register Fields

Bits Name R/W Description

31:16 Reserved N/A Reserved

15:0 IC_SS_SCL_LCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock low period count
for standard speed. For more information, refer to “IC_CLK Frequency
Configuration” on page 79.
This register can be written only when the I2C interface is disabled which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have no
effect.
The minimum valid value is 8; hardware prevents values less than this being
written, and if attempted, results in 8 being set. For designs with
APB_DATA_WIDTH = 8, the order of programming is important to ensure the
correct operation of DW_apb_i2c. The lower byte must be programmed first,
and then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this
register is read only.
Reset value: IC_SS_SCL_LOW_COUNT configuration parameter

1Read-only if IC_HC_COUNT_VALUES = 1.

15:0

Reserved
IC_SS_SCL_LCNT

31:16

https://solvnet.synopsys.com
www.designware.com

178 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.9 IC_FS_SCL_LCNT

■ Name: Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register

■ Size: 16 bits

■ Address Offset: 0x20

■ Read/Write Access: Read/Write

This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE = 1).

Table 6-11 IC_FS_SCL_HCNT Register Fields

Bits Name R/W Description

31:16 Reserved N/A Reserved

15:0 IC_FS_SCL_HCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock high-period count
for fast mode or fast mode plus. It is used in high-speed mode to send the
Master Code and START BYTE or General CALL. For more information,
refer to “IC_CLK Frequency Configuration” on page 79.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE = standard. This register can be written only when
the I2C interface is disabled, which corresponds to IC_ENABLE[0] being set
to 0. Writes at other times have no effect.
The minimum valid value is 6; hardware prevents values less than this being
written, and if attempted results in 6 being set. For designs with
APB_DATA_WIDTH == 8 the order of programming is important to ensure
the correct operation of the DW_apb_i2c. The lower byte must be
programmed first. Then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this
register is read only.
Reset value: IC_FS_SCL_HIGH_COUNT configuration parameter

1Read-only if IC_HC_COUNT_VALUES = 1.

15:0

Reserved
IC_FS_SCL_HCNT

31:16

15:0

Reserved
IC_FS_SCL_LCNT

31:16

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 179SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.10 IC_HS_SCL_HCNT

■ Name: High Speed I2C Clock SCL High Count Register

■ Size: 16 bits

■ Address Offset: 0x24

■ Read/Write Access: Read/Write

This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE = 1).

Table 6-12 IC_FS_SCL_LCNT Register Fields

Bits Name R/W Description

31:16 Reserved N/A Reserved

15:0 IC_FS_SCL_LCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock low period count
for fast mode or fast mode plus. It is used in high-speed mode to send the
Master Code and START BYTE or General CALL. For more information, refer
to “IC_CLK Frequency Configuration” on page 79.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE = standard.
This register can be written only when the I2C interface is disabled, which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have no
effect.
The minimum valid value is 8; hardware prevents values less than this being
written, and if attempted results in 8 being set. For designs with
APB_DATA_WIDTH = 8 the order of programming is important to ensure the
correct operation of the DW_apb_i2c. The lower byte must be programmed
first. Then the upper byte is programmed. If the value is less than 8 then the
count value gets changed to 8.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this
register is read only.
Reset value: IC_FS_SCL_LOW_COUNT configuration parameter

1Read-only if IC_HC_COUNT_VALUES = 1.

15:0

Reserved
IC_HS_SCL_HCNT

31:16

https://solvnet.synopsys.com
www.designware.com

180 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.11 IC_HS_SCL_LCNT

■ Name: High Speed I2C Clock SCL Low Count Register

■ Size: 16 bits

■ Address Offset: 0x28

■ Read/Write Access: Read/Write

This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE = 1).

Table 6-13 IC_HS_SCL_HCNT Register Fields

Bits Name R/W Description

31:16 Reserved N/A Reserved

15:0 IC_HS_SCL_HCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock high period count
for high speed. For more information, refer to “IC_CLK Frequency
Configuration” on page 79.
The SCL High time depends on the loading of the bus. For 100pF loading,
the SCL High time is 60ns; for 400pF loading, the SCL High time is 120ns.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE != high.
This register can be written only when the I2C interface is disabled, which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have no
effect.
The minimum valid value is 6; hardware prevents values less than this being
written, and if attempted results in 6 being set. For designs with
APB_DATA_WIDTH = 8 the order of programming is important to ensure the
correct operation of the DW_apb_i2c. The lower byte must be programmed
first. Then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this
register is read only.
Reset value: IC_HS_SCL_HIGH_COUNT configuration parameter

1Read-only if IC_HC_COUNT_VALUES = 1.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 181SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

Table 6-14 IC_HS_SCL_LCNT Register Fields

Bits Name R/W Description

31:16 Reserved N/A Reserved

15:0 IC_HS_SCL_LCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock low period count
for high speed. For more information, refer to “IC_CLK Frequency
Configuration” on page 79.
The SCL low time depends on the loading of the bus. For 100pF loading, the
SCL low time is 160ns; for 400pF loading, the SCL low time is 320ns.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE != high.
This register can be written only when the I2C interface is disabled, which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have no
effect.
The minimum valid value is 8; hardware prevents values less than this being
written, and if attempted results in 8 being set. For designs with
APB_DATA_WIDTH == 8 the order of programming is important to ensure
the correct operation of the DW_apb_i2c. The lower byte must be
programmed first. Then the upper byte is programmed. If the value is less
than 8 then the count value gets changed to 8.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1, this
register is read only.
Reset value: IC_HS_SCL_LOW_COUNT configuration parameter

1Read-only if IC_HC_COUNT_VALUES = 1.

15:0

Reserved
IC_HS_SCL_LCNT

31:16

https://solvnet.synopsys.com
www.designware.com

182 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.12 IC_INTR_STAT

■ Name: I2C Interrupt Status Register

■ Size: 15 bits

■ Address Offset: 0x2C

■ Read/Write Access: Read

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared
by reading the matching interrupt clear register. The unmasked raw versions of these bits are available in
the IC_RAW_INTR_STAT register.

Table 6-15 IC_INTR_STAT Register Fields

Bits Name R/W Description

31:15 Reserved N/A Reserved

14 R_SCL_STUCK_AT
_LOW

R See IC_RAW_INTR_STAT for a detailed description of this bit.
Dependencies: This field is not applicable in Ultra-Fast speed mode (
IC_ULTRA_FAST_MODE=1).
Reset value: 0x0

13 R_MST_ON_HOLD R See “IC_RAW_INTR_STAT” on page 186 for a detailed description of this bit.
Reset value: 0x0

31:15 11 10 9 8 7 6 5 4 3 2 1 0121314

R_RESTART_DET
R_GEN_CALL

R_START_DET
R_STOP_DET

R_ACTIVITY
R_RX_DONE
R_TX_ABRT
R_RD_REQ

R_TX_EMPTY
R_TX_OVER
R_RX_FULL

R_RX_OVER
R_RX_UNDER

Reserved
R_SCL_STUCK_AT_LOW

R_MST_ON_HOLD

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 183SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.13 IC_INTR_MASK

■ Name: I2C Interrupt Mask Register

■ Size: 15 bits

■ Address Offset: 0x30

■ Read/Write Access: Read/Write

❑ If configuration parameter IC_SLV_RESTART_DET = 0, bit 13 is read only.

❑ If configuration parameter I2C_DYNAMIC_TAR_UPDATE = 0 or
IC_EMPTYFIFO_HOLD_MASTER_EN = 0, bit 14 is read only.

❑ If configuration parameter IC_BUS_CLEAR_FEATURE = 0, bit 15 is read only.

12
11
10
9
8
7
6
5
4
3
2
1
0

R_RESTART_DET
R_GEN_CALL
R_START_DET
R_STOP_DET
R_ACTIVITY
R_RX_DONE
R_TX_ABRT
R_RD_REQ
R_TX_EMPTY
R_TX_OVER
R_RX_FULL
R_RX_OVER
R_RX_UNDER

R See “IC_RAW_INTR_STAT” on page 186 for a detailed description of these
bits.
Dependencies: R_RX_DONE and R_RD_REQ are not applicable in Ultra-
Fast speed mode (IC_ULTRA_FAST_MODE = 1).
Reset value: 0x0

Table 6-15 IC_INTR_STAT Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

184 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

These bits mask their corresponding interrupt status bits. This register is active low; a value of 0 masks the
interrupt, whereas a value of 1 unmasks the interrupt.

Table 6-16 IC_INTR_MASK Register Fields

Bits Name R/W Description

31:15 Reserved N/A Reserved

14 M_SCL_STUCK_AT
_LOW

R or
R/W

This bit masks the R_SCL_STUCK_AT_LOW interrupt bit in the
IC_INTR_STAT register
This bit is enabled only when IC_BUS_CLEAR_FEATURE = 1.
Dependencies: This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset Value: 0x1

13 M_MST_ON_HOLD R or
R/W

This bit masks the R_MST_ON_HOLD interrupt bit in the IC_INTR_STAT
register.
Dependencies: If I2C_DYNAMIC_TAR_UPDATE = 1 and
IC_EMPTYFIFO_HOLD_MASTER_EN = 1, then M_MST_ON_HOLD is
read/write. Otherwise M_MST_ON_HOLD is read-only.
Reset value: 14’h8ff

12 M_RESTART_DET R or
R/W

This bit masks the R_RESTART_DET interrupt status bit in the
IC_INTR_STAT register.
Dependencies: If IC_SLV_RESTART_DET_EN = 1, then
M_RESTART_DET is read/write. Otherwise M_RESTART_DET is read-only.
Reset value: 14’h8ff

Reserved
M_SCL_STUCK_AT_LOW

M_MST_ON_HOLD
M_RESTART_DET

M_GEN_CALL
M_START_DET
M_STOP_DET

M_ACTIVITY
M_RX_DONE
M_TX_ABRT
M_RD_REQ

M_TX_EMPTY
M_TX_OVER
M_RX_FULL

M_RX_OVER
M_RX_UNDER

31:15 11 10 9 8 7 6 5 4 3 2 1 0121314

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 185SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

11
10
9
8
7
6
5
4
3
2
1
0

M_GEN_CALL
M_START_DET
M_STOP_DET
M_ACTIVITY
M_RX_DONE
M_TX_ABRT
M_RD_REQ
M_TX_EMPTY
M_TX_OVER
M_RX_FULL
M_RX_OVER
M_RX_UNDER

R/W These bits mask their corresponding interrupt status bits in the
IC_INTR_STAT register.
Dependencies: M_RX_DONE and M_RD_REQ are not applicable in Ultra-
Fast speed mode (IC_ULTRA_FAST_MODE = 1).
Reset value: 14’h8ff

Table 6-16 IC_INTR_MASK Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

186 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.14 IC_RAW_INTR_STAT

■ Name: I2C Raw Interrupt Status Register

■ Size: 15 bits

■ Address Offset: 0x34

■ Read/Write Access: Read

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of the
DW_apb_i2c.

Table 6-17 IC_RAW_INTR_STAT Register Fields

Bits Name R/W Description

31:15 Reserved N/A Reserved

14 SCL_STUCK_AT_
LOW

R Indicates whether the SCL Line is stuck at low for the
IC_SCL_STUCK_LOW_TIMOUT number of ic_clk periods.
Enabled only when IC_BUS_CLEAR_FEATURE = 1
Dependencies: This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset Value: 0x0

31:15 11 10 9 8 7 6 5 4 3 2 1 0121314

Reserved
SCL_STUCK_AT_LOW

MST_ON_HOLD
RESTART_DET

GEN_CALL
START_DET
STOP_DET

ACTIVITY
RX_DONE
TX_ABRT
RD_REQ

TX_EMPTY
TX_OVER
RX_FULL

RX_OVER
RX_UNDER

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 187SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

13 MST_ON_HOLD R Indicates whether a master is holding the bus and the Tx FIFO is empty.
Enabled only when I2C_DYNAMIC_TAR_UPDATE = 1 and
IC_EMPTYFIFO_HOLD_MASTER_EN = 1
Reset value: 0X0

12 RESTART_DET R Indicates whether a RESTART condition has occurred on the I2C interface
when DW_apb_i2c is operating in slave mode and the slave is the addressed
slave.
Enabled only when IC_SLV_RESTART_DET_EN = 1
NOTE: However, in high-speed mode or during a START BYTE transfer, the
RESTART comes before the address field as per the I2C protocol. In this case,
the slave is not the addressed slave when the RESTART is issued, therefore
DW_apb_i2c does not generate the RESTART_DET interrupt.
Reset value: 0x0

11 GEN_CALL R Set only when a General Call address is received and it is acknowledged. It
stays set until it is cleared either by disabling DW_apb_i2c or when the CPU
reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c stores the
received data in the Rx buffer.
Reset value: 0x0

10 START_DET R Indicates whether a START or RESTART condition has occurred on the I2C
interface regardless of whether DW_apb_i2c is operating in slave or master
mode.
Reset value: 0x0

9 STOP_DET R Indicates whether a STOP condition has occurred on the I2C interface
regardless of whether DW_apb_i2c is operating in slave or master mode.
In Slave Mode:
■ If IC_CON[7]=1'b1 (STOP_DET_IFADDRESSED), the STOP_DET

interrupt is generated only if the slave is addressed.

Note: During a general call address, this slave does not issue a
STOP_DET interrupt if STOP_DET_IF_ADDRESSED=1'b1, even if the
slave responds to the general call address by generating ACK. The
STOP_DET interrupt is generated only when the transmitted address
matches the slave address (SAR).

■ If IC_CON[7]=1'b0 (STOP_DET_IFADDRESSED), the STOP_DET
interrupt is issued irrespective of whether it is being addressed.

In Master Mode:
■ If IC_CON[10]=1’b1 (STOP_DET_IF_MASTER_ACTIVE), the STOP_DET

interrupt is issued only if the master is active.

■ If IC_CON[10]=1’b0 (STOP_DET_IFADDRESSED), the STOP_DET
interrupt is issued irrespective of whether the master is active.

Reset value: 0x0

Table 6-17 IC_RAW_INTR_STAT Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

188 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

8 ACTIVITY R This bit captures DW_apb_i2c activity and stays set until it is cleared. There
are four ways to clear it:

■ Disabling the DW_apb_i2c

■ Reading the IC_CLR_ACTIVITY register

■ Reading the IC_CLR_INTR register

■ System reset

Once this bit is set, it stays set unless one of the four methods is used to clear
it. Even if the DW_apb_i2c module is idle, this bit remains set until cleared,
indicating that there was activity on the bus.
Reset value: 0x0

7 RX_DONE R When the DW_apb_i2c is acting as a slave-transmitter, this bit is set to 1 if the
master does not acknowledge a transmitted byte. This occurs on the last byte
of the transmission, indicating that the transmission is done.
Dependencies: This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

6 TX_ABRT R This bit indicates if DW_apb_i2c, as an I2C transmitter, is unable to complete
the intended actions on the contents of the transmit FIFO. This situation can
occur both as an I2C master or an I2C slave, and is referred to as a “transmit
abort”.
When this bit is set to 1, the IC_TX_ABRT_SOURCE register indicates the
reason why the transmit abort takes places.
NOTE: The DW_apb_i2c flushes/resets/empties only the TX_FIFO whenever
there is a transmit abort caused by any of the events tracked by the
IC_TX_ABRT_SOURCE register. The Tx FIFO remains in this flushed state
until the register IC_CLR_TX_ABRT is read. Once this read is performed, the
Tx FIFO is then ready to accept more data bytes from the APB interface. RX
FIFO is flushed because of TX_ABRT is controlled by the coreConsultant
parameter IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT.
Reset value: 0x0

5 RD_REQ R This bit is set to 1 when DW_apb_i2c is acting as a slave and another I2C
master is attempting to read data from DW_apb_i2c. The DW_apb_i2c holds
the I2C bus in a wait state (SCL=0) until this interrupt is serviced, which means
that the slave has been addressed by a remote master that is asking for data
to be transferred. The processor must respond to this interrupt and then write
the requested data to the IC_DATA_CMD register. This bit is set to 0 just after
the processor reads the IC_CLR_RD_REQ register.
Dependencies: This field is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Table 6-17 IC_RAW_INTR_STAT Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 189SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

4 TX_EMPTY R The behavior of the TX_EMPTY interrupt status differs based on the
TX_EMPTY_CTRL selection in the IC_CON register.

■ When TX_EMPTY_CTRL = 0:

This bit is set to 1 when the transmit buffer is at or below the threshold
value set in the IC_TX_TL register.

■ When TX_EMPTY_CTRL = 1:

This bit is set to 1 when the transmit buffer is at or below the threshold
value set in the IC_TX_TL register and the transmission of the
address/data from the internal shift register for the most recently popped
command is completed.

It is automatically cleared by hardware when the buffer level goes above the
threshold. When IC_ENABLE[0] is set to 0, the TX FIFO is flushed and held in
reset. There the TX FIFO looks like it has no data within it, so this bit is set
to 1, provided there is activity in the master or slave state machines. When
there is no longer any activity, then with ic_en=0, this bit is set to 0.
Reset value: 0x0

3 TX_OVER R Set during transmit if the transmit buffer is filled to IC_TX_BUFFER_DEPTH
and the processor attempts to issue another I2C command by writing to the
IC_DATA_CMD register. When the module is disabled, this bit keeps its level
until the master or slave state machines go into idle, and when ic_en goes to
0, this interrupt is cleared.
Reset value: 0x0

2 RX_FULL R Set when the receive buffer reaches or goes above the RX_TL threshold in the
IC_RX_TL register. It is automatically cleared by hardware when buffer level
goes below the threshold. If the module is disabled (IC_ENABLE[0]=0), the
RX FIFO is flushed and held in reset; therefore the RX FIFO is not full. So this
bit is cleared once IC_ENABLE[0] is set to 0, regardless of the activity that
continues.
Reset value: 0x0

1 RX_OVER R Set if the receive buffer is completely filled to IC_RX_BUFFER_DEPTH and
an additional byte is received from an external I2C device. The DW_apb_i2c
acknowledges this, but any data bytes received after the FIFO is full are lost. If
the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the
master or slave state machines go into idle, and when ic_en goes to 0, this
interrupt is cleared.
NOTE: If the configuration parameter IC_RX_FULL_HLD_BUS_EN is enabled
and bit 9 of the IC_CON register (RX_FIFO_FULL_HLD_CTRL) is
programmed to HIGH, then the RX_OVER interrupt never occurs, because the
Rx FIFO never overflows.
Reset value: 0x0

Table 6-17 IC_RAW_INTR_STAT Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

190 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.15 IC_RX_TL

■ Name: I2C Receive FIFO Threshold Register

■ Size: 8bits

■ Address Offset: 0x38

■ Read/Write Access: Read/Write

0 RX_UNDER R Set if the processor attempts to read the receive buffer when it is empty by
reading from the IC_DATA_CMD register. If the module is disabled
(IC_ENABLE[0]=0), this bit keeps its level until the master or slave state
machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
Reset value: 0x0

Table 6-18 IC_RX_TL Register Fields

Bits Name R/W Description

31:8 Reserved N/A Reserved

7:0 RX_TL R/W Receive FIFO Threshold Level
Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit 2 in
IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional
restriction that hardware does not allow this value to be set to a value larger than
the depth of the buffer. If an attempt is made to do that, the actual value set will be
the maximum depth of the buffer.
A value of 0 sets the threshold for 1 entry, and a value of 255 sets the threshold for
256 entries.
Reset value: IC_RX_TL configuration parameter

Table 6-17 IC_RAW_INTR_STAT Register Fields (Continued)

Bits Name R/W Description

31:8 7:0

Reserved
RX_TL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 191SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.16 IC_TX_TL

■ Name: I2C Transmit FIFO Threshold Register

■ Size: 8 bits

■ Address Offset: 0x3c

■ Read/Write Access: Read/Write

Table 6-19 IC_TX_TL Register Fields

Bits Name R/W Description

31:8 Reserved N/A Reserved

7:0 TX_TL R/W Transmit FIFO Threshold Level
Controls the level of entries (or below) that trigger the TX_EMPTY interrupt (bit 4 in
IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional
restriction that it may not be set to value larger than the depth of the buffer. If an
attempt is made to do that, the actual value set will be the maximum depth of the
buffer.
A value of 0 sets the threshold for 0 entries, and a value of 255 sets the threshold for
255 entries.
Reset value: IC_TX_TL configuration parameter

31:8

Reserved
TX_TL

7:0

https://solvnet.synopsys.com
www.designware.com

192 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.17 IC_CLR_INTR

■ Name: Clear Combined and Individual Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x40

■ Read/Write Access: Read

6.3.18 IC_CLR_RX_UNDER

■ Name: Clear RX_UNDER Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x44

■ Read/Write Access: Read

Table 6-20 IC_CLR_INTR Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_INTR R Read this register to clear the combined interrupt, all individual interrupts, and the
IC_TX_ABRT_SOURCE register. This bit does not clear hardware clearable
interrupts but software clearable interrupts. Refer to Bit 9 of the
IC_TX_ABRT_SOURCE register for an exception to clearing
IC_TX_ABRT_SOURCE.
Reset value: 0x0

Table 6-21 IC_CLR_RX_UNDER Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_RX_UNDER R Read this register to clear the RX_UNDER interrupt (bit 0) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

31:1

Reserved
CLR_INTR

0

31:1

Reserved
CLR_RX_UNDER

0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 193SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.19 IC_CLR_RX_OVER

■ Name: Clear RX_OVER Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x48

■ Read/Write Access: Read

6.3.20 IC_CLR_TX_OVER

■ Name: Clear TX_OVER Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x4c

■ Read/Write Access: Read

Table 6-22 IC_CLR_RX_OVER Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_RX_OVER R Read this register to clear the RX_OVER interrupt (bit 1) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

Table 6-23 IC_CLR_TX_OVER Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_TX_OVER R Read this register to clear the TX_OVER interrupt (bit 3) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

31:1

Reserved
CLR_RX_OVER

0

31:1

Reserved
CLR_TX_OVER

0

https://solvnet.synopsys.com
www.designware.com

194 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.21 IC_CLR_RD_REQ

■ Name: Clear RD_REQ Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x50

■ Read/Write Access: Read

■ Dependencies: This Register is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)

6.3.22 IC_CLR_TX_ABRT

■ Name: Clear TX_ABRT Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x54

■ Read/Write Access: Read

Table 6-24 IC_CLR_RD_REQ Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_RD_REQ R Read this register to clear the RD_REQ interrupt (bit 5) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

Table 6-25 IC_CLR_TX_ABRT Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_TX_ABRT R Read this register to clear the TX_ABRT interrupt (bit 6) of the
IC_RAW_INTR_STAT register, and the IC_TX_ABRT_SOURCE register.
This also releases the Tx FIFO from the flushed/reset state, allowing more
writes to the Tx FIFO.
Refer to Bit 9 of the IC_TX_ABRT_SOURCE register for an exception to
clearing IC_TX_ABRT_SOURCE.
Reset value: 0x0

31:1

Reserved
CLR_RD_REQ

0

31:1

Reserved
CLR_TX_ABRT

0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 195SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.23 IC_CLR_RX_DONE

■ Name: Clear RX_DONE Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x58

■ Read/Write Access: Read

■ Dependencies: This Register is not applicable in Ultra-Fast speed mode (
IC_ULTRA_FAST_MODE=1)

6.3.24 IC_CLR_ACTIVITY

■ Name: Clear ACTIVITY Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x5c

■ Read/Write Access: Read

Table 6-26 IC_CLR_RX_DONE Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_RX_DONE R Read this register to clear the RX_DONE interrupt (bit 7) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

Table 6-27 IC_CLR_ACTIVITY Register Fields

Bits Name R.W Description

31:1 Reserved N/A Reserved

0 CLR_ACTIVITY R Reading this register clears the ACTIVITY interrupt if the I2C is not active
anymore. If the I2C module is still active on the bus, the ACTIVITY interrupt
bit continues to be set. It is automatically cleared by hardware if the module
is disabled and if there is no further activity on the bus. The value read from
this register to get status of the ACTIVITY interrupt (bit 8) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

31:1

Reserved
CLR_RX_DONE

0

31:1

Reserved
CLR_ACTIVITY

0

https://solvnet.synopsys.com
www.designware.com

196 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.25 IC_CLR_STOP_DET

■ Name: Clear STOP_DET Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x60

■ Read/Write Access: Read

6.3.26 IC_CLR_START_DET

■ Name: Clear START_DET Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x64

■ Read/Write Access: Read

Table 6-28 IC_CLR_STOP_DET Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_STOP_DET R Read this register to clear the STOP_DET interrupt (bit 9) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

Table 6-29 IC_CLR_START_DET Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_START_DET R Read this register to clear the START_DET interrupt (bit 10) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

31:1

Reserved
CLR_STOP_DET

0

31:1

Reserved
CLR_START_DET

0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 197SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.27 IC_CLR_GEN_CALL

■ Name: Clear GEN_CALL Interrupt Register

■ Size: 1 bit

■ Address Offset: 0x68

■ Read/Write Access: Read

Table 6-30 IC_CLR_GEN_CALL Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_GEN_CALL R Read this register to clear the GEN_CALL interrupt (bit 11) of
IC_RAW_INTR_STAT register.
Reset value: 0x0

31:1

Reserved
CLR_GEN_CALL

0

https://solvnet.synopsys.com
www.designware.com

198 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.28 IC_ENABLE

■ Name: I2C Enable Register

■ Size: 19 bits

■ Address Offset: 0x6c

■ Read/Write Access: Read/Write

❑ Bit 2 is read only when IC_TX_CMD_BLOCK_DEFAULT=0

❑ Bit 3 is read only when IC_BUS_CLEAR_FEATURE = 0

❑ Bit 16 is read only when IC_SMBUS=0.

❑ Bit 17 and 18 are read only when IC_SMBUS_SUSPEND_ALERT=0.

Table 6-31 IC_ENABLE Register Fields

Bits Name R/W Description

31:19 Reserved N/A Reserved

18 SMBUS_ALERT_EN R/W The SMBUS_ALERT_CTRL register bit is used to control assertion of
SMBALERT signal.
1: Assert SMBALERT signal
This register bit is auto-cleared after detection of Acknowledgement from
master for Alert Response address.
Dependencies: This Register bit value is applicable only when
IC_SMBUS_SUSPEND_ALERT=1
Reset Value: 0x0

17 SMBUS_SUSPEND_
EN

R/W The SMBUS_SUSPEND_EN register bit is used to control assertion and de-
assertion of SMBSUS signal.
0: De-assert SMBSUS signal
1: Assert SMBSUS signal
Dependencies: This Register bit value is applicable only when
IC_SMBUS_SUSPEND_ALERT=1
Reset Value: 0x0

31:19

Reserved
SMBUS_ALERT_EN

SMBUS_SUSPEND_EN
SMBUS_CLK_RESET

Reserved
SDA_STUCK_RECOVERY_ENABLE

TX_CMD_BLOCK
ABORT

ENABLE

1 02318 17 16 15:4

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 199SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

16 SMBUS_CLK_RESE
T

R/W This bit is used in SMBus Host mode to initiate the SMBus Master Clock
Reset. This bit should be enabled only when Master is in idle. Whenever this
bit is enabled, the SMBCLK is held low for the IC_SCL_STUCK_TIMEOUT
ic_clk cycles to reset the SMBus Slave devices.
Dependencies: This Register bit value is applicable only when
IC_SMBUS=1
Reset Value: 0x0

15:4 Reserved N/A Reserved

3 SDA_STUCK_RECO
VERY_ENABLE

R/W If SDA is stuck at low indicated through the TX_ABORT interrupt
(IC_TX_ABRT_SOURCE[17]), then this bit is used as a control knob to initiate
the SDA Recovery Mechanism (that is, send at most 9 SCL clocks and STOP
to release the SDA line) and then this bit gets auto clear.
This bit is enabled only when IC_BUS_CLEAR_FEATURE = 1.
Dependencies: This field is not applicable in Ultra-Fast speed mode (
IC_ULTRA_FAST_MODE=1)
Reset Value: 0x0

2 TX_CMD_BLOCK R/W In Master mode

■ 1’b1: Blocks the transmission of data on I2C bus even if Tx FIFO has data
to transmit.

■ 1’b0: The transmission of data starts on I2C bus automatically, as soon as
the first data is available in the Tx FIFO.

Reset value: IC_TX_CMD_BLOCK_DEFAULT
Dependencies: This Register bit value is applicable only when
IC_TX_CMD_BLOCK =1.
Note: To block the execution of Master commands, set the TX_CMD_BLOCK
bit only when Tx FIFO is empty (IC_STATUS[2]=1) and the master is in the
Idle state (IC_STATUS[5] == 0). Any further commands put in the Tx FIFO are
not executed until TX_CMD_BLOCK bit is unset.

1 ABORT R/W When set, the controller initiates the transfer abort.

■ 0: ABORT not initiated or ABORT done

■ 1: ABORT operation in progress

The software can abort the I2C transfer in master mode by setting this bit. The
software can set this bit only when ENABLE is already set; otherwise, the
controller ignores any write to ABORT bit. The software cannot clear the
ABORT bit once set. In response to an ABORT, the controller issues a STOP
and flushes the Tx FIFO after completing the current transfer, then sets the
TX_ABORT interrupt after the abort operation. The ABORT bit is cleared
automatically after the abort operation.
For a detailed description on how to abort I2C transfers, refer to “Aborting I2C
Transfers” on page 63.
Reset value: 0x0

Table 6-31 IC_ENABLE Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

200 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

0 ENABLE R/W Controls whether the DW_apb_i2c is enabled.

■ 0: Disables DW_apb_i2c (TX and RX FIFOs are held in an erased state)

■ 1: Enables DW_apb_i2c

Software can disable DW_apb_i2c while it is active. However, it is important
that care be taken to ensure that DW_apb_i2c is disabled properly. A
recommended procedure is described in “Disabling DW_apb_i2c” on page 62.
When DW_apb_i2c is disabled, the following occurs:

■ The TX FIFO and RX FIFO get flushed.

■ Status bits in the IC_INTR_STAT register are still active until DW_apb_i2c
goes into IDLE state.

If the module is transmitting, it stops as well as deletes the contents of the
transmit buffer after the current transfer is complete. If the module is receiving,
the DW_apb_i2c stops the current transfer at the end of the current byte and
does not acknowledge the transfer.
In systems with asynchronous pclk and ic_clk when IC_CLK_TYPE
parameter set to asynchronous (1), there is a two ic_clk delay when enabling
or disabling the DW_apb_i2c.
For a detailed description on how to disable DW_apb_i2c, refer to “Disabling
DW_apb_i2c” on page 62.
Reset value: 0x0

Table 6-31 IC_ENABLE Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 201SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.29 IC_STATUS

■ Name: I2C Status Register

■ Size: 32 bits

■ Address Offset: 0x70

■ Read/Write Access: Read

This is a read-only register used to indicate the current transfer status and FIFO status. The status register
may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register:

■ Bits 1 and 2 are set to 1

■ Bits 3 to 10 are set to 0

When the master or slave state machines goes to idle and ic_en=0:

■ Bits 5 and 6 are set to 0

Table 6-32 IC_STATUS Register Fields

Bits Name R/W Description

31:19 Reserved N/A Reserved

20 SMBUS_ALERT_STATUS R This bit indicates whether the status of the input signal is
ic_smbus_alert_in_n. This signal is asserted when the SMBus Alert
signal is asserted by the SMBus Device.
Dependencies: Enabled only when
IC_SMBUS_SUSPEND_ALERT=1 is set to 1.
Reset Value: 0x0

4

Reserved
SMBUS_ALERT_STATUS

SMBUS_SUSPEND_STATUS
SMBUS_SLAVE_ADDR_RESOLVED

SMBUS_SLAVE_ADDR_VALID
SMBUS_QUICK_CMD_BIT

Reserved
SDA_STUCK_NOT_RECOVERED

SLV_HOLD_RX_FIFO_FULL
SLV_HOLD_TX_FIFO_EMPTY

MST_HOLD_RX_FIFO_FULL
MST_HOLD_TX_FIFO_EMPTY

SLV_ACTIVITY
MST_ACTIVITY

RFF
RFNE

TFE
TFNF

ACTIVITY

03 2 16 531:19 9 8 720 19 18 17 16 101115:12

https://solvnet.synopsys.com
www.designware.com

202 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

19 SMBUS_SUSPEND_STATUS R This bit indicates whether the status of the input signal is
ic_smbus_sus_in_n. This signal is asserted when the SMBus
Suspend signal is asserted by the SMBus Host.
Dependencies: Enabled only when
IC_SMBUS_SUSPEND_ALERT=1 is set to 1.
Reset Value: 0x0

18 SMBUS_SLAVE_ADDR_RESO
LVED

R This bit indicates whether the SMBus Slave address (ic_sar[6:0]) is
Resolved by ARP Master.
Dependencies: Enabled only when IC_SMBUS_ARP=1 is set to 1.
Reset Value: 0x0

17 SMBUS_SLAVE_ADDR_VALID R This bit indicates whether the SMBus Slave address (ic_sar[6:0]) is
valid or not.
Dependencies: Enabled only when IC_SMBUS_ARP=1 is set to 1.
Reset Value: 0x0

16 SMBUS_QUICK_CMD_BIT R This bit indicates the R/W bit of the Quick command received. This
bit will be cleared after the user has read this bit.
Dependencies: Enabled only when IC_SMBUS=1 is set to 1.
Reset Value: 0x0

15:12 Reserved N/A Reserved

11 SDA_STUCK_NOT_RECOVER
ED

R This bit indicates that an SDA stuck at low is not recovered after the
recovery mechanism.
This bit is enabled only when IC_BUS_CLEAR_FEATURE = 1.
Reset Value: 0x0

10 SLV_HOLD_RX_FIFO_FULL R This bit indicates the BUS Hold in Slave mode due to the Rx FIFO
being Full and an additional byte being received (this kind of Bus
hold is applicable if IC_RX_FULL_HLD_BUS_EN is set to 1).
Reset value: 0x0
Dependencies: This Register bit value is applicable only when
IC_STAT_FOR_CLK_STRETCH=1.

9 SLV_HOLD_TX_FIFO_EMPTY R This bit indicates the BUS Hold in Slave mode for the Read request
when the Tx FIFO is empty. The Bus is in hold until the Tx FIFO has
data to Transmit for the read request.
Reset value: 0x0
Dependencies: This Register bit value is applicable only when
IC_STAT_FOR_CLK_STRETCH=1.

Table 6-32 IC_STATUS Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 203SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

8 MST_HOLD_RX_FIFO_FULL R This bit indicates the BUS Hold in Master mode due to Rx FIFO is
Full and additional byte has been received (This kind of Bus hold is
applicable if IC_RX_FULL_HLD_BUS_EN is set to 1).
Reset value: 0x0
Dependencies: This Register bit value is applicable only when
IC_STAT_FOR_CLK_STRETCH=1

7 MST_HOLD_TX_FIFO_EMPTY If the IC_EMPTYFIFO_HOLD_MASTER_EN parameter is set to 1,
the DW_apb_i2c master stalls the write transfer when Tx FIFO is
empty, and the the last byte does not have the Stop bit set.
This bit indicates the BUS hold when the master holds the bus
because of the Tx FIFO being empty, and the the previous
transferred command does not have the Stop bit set. (This kind of
Bus hold is applicable if IC_EMPTYFIFO_HOLD_MASTER_EN is
set to 1).
Reset value: 0x0
Dependencies: This Register bit value is applicable only when
IC_STAT_FOR_CLK_STRETCH=1

6 SLV_ACTIVITY R Slave FSM Activity Status. When the Slave Finite State Machine
(FSM) is not in the IDLE state, this bit is set.

■ 0: Slave FSM is in IDLE state so the Slave part of DW_apb_i2c
is not Active

■ 1: Slave FSM is not in IDLE state so the Slave part of
DW_apb_i2c is Active

Reset value: 0x0

5 MST_ACTIVITY R Master FSM Activity Status. When the Master Finite State Machine
(FSM) is not in the IDLE state, this bit is set.

■ 0: Master FSM is in IDLE state so the Master part of
DW_apb_i2c is not Active

■ 1: Master FSM is not in IDLE state so the Master part of
DW_apb_i2c is Active

NOTE: IC_STATUS[0]—that is, ACTIVITY bit—is the OR of
SLV_ACTIVITY and MST_ACTIVITY bits.
Reset value: 0x0

Table 6-32 IC_STATUS Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

204 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

4 RFF R Receive FIFO Completely Full. When the receive FIFO is
completely full, this bit is set. When the receive FIFO contains one
or more empty location, this bit is cleared.

■ 0: Receive FIFO is not full

■ 1: Receive FIFO is full

Reset value: 0x0

3 RFNE R Receive FIFO Not Empty. This bit is set when the receive FIFO
contains one or more entries; it is cleared when the receive FIFO is
empty.

■ 0: Receive FIFO is empty

■ 1: Receive FIFO is not empty

Reset value: 0x0

2 TFE R Transmit FIFO Completely Empty. When the transmit FIFO is
completely empty, this bit is set. When it contains one or more valid
entries, this bit is cleared. This bit field does not request an
interrupt.

■ 0: Transmit FIFO is not empty

■ 1: Transmit FIFO is empty

Reset value: 0x1

1 TFNF R Transmit FIFO Not Full. Set when the transmit FIFO contains one or
more empty locations, and is cleared when the FIFO is full.

■ 0: Transmit FIFO is full

■ 1: Transmit FIFO is not full

Reset value: 0x1

0 ACTIVITY R I2C Activity Status.
Reset value: 0x0

Table 6-32 IC_STATUS Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 205SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.30 IC_TXFLR

■ Name: I2C Transmit FIFO Level Register

■ Size: TX_ABW + 1

■ Address Offset: 0x74

■ Read/Write Access: Read

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared whenever:

■ The I2C is disabled

■ There is a transmit abort—that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register

■ The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is taken
from the transmit FIFO.

Table 6-33 IC_TXFLR Register Fields

Bits Name R/W Description

31:TX_ABW+1 Reserved N/A Reserved

TX_ABW:0 TXFLR R Transmit FIFO Level. Contains the number of valid data entries in the
transmit FIFO.
Reset value: 0x0

31:TX_ABW+1

Reserved
TXFLR

TX_ABW:0

https://solvnet.synopsys.com
www.designware.com

206 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.31 IC_RXFLR

■ Name: I2C Receive FIFO Level Register

■ Size: RX_ABW + 1

■ Address Offset: 0x78

■ Read/Write Access: Read

This register contains the number of valid data entries in the receive FIFO buffer. It is cleared whenever:

■ The I2C is disabled

■ Whenever there is a transmit abort caused by any of the events tracked in IC_TX_ABRT_SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is taken
from the receive FIFO.

Table 6-34 IC_RXFLR Register Fields

Bits Name R/W Description

31:RX_ABW+1 Reserved N/A Reserved

RX_ABW:0 RXFLR R Receive FIFO Level. Contains the number of valid data entries in the
receive FIFO.
Reset value: 0x0

31:RX_ABW+1

Reserved
RXFLR

RX_ABW:0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 207SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.32 IC_SDA_HOLD

■ Name: I2C SDA Hold Time Length Register

■ Size: 24 bits

■ Address Offset: 0x7C

■ Read/Write Access: Read/Write

The bits [15:0] of this register are used to control the hold time of SDA during transmit in both slave and
master mode (after SCL goes from HIGH to LOW).

The bits [23:16] of this register rare used to extend the SDA transition (if any) whenever SCL is HIGH in the
receiver in either master or slave mode.

Writes to this register succeed only when IC_ENABLE[0]=0.

The values in this register are in units of ic_clk period. The value programmed in IC_SDA_TX_HOLD must
be greater than the minimum hold time in each mode —one cycle in master mode, seven cycles in slave
mode —for the value to be implemented.

The programmed SDA hold time during transmit (IC_SDA_TX_HOLD) cannot exceed at any time the
duration of the low part of scl. Therefore the programmed value cannot be larger than N_SCL_LOW-2,
where N_SCL_LOW is the duration of the low part of the scl period measured in ic_clk cycles.

Table 6-35 IC_SDA_HOLD Register Fields

Bits Name R/W Description

31:24 Reserved N/A Reserved

23:16 IC_SDA_RX_HOLD R/W Sets the required SDA hold time in units of ic_clk period, when
DW_apb_i2c acts as a reciever.
Reset value: IC_DEFAULT_SDA_HOLD

15:0 IC_SDA_TX_HOLD R/W Sets the required SDA hold time in units of ic_clk period, when
DW_apb_i2c acts as a transmitter.
Reset value: IC_DEFAULT_SDA_HOLD

31:24

Reserved
IC_SDA_RX_HOLD
IC_SDA_TX_HOLD

23:16 15:0

https://solvnet.synopsys.com
www.designware.com

208 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.33 IC_TX_ABRT_SOURCE

■ Name: I2C Transmit Abort Source Register

■ Size: 32 bits

■ Address Offset: 0x80

■ Read/Write Access: Read

This register has 32 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared
whenever the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of
the ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5]=1), the SPECIAL
bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]).

Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as
other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear
this bit, Bit 9 clears for one cycle and is then re-asserted.

Table 6-36 IC_TX_ABRT_SOURCE Register Fields

Bits Name R/W Description
Role of
DW_apb_i2c

31:23 TX_FLUSH_CNT R This field indicates the number of Tx FIFO data
commands that are flushed due to TX_ABRT
interrupt. It is cleared whenever I2C is
disabled.
Reset value: 0x0

Master-Transmitter
or Slave-Transmitter

22:21 Reserved R These bits are reserved.

31:23

TX_FLUSH_CNT
Reserved

ABRT_DEVICE_WRITE
ABRT_DEVICE_SLVADDR_NOACK

ABRT_DEVICE_NOACK
ABRT_SDA_STUCK_AT_LOW

ABRT_USER_ABRT
ABRT_SLVRD_INTX

ABRT_SLV_ARBLOST
ABRT_SLVFLUSH_TXFIFO

ARB_LOST
ABRT_MASTER_DIS

ABRT_10B_RD_NORSTRT
ABRT_SBYTE_NORSTRT

ABRT_HS_NORSTRT
ABRT_SBYTE_ACKDET

ABRT_HS_ACKDET
ABRT_GCALL_READ

ABRT_GCALL_NOACK
ABRT_TXDATA_NOACK

ABRT_10ADDR2_NOACK
ABRT_10ADDR1_NOACK
ABRT_7B_ADDR_NOACK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 022:21 1617181920

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 209SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

20 ABRT_DEVICE_WRITE R This is a master-mode-only bit. Master is
initiating the DEVICE_ID transfer and the Tx-
FIFO consists of write commands.
Reset Value: 0x0

Master

19 ABRT_DEVICE_SLVADDR_
NOACK

R This is a master-mode-only bit. Master is
initiating the DEVICE_ID transfer and the slave
address sent was not acknowledged by any
slave.
Reset value: 0x0

Master

18 ABRT_DEVICE_NOACK R This is a master-mode-only bit. Master initiates
the DEVICE_ID transfer and the device ID sent
is not acknowledged by any slave.
Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master

17 ABRT_SDA_STUCK_AT_LO
W

R This is a master-mode-only bit. Master detects
the SDA is Stuck at low for the
IC_SDA_STUCK_AT_LOW_TIMEOUT value
of ic_clks.
Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master

16 ABRT_USER_ABRT R This is a master-mode-only bit. Master has
detected the transfer abort (IC_ENABLE[1]).
Reset value: 0x0

Master-Transmitter

15 ABRT_SLVRD_INTX R 1: When the processor side responds to a
slave mode request for data to be transmitted
to a remote master and user writes a 1 in CMD
(bit 8) of IC_DATA_CMD register.
Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Slave-Transmitter

Table 6-36 IC_TX_ABRT_SOURCE Register Fields (Continued)

Bits Name R/W Description
Role of
DW_apb_i2c

https://solvnet.synopsys.com
www.designware.com

210 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

14 ABRT_SLV_ARBLOST R ■ 1: Slave lost the bus while transmitting data
to a remote master.
IC_TX_ABRT_SOURCE[12] is set at the
same time.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
NOTE: Even though the slave never “owns” the
bus, something could go wrong on the bus.
This is a fail safe check. For instance, during a
data transmission at the low-to-high transition
of SCL, if what is on the data bus is not what is
supposed to be transmitted, then DW_apb_i2c
no longer own the bus.
Dependency:
Reset value: 0x0

Slave-Transmitter

13 ABRT_SLVFLUSH_TXFIFO R ■ 1: Slave has received a read command and
some data exists in the TX FIFO so the
slave issues a TX_ABRT interrupt to flush
old data in TX FIFO.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Slave-Transmitter

12 ARB_LOST R ■ 1: Master has lost arbitration, or if
IC_TX_ABRT_SOURCE[14] is also set,
then the slave transmitter has lost
arbitration.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter
or Slave-Transmitter

11 ABRT_MASTER_DIS R ■ 1: User tries to initiate a Master operation
with the Master mode disabled.

Reset value: 0x0

Master-Transmitter
or Master-Receiver

Table 6-36 IC_TX_ABRT_SOURCE Register Fields (Continued)

Bits Name R/W Description
Role of
DW_apb_i2c

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 211SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

10 ABRT_10B_RD_NORSTRT R ■ 1: The restart is disabled
(IC_RESTART_EN bit (IC_CON[5]) = 0)
and the master sends a read command in
10-bit addressing mode.

Dependencies: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1).
Reset value: 0x0

Master-Receiver

9 ABRT_SBYTE_NORSTRT R To clear Bit 9, the source of the
ABRT_SBYTE_NORSTRT must be fixed first;
restart must be enabled (IC_CON[5]=1), the
SPECIAL bit must be cleared (IC_TAR[11]), or
the GC_OR_START bit must be cleared
(IC_TAR[10]). Once the source of the
ABRT_SBYTE_NORSTRT is fixed, then this
bit can be cleared in the same manner as
other bits in this register. If the source of the
ABRT_SBYTE_NORSTRT is not fixed before
attempting to clear this bit, bit 9 clears for one
cycle and then gets re-asserted.
1: The restart is disabled (IC_RESTART_EN
bit (IC_CON[5]) = 0) and the user is trying to
send a START Byte.
Reset value: 0x0

Master

8 ABRT_HS_NORSTRT R ■ 1: The restart is disabled
(IC_RESTART_EN bit (IC_CON[5]) = 0)
and the user is trying to use the master to
transfer data in High Speed mode.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter
or Master-Receiver

7 ABRT_SBYTE_ACKDET R ■ 1: Master has sent a START Byte and the
START Byte was acknowledged (wrong
behavior).

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master

Table 6-36 IC_TX_ABRT_SOURCE Register Fields (Continued)

Bits Name R/W Description
Role of
DW_apb_i2c

https://solvnet.synopsys.com
www.designware.com

212 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6 ABRT_HS_ACKDET R ■ 1: Master is in High Speed mode and the
High Speed Master code was
acknowledged (wrong behavior).

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master

5 ABRT_GCALL_READ R ■ 1: DW_apb_i2c in master mode sent a
General Call but the user programmed the
byte following the General Call to be a read
from the bus (IC_DATA_CMD[9] is set to 1).

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter

4 ABRT_GCALL_NOACK R ■ 1: DW_apb_i2c in master mode sent a
General Call and no slave on the bus
acknowledged the General Call.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter

3 ABRT_TXDATA_NOACK R ■ 1: This is a master-mode only bit. Master
has received an acknowledgement for the
address, but when it sent data byte(s)
following the address, it did not receive an
acknowledge from the remote slave(s).

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter

2 ABRT_10ADDR2_NOACK R ■ 1: Master is in 10-bit address mode and the
second address byte of the 10-bit address
was not acknowledged by any slave.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter
or Master-Receiver

Table 6-36 IC_TX_ABRT_SOURCE Register Fields (Continued)

Bits Name R/W Description
Role of
DW_apb_i2c

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 213SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

1 ABRT_10ADDR1_NOACK R ■ 1: Master is in 10-bit address mode and the
first 10-bit address byte was not
acknowledged by any slave.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter
or Master-Receiver

0 ABRT_7B_ADDR_NOACK R ■ 1: Master is in 7-bit addressing mode and
the address sent was not acknowledged by
any slave.

Dependency: This field is not applicable in
Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1)
Reset value: 0x0

Master-Transmitter
or Master-Receiver

Table 6-36 IC_TX_ABRT_SOURCE Register Fields (Continued)

Bits Name R/W Description
Role of
DW_apb_i2c

https://solvnet.synopsys.com
www.designware.com

214 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.34 IC_SLV_DATA_NACK_ONLY

■ Name: Generate Slave Data NACK Register

■ Size: 1 bit

■ Address Offset: 0x84

■ Read/Write Access: Read/Write

■ Dependency: This Register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE=1).

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a
slave-receiver. This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1. When
this parameter disabled, this register does not exist and writing to the register’s address has no effect.

A write can occur on this register if both of the following conditions are met:

■ DW_apb_i2c is disabled (IC_ENABLE[0] = 0)

■ Slave part is inactive (IC_STATUS[6] = 0)

NoteNoteNoteNote The IC_STATUS[6] is a register read-back location for the internal slv_activity signal; the user
should poll this before writing the ic_slv_data_nack_only bit.

Table 6-37 IC_SLV_DATA_NACK_ONLY Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 NACK R/W Generate NACK. This NACK generation only occurs when DW_apb_i2c is a slave-
receiver. If this register is set to a value of 1, it can only generate a NACK after a
data byte is received; hence, the data transfer is aborted and the data received is
not pushed to the receive buffer.
When the register is set to a value of 0, it generates NACK/ACK, depending on
normal criteria.

■ 1 = generate NACK after data byte received

■ 0 = generate NACK/ACK normally

Reset value: 0x0

Reserved
NACK

031:1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 215SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.35 IC_DMA_CR

■ Name: DMA Control Register

■ Size: 2 bits

■ Address Offset: 0x88

■ Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA Controller interface signals
(IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist
and writing to the register’s address has no effect and reading from this register address will return zero.
The register is used to enable the DMA Controller interface operation. There is a separate bit for transmit
and receive. This can be programmed regardless of the state of IC_ENABLE.

Table 6-38 IC_DMA_CR Register Fields

Bits Name R/W Description

31:2 Reserved N/A Reserved

1 TDMAE R/W Transmit DMA Enable. This bit enables/disables the transmit FIFO DMA channel.

■ 0 = Transmit DMA disabled

■ 1 = Transmit DMA enabled

Reset value: 0x0

0 RDMAE R/W Receive DMA Enable. This bit enables/disables the receive FIFO DMA channel.

■ 0 = Receive DMA disabled

■ 1 = Receive DMA enabled

Reset value: 0x0

1
Reserved

TDMAE
RDMAE

031:2

Reserved
DMATDL

https://solvnet.synopsys.com
www.designware.com

216 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.36 IC_DMA_TDLR

■ Name: DMA Transmit Data Level Register

■ Size: TX_ABW–1:0

■ Address Offset: 0x8c

■ Read/Write Access: Read/Write

This register is only valid when the DW_apb_i2c is configured with a set of DMA interface signals
(IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist;
writing to its address has no effect; reading from its address returns zero.

Table 6-39 IC_DMA_TDLR Register Fields

Bits Name R/W Description

31:TX_ABW Reserved N/A Reserved

TX_ABW–1:0 DMATDL R/W Transmit Data Level. This bit field controls the level at which a DMA
request is made by the transmit logic. It is equal to the watermark level;
that is, the dma_tx_req signal is generated when the number of valid
data entries in the transmit FIFO is equal to or below this field value,
and TDMAE = 1.
Reset value: 0x0

TX_ABW-1:031:TX_ABW+1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 217SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.37 IC_DMA_RDLR

■ Name: I2C Receive Data Level Register

■ Size: RX_ABW–1:0

■ Address Offset: 0x90

■ Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA interface signals
(IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not exist;
writing to its address has no effect; reading from its address returns zero.

Table 6-40 IC_DMA_RDLR Register Fields

Bits Name R/W Description

31:RX_ABW Reserved N/A Reserved

RX_ABW–1:0 DMARDL R/W Receive Data Level. This bit field controls the level at which a DMA request
is made by the receive logic. The watermark level = DMARDL+1; that is,
dma_rx_req is generated when the number of valid data entries in the
receive FIFO is equal to or more than this field value + 1, and RDMAE = 1.
For instance, when DMARDL is 0, then dma_rx_req is asserted when 1 or
more data entries are present in the receive FIFO.
Reset value: 0x0

Reserved
DMARDL

RX_ABW-1:031:RX_ABW+1

https://solvnet.synopsys.com
www.designware.com

218 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.38 IC_SDA_SETUP

■ Name: I2C SDA Setup Register

■ Size: 8 bits

■ Address Offset: 0x94

■ Read/Write Access: Read/Write

■ Dependency: This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE=1).

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced in
the rising edge of SCL—relative to SDA changing—by holding SCL low when DW_apb_i2c services a read
request while operating as a slave-transmitter. The relevant I2C requirement is tSU:DAT (note 4) as detailed
in the I2C Bus Specification. This register must be programmed with a value equal to or greater than 2.

Writes to this register succeed only when IC_ENABLE[0] = 0.

NoteNoteNoteNote The length of setup time is calculated using [(IC_SDA_SETUP - 1) * (ic_clk_period)], so if the
user requires 10 ic_clk periods of setup time, they should program a value of 11.
The IC_SDA_SETUP register is only used by the DW_apb_i2c when operating as a slave
transmitter.

Table 6-41 IC_SDA_SETUP Register Fields

Bits Name R/W Description

31:8 Reserved N/A Reserved

7:0 SDA_SETUP R/W SDA Setup. It is recommended that if the required delay is 1000ns, then for an
ic_clk frequency of 10 MHz, IC_SDA_SETUP should be programmed to a
value of 11. IC_SDA_SETUP must be programmed with a minimum value of 2.
Default Reset value: 0x64, but can be hardcoded by setting the
IC_DEFAULT_SDA_SETUP configuration parameter.

SDA_SETUP

7:031:8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 219SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.39 IC_ACK_GENERAL_CALL

■ Name: I2C ACK General Call Register

■ Size: 1 bit

■ Address Offset: 0x98

■ Read/Write Access: Read/Write

■ Dependency: This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE=1).

The register controls whether DW_apb_i2c responds with an ACK or NACK when it receives an I2C
General Call address. This register is applicable only when the DW_apb_i2c is in the slave mode.

Table 6-42 IC_ACK_GENERAL_CALL Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 ACK_GEN_CALL R/W ACK General Call. When set to 1, DW_apb_i2c responds with a ACK (by
asserting ic_data_oe) when it receives a General Call. When set to 0, the
DW_apb_i2c does not generate General Call interrupts.
Default Reset value: 0x1, but can be hardcoded by setting the
IC_DEFAULT_ACK_GENERAL_CALL configuration parameter.

Reserved
ACK_GEN_CALL

031:1

https://solvnet.synopsys.com
www.designware.com

220 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.40 IC_ENABLE_STATUS

■ Name: I2C Enable Status Register

■ Size: 3 bits

■ Address Offset: 0x9C

■ Read/Write Access: Read

The register is used to report the DW_apb_i2c hardware status when IC_ENABLE[0] is set from 1 to 0; that
is, when DW_apb_i2c is disabled.

If IC_ENABLE[0] has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE[0] has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as ‘0’.

NoteNoteNoteNote When IC_ENABLE[0] has been set to 0, a delay occurs for bit 0 to be read as 0 because
disabling the DW_apb_i2c depends on I2C bus activities.

Table 6-43 IC_ENABLE_STATUS Register Fields

Bits Name R/W Description

31:3 Reserved N/A Reserved

2 SLV_RX_DATA_LOST R Slave Received Data Lost. This bit indicates if a Slave-Receiver
operation has been aborted with at least one data byte received
from an I2C transfer due to setting IC_ENABLE[0] from 1 to 0.
When read as 1, DW_apb_i2c is deemed to have been actively
engaged in an aborted I2C transfer (with matching address) and
the data phase of the I2C transfer has been entered, even though a
data byte has been responded with a NACK.
NOTE: If the remote I2C master terminates the transfer with a
STOP condition before the DW_apb_i2c has a chance to NACK a
transfer, and IC_ENABLE[0] has been set to 0, then this bit is also
set to 1.
When read as 0, DW_apb_i2c is deemed to have been disabled
without being actively involved in the data phase of a Slave-
Receiver transfer.
NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read
as 0.
Reset value: 0x0

Reserved
SLV_RX_DATA_LOST

SLV_DISABLED_WHILE_BUSY
IC_EN

2 1 031:3

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 221SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

1 SLV_DISABLED_WHILE_BUSY R Slave Disabled While Busy (Transmit, Receive). This bit indicates if
a potential or active Slave operation has been aborted due to
setting bit 0 of the IC_ENABLE register from 1 to 0. This bit is set
when the CPU writes a 0 to bit 0 of IC_ENABLE while: (a)
DW_apb_i2c is receiving the address byte of the Slave-Transmitter
operation from a remote master; OR, (b) address and data bytes of
the Slave-Receiver operation from a remote master.
When read as 1, DW_apb_i2c is deemed to have forced a NACK
during any part of an I2C transfer, irrespective of whether the I2C
address matches the slave address set in DW_apb_i2c (IC_SAR
register) OR if the transfer is completed before bit 0 of IC_ENABLE
is set to 0, but has not taken effect.
NOTE: If the remote I2C master terminates the transfer with a
STOP condition before the DW_apb_i2c has a chance to NACK a
transfer, and bit 0 of IC_ENABLE has been set to 0, then this bit
will also be set to 1.
When read as 0, DW_apb_i2c is deemed to have been disabled
when there is master activity, or when the I2C bus is idle.
NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read
as 0.
Reset value: 0x0

0 IC_EN R ic_en Status. This bit always reflects the value driven on the output
port ic_en.

■ When read as 1, DW_apb_i2c is deemed to be in an enabled
state.

■ When read as 0, DW_apb_i2c is deemed completely inactive.

NOTE: The CPU can safely read this bit anytime. When this bit is
read as 0, the CPU can safely read SLV_RX_DATA_LOST (bit 2)
and SLV_DISABLED_WHILE_BUSY (bit 1).
Reset value: 0x0

Table 6-43 IC_ENABLE_STATUS Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

222 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.41 IC_FS_SPKLEN

■ Name: I2C SS and FS Spike Suppression Limit Register

■ Size: 8 bits

■ Address Offset: 0xA0

■ Read/Write Access: Read/Write

■ Dependency: This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE=1).

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is filtered out
by the spike suppression logic when the component is operating in standard mode, fast mode, or fast mode
plus. The relevant I2C requirement is tSP (Table 4) as detailed in the I2C Bus Specification. This register must
be programmed with a minimum value of 1.

Table 6-44 IC_FS_SPKLEN Register Fields

Bits Name R/W Description

31:8 Reserved

7:0 IC_FS_SPKLEN R/W This register must be set before any I2C bus transaction can take place to
ensure stable operation. This register sets the duration, measured in ic_clk
cycles, of the longest spike in the SCL or SDA lines that are filtered out by
the spike suppression logic; for more information, refer to “Spike
Suppression” on page 64.
This register can be written only when the I2C interface is disabled, which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have
no effect.
The minimum valid value is 1; hardware prevents values less than this
being written, and if attempted, results in 1 being set.
Reset value: IC_DEFAULT_FS_SPKLEN configuration parameter

Reserved
IC_FS_SPKLEN

31:8 7:0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 223SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.42 IC_HS_SPKLEN

■ Name: I2C HS Spike Suppression Limit Register

■ Size: 8 bits

■ Address Offset: 0xA4

■ Read/Write Access: Read/Write

■ Dependency: This register is not applicable in Ultra-Fast speed mode (IC_ULTRA_FAST_MODE=1).

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is filtered out
by the spike suppression logic when the component is operating in HS mode. The relevant I2C requirement
is tSP (Table 6) as detailed in the I2C Bus Specification. This register must be programmed with a minimum
value of 1 and is implemented only if the component is configured to support HS mode; that is, if the
IC_MAX_SPEED_MODE parameter is set to 3.

Table 6-45 IC_HS_SPKLEN Register Fields

Bits Name R/W Description

31:8 Reserved

7:0 IC_HS_SPKLEN R/W This register must be set before any I2C bus transaction can take place to
ensure stable operation. This register sets the duration, measured in ic_clk
cycles, of the longest spike in the SCL or SDA lines that are filtered out by
the spike suppression logic; for more information, refer to “Spike
Suppression” on page 64.
This register can be written only when the I2C interface is disabled, which
corresponds to IC_ENABLE[0] being set to 0. Writes at other times have
no effect.
The minimum valid value is 1; hardware prevents values less than this
being written, and if attempted, results in 1 being set.
This register is implemented only if the component is configured to support
HS mode; that is, if the IC_MAX_SPEED_MODE parameter is set to 3.
Reset value: IC_DEFAULT_HS_SPKLEN configuration parameter

Reserved
IC_HS_SPKLEN

31:8 7:0

https://solvnet.synopsys.com
www.designware.com

224 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.43 IC_CLR_RESTART_DET

■ Name: Clear RESTART_DET Interrupt Register

■ Size: 1 bit

■ Address Offset: 0xA8

■ Read/Write Access: Read

.

Table 6-46 IC_CLR_RESTART_DET Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_RESTART_DET R Read this register to clear the RESTART_DET interrupt (bit 12) of
the IC_RAW_INTR_STAT register.
Dependencies: This register is present only when
IC_SLV_RESTART_DET_EN = 1.
Reset value: 0x0

Reserved
CLR_RESTART_DE

031:1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 225SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.44 IC_COMP_PARAM_1

■ Name: Component Parameter Register 1

■ Size: 32 bits

■ Address Offset: 0xf4

■ Read/Write Access: Read

Table 6-47 IC_COMP_PARAM_1 Register Fields

Bits Name R/W Description

NoteNoteNoteNote
This is a constant read-only register that contains encoded information about the component's
parameter settings. The reset value depends on coreConsultant parameter(s).

31:24 Reserved N/A Reserved

23:16 TX_BUFFER_DEPTH R The value of this register is derived from the
IC_TX_BUFFER_DEPTH coreConsultant parameter.

■ 0x00 = Reserved

■ 0x01 = 2

■ 0x02 = 3

…

■ 0xFF = 256

15:8 RX_BUFFER_DEPTH R The value of this register is derived from the
IC_RX_BUFFER_DEPTH coreConsultant parameter. For a
description of this parameter, see Table 4-1 on page 105.

■ 0x00 = Reserved

■ 0x01 = 2

■ 0x02 = 3

…

■ 0xFF = 256

Reserved
TX_BUFFER_DEPTH
RX_BUFFER_DEPTH

ADD_ENCODED_PARAMS
HAS_DMA

INTR_IO
HC_COUNT_VALUES
MAX_SPEED_MODE

APB_DATA_WIDTH

31:24 23:16 15:8 7 6 5 4 3:2 1:0

https://solvnet.synopsys.com
www.designware.com

226 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

7 ADD_ENCODED_PARAMS R The value of this register is derived from the
IC_ADD_ENCODED_PARAMS coreConsultant parameter.
For a description of this parameter, see Table 4-1 on page
105. Reading 1 in this bit means that the capability of reading
these encoded parameters via software has been included.
Otherwise, the entire register is 0 regardless of the setting of
any other parameters that are encoded in the bits.

■ 0: False

■ 1: True

6 HAS_DMA R The value of this register is derived from the IC_HAS_DMA
coreConsultant parameter. For a description of this
parameter, see Table 4-1 on page 105.

■ 0: False

■ 1: True

5 INTR_IO R The value of this register is derived from the IC_INTR_IO
coreConsultant parameter. For a description of this
parameter, see Table 4-1 on page 105.

■ 0: Individual

■ 1: Combined

4 HC_COUNT_VALUES R The value of this register is derived from the
IC_HC_COUNT_VALUES coreConsultant parameter. For a
description of this parameter, see Table 4-1 on page 105.

■ 0: False

■ 1: True

3:2 MAX_SPEED_MODE R The value of this register is derived from the
IC_MAX_SPEED_MODE coreConsultant parameter. For a
description of this parameter, see Table 4-1 on page 105.

■ 0x0 = Reserved

■ 0x1 = Standard

■ 0x2 = Fast

■ 0x3 = High

Dependency: This field is not applicable in Ultra-Fast speed
mode (IC_ULTRA_FAST_MODE=1)

1:0 APB_DATA_WIDTH R The value of this register is derived from the
APB_DATA_WIDTH coreConsultant parameter. For a
description of this parameter, see Table 4-1 on page 105.

■ 0x0 = 8 bits

■ 0x1 = 16 bits

■ 0x2 = 32 bits

■ 0x3 = Reserved

Table 6-47 IC_COMP_PARAM_1 Register Fields (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 227SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.45 IC_COMP_VERSION

■ Name: I2C Component Version Register

■ Size: 32 bits

■ Address Offset: 0xf8

■ Read/Write Access: Read

6.3.46 IC_COMP_TYPE

■ Name: I2C Component Type Register

■ Size: 32 bits

■ Address Offset: 0xfc

■ Read/Write Access: Read

.

Table 6-48 IC_COMP_VERSION Register Fields

Bits Name R/W Description

31:0 IC_COMP_VERSION R Specific values for this register are described in the Releases Table
in the AMBA 2 release notes

Table 6-49 IC_COMP_TYPE Register Fields

Bits Name R/W Description

31:0 IC_COMP_TYPE R Designware Component Type number = 0x44_57_01_40. This
assigned unique hex value is constant and is derived from the two
ASCII letters “DW” followed by a 16-bit unsigned number.

31:0

IC_COMP_VERSION

31:0

IC_COMP_TYPE

https://solvnet.synopsys.com
www.designware.com

228 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.47 IC_SCL_STUCK_AT_LOW_TIMEOUT

■ Name: I2C SCL Stuck at Low Timeout

■ Size: 32 bits

■ Address Offset: 0xAC

■ Read/Write Access: Read/Write

■ Dependencies: This register is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE = 1).

This register is used to store the duration, measured in ic_clk cycles, used to generate an Interrupt
(SCL_STUCK_AT_LOW) if SCL is held low for the IC_SCL_STUCK_LOW_TIMEOUT duration.

.

6.3.48 IC_SDA_STUCK_AT_LOW_TIMEOUT

■ Name: I2C SDA Stuck at Low Timeout

■ Size: 32 bits

■ Address Offset: 0xB0

■ Read/Write Access: Read/Write

■ Dependencies: This register is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1).

This register is used to store the duration, measured in ic_clk cycles, used to recover the Data (SDA) line
through sending SCL pulses if SDA is held low for the mentioned duration.

Table 6-50 IC_SCL_STUCK_AT_LOW_TIMEOUT Register Field

Bits Name R/W Description

31:0 IC_SCL_STUCK_LOW_TIME
OUT

R/W DW_apb_i2c generates the interrupt to indicate SCL stuck at low if it
detects the SCL stuck at low for the
IC_SCL_STUCK_LOW_TIMEOUT in units of ic_clk period.
Reset Value: IC_SCL_STUCK_TIMEOUT_DEFAULT

31:0

IC_SCL_STUCK_LOW_TIMEOUT

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 229SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

.

6.3.49 IC_CLR_SCL_STUCK_DET

■ Name: Clear SCL Stuck at Low Detect Interrupt Register

■ Size: 1 bit

■ Address Offset: 0xB4

■ Read/Write Access: Read

■ Dependencies: This register is not applicable in Ultra-Fast speed mode (
IC_ULTRA_FAST_MODE=1).

.

Table 6-51 IC_SDA_STUCK_AT_LOW_TIMEOUT Register Field

Bits Name R/W Description

31:0 IC_SDA_STUCK_LOW_TIME
OUT

R/W DW_apb_i2c initiates the recovery of SDA line through enabling the
SDA_STUCK_RECOVERY_EN (IC_ENABLE[3]) register bit, if it
detects the SDA stuck at low for the
IC_SDA_STUCK_LOW_TIMEOUT in units of ic_clk period.
Reset Value: IC_SDA_STUCK_TIMEOUT_DEFAULT

Table 6-52 IC_CLR_SCL_STUCK_DET Register Fields

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 CLR_SCL_STUCK R Read this register to clear the SCL_STUCK_DET interrupt (bit 14)
of the IC_RAW_INTR_STAT register.
Reset value: 0x0

31:0

IC_SDA_STUCK_LOW_TIMEOUT

31:1

Reserved
CLR_SCL_STUCK

0

https://solvnet.synopsys.com
www.designware.com

230 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.50 IC_DEVICE_ID

■ Name: I2C Device ID

■ Size: 24 bits

■ Address Offset: 0xb8

■ Read/Write Access: Read

■ Dependencies: This register is not applicable in Ultra-Fast speed mode
(IC_ULTRA_FAST_MODE=1).

This register contains the Device-ID of the component, which includes 12 bits of manufacturer name, 9 bits
of part identification and 3 bits of die-version.

.

Table 6-53 IC_DEVICE_ID Register Fields

Bits Name R/W Description

31:24 Reserved NA Reserved

23:0 DEVICE-ID R Contains the Device-ID of the component assigned through the
configuration parameter IC_DEVICE_ID_VALUE
Reset Value: IC_DEVICE_ID_VALUE

31:24

Reserved
DEVICE-ID

23:0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 231SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.51 IC_UFM_SCL_HCNT

■ Name: Ultra-Fast mode I2C Clock High Count Register

■ Size: 16 bits

■ Address Offset: 0x14

■ Read/Write Access: Read/Write

■ Dependencies: This is register is present only if parameter IC_ULTRA_FAST_MODE is set to 1.

.

1Read-only if IC_HC_COUNT_VALUES = 1.

Table 6-54 Ultra-Fast Mode SCL High Counter Register Field Description

Bits Name R/W Description

31:16 Reserved NA Reserved

15:0 IC_UFM_SCL_HCNT R/W1 This register must be set before any I2C bus transaction can take
place to ensure proper I/O timing. This register sets the SCL clock
high-period count for Ultra-Fast speed.
This register can be written only when the I2C interface is disabled
which corresponds to IC_ENABLE[0] being set to 0. Writes at other
times have no effect.
For designs with APB_DATA_WIDTH = 8, the order of programming
is important to ensure the correct operation of the DW_apb_i2c.
The lower byte must be programmed first and then the upper byte is
programmed. When the configuration parameter
IC_HC_COUNT_VALUES is set to 1, this register is read only.
Reset value: IC_UFM_SCL_HIGH_COUNT configuration
parameter

31:16

Reserved
IC_UFM_SCL_HCNT

15:0

https://solvnet.synopsys.com
www.designware.com

232 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.52 IC_UFM_SCL_LCNT

■ Name: Ultra-Fast mode I2C Clock Low Count Register

■ Size: 16 bits

■ Address Offset: 0x18

■ Read/Write Access: Read

■ Dependencies: This is register is present only if parameter IC_ULTRA_FAST_MODE is set to 1.

.

1Read-only if IC_HC_COUNT_VALUES = 1.

6.3.53 IC_UFM_SPKLEN

■ Name: I2C Ultra-Fast mode Spike suppression Register

■ Size: 8 bits

■ Address Offset: 0xA0

■ Read/Write Access: Read/Write

■ Dependencies: This is register is present only if parameter IC_ULTRA_FAST_MODE is set to 1.

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is filtered out
by the spike suppression logic when the component is operating in Ultra-Fast mode. The relevant I2C

Table 6-55 Ultra-Fast Mode SCL Low Counter Register Field Description

Bits Name R/W Description

31:16 Reserved NA Reserved

15:0 IC_UFM_SCL_LCNT R/W1 This register must be set before any I2C bus transaction can take
place to ensure proper I/O timing. This register sets the SCL clock
low-period count for Ultra-Fast speed.
This register can be written only when the I2C interface is disabled
which corresponds to IC_ENABLE[0] being set to 0. Writes at other
times have no effect.
For designs with APB_DATA_WIDTH = 8, the order of programming
is important to ensure the correct operation of the DW_apb_i2c.
The lower byte must be programmed and then the upper byte is
programmed. When the configuration parameter
IC_HC_COUNT_VALUES is set to 1, this register is read only.
Reset value: IC_UFM_SCL_LOW_COUNT configuration
parameter

31:16

IC_UFM_SCL_LCNT

15:0

Reserved

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 233SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

requirement is tSP as detailed in the I2C Bus Specification. This register must be programmed with a
minimum value of 1.

.

Table 6-56 UFM Spike Suppression Register

Bits Name R/W Description

31:8 Reserved NA Reserved

7:0 IC_UFM_SPKLEN R/W This register must be set before any I2C bus transaction can occur
to ensure stable operation. This register sets the duration,
measured in ic_clk cycles, of the longest spike in the SCL or SDA
lines that are filtered out by the spike suppression logic.
This register can be written only when the I2C interface is disabled,
which corresponds to IC_ENABLE[0] being set to 0. Writes at other
times have no effect.
The minimum valid value is 1; hardware prevents values less than
this being written, and if attempted, results in 1 being set.
Reset value: IC_DEFAULT_UFM_SPKLEN configuration
parameter.

31:8

Reserved
IC_UFM_SPKLEN

7:0

https://solvnet.synopsys.com
www.designware.com

234 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.54 IC_UFM_TBUF_CNT

■ Name: Ultra-Fast mode TBuf Idle Count Register

■ Size: 16 bits

■ Address Offset: 0x1c

■ Read/Write Access: Read/Write

■ Dependencies: This is register is present only if parameter IC_ULTRA_FAST_MODE is set to 1.

.

1Read-only if IC_HC_COUNT_VALUES = 1.

Table 6-57 Ultra-Fast Mode Tbuf Counter Register Field Description

Bits Name R/W Description

31:16 Reserved NA Reserved

15:0 IC_UFM_TBUF_CNT R/W1 This register must be set before any I2C bus transaction can take
place to ensure proper I/O timing. This register sets the tBuf Idle
time count for Ultra-Fast speed.
This register can be written only when the I2C interface is disabled
which corresponds to IC_ENABLE[0] being set to 0. Writes at other
times have no effect.
For designs with APB_DATA_WIDTH = 8, the order of programming
is important to ensure the correct operation of the DW_apb_i2c.
The lower byte must be programmed first and then the upper byte is
programmed. When the configuration parameter
IC_HC_COUNT_VALUES is set to 1, this register is read only.
NOTE:

■ The DW_apb_i2c will add 9 ic_clks after tBuf time is expired to
generate START on the Bus.

Reset value: IC_UFM_TBUF_CNT_DEFAULT configuration
parameter

31:16

Reserved
IC_UFM_TBUF_CNT

15:0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 235SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.55 IC_SMBUS_CLOCK_LOW_SEXT

■ Name: SMBUS Slave Clock Extend Timeout Register

■ Size: 32 bits

■ Address Offset: 0xBC

■ Read/Write Access: Read/Write

This register contains the Timeout value used to determine the Slave Clock Extend Timeout in one transfer
(from START to STOP). This register can be written only when the DW_apb_i2c is disabled, which
corresponds to IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS is set to 1.

This register is used to store the duration, measured in ic_clk cycles, used to detect the slave clock extend
timeout if slave extends the clock (SCL) for the mentioned duration.

.

6.3.56 IC_SMBUS_CLOCK_LOW_MEXT

■ Name: SMBUS Master extend clock Timeout Register

■ Size: 32 bits

■ Address Offset: 0xC0

■ Read/Write Access: Read/Write

This register contains the Timeout value used to determine the Master Clock Extend Timeout in one byte of
transfer. This register can be written only when the DW_apb_i2c is disabled, which corresponds to
IC_ENABLE[0] being set to 0. This register is present only if configuration parameter IC_SMBUS is set to 1.

This register is used to store the duration, measured in ic_clk cycles, used to detect the Master clock extend
timeout if Master extends the clock (SCL) for the mentioned duration.

Table 6-58 IC_SMBUS_CLOCK_LOW_SEXT Register Field Description

Bits Name R/W Description

31:0 SMBUS_CLK_LOW_SEXT_TI
MEOUT

R/W This field is used to detect the Slave Clock Extend timeout
(tLOW:SEXT) in master mode extended by the slave device in one
message from the initial START to the STOP.
The values in this register are in units of ic_clk period.
Reset Value: IC_SMBUS_CLOCK_LOW_SEXT_DEFAULT

31:0

SMBUS_CLK_LOW_SEXT_TIMEOUT

https://solvnet.synopsys.com
www.designware.com

236 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

.

6.3.57 IC_SMBUS_THIGH_MAX_IDLE_COUNT

■ Name: SMBus Thigh MAX Bus-Idle count Register

■ Size: 16 bits

■ Address Offset: 0xC4

■ Read/Write Access: Read/Write

This register programs the Bus-idle time period used when a master has been dynamically added to the bus
or when a master has generated a clock reset on the bus. This register is used to store the duration,
measured in ic_clk cycles, used to detect the Bus Idle condition if SCL and SDA are held high for the
mentioned duration. This register can be written only when the DW_apb_i2c is disabled, which corresponds
to IC_ENABLE[0] being set to 0. This register is present only if configuration parameter IC_SMBUS is set to
1.

.

Table 6-59 SMBUS Master extend clock Timeout Register Field Description

Bits Name R/W Description

31:0 SMBUS_CLK_LOW_MEXT_TI
MEOUT

R/W This field is used to detect the Master extend SMBus clock (SCL)
timeout defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP
in Master mode.
The values in this register are in units of ic_clk period.
Reset Value: IC_SMBUS_CLOCK_LOW_SEXT_DEFAULT

Table 6-60 SMBus Thigh MAX Bus-Idle count Register Field Descriptions

Bits Name R/W Description

31:16 Reserved NA Reserved

15:0 SMBUS_THIGH_MAX_BUS_I
DLE_CNT

R/W This field is used to set the required Bus-Idle time period used when
a master has been dynamically added to the bus and may not have
detected a state transition on the SMBCLK or SMBDAT lines.
In this case, the master must wait to ensure that a transfer is not
currently in progress.
The values in this register are in units of ic_clk period.
Reset value: IC_SMBUS_RST_IDLE_CNT_DEFAULT

31:0

SMBUS_CLK_LOW_MEXT_TIMEOUT

31:16

Reserved
SMBUS_THIGH_MAX_BUS_IDLE_CNT

15:0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 237SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.58 IC_SMBUS_INTR_STAT

■ Name: I2C SMBUS Interrupt Status Register

■ Size: 32 bits

■ Address Offset: 0xC8

■ Read/Write Access: Read

Each bit in this register has a corresponding mask bit in the IC_SMBUS_INTR_MASK register. These bits are
cleared by writing the matching SMBus interrupt clear register (IC_CLR_SMBUS_INTR) bits. The
unmasked raw versions of these bits are available in the IC_SMBUS_RAW_INTR_STAT register.

.

Table 6-61 I2C SMBUS Interrupt Status Register Field Descriptions

Bits Name R/W Description

31:11 Reserved NA Reserved

10 R_SMBUS_ALERT_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

9 R_SMBUS_SUSPEND_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

8 R_SLV_RX_PEC_NACK R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

7 R_ARP_ASSGN_ADDR_CMD
_DET

R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

6 R_ARP_GET_UDID_CMD_DE
T

R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

31:11

Reserved
R_SMBUS_ALERT_DET

R_SMBUS_SUSPEND_DET
R_SLV_RX_PEC_NACK

R_ARP_ASSGN_ADDR_CMD_DET
R_ARP_GET_UDID_CMD_DET

R_ARP_RST_CMD_DET
R_ARP_PREPARE_CMD_DET
R_HOST_NOTIFY_MST_DET

R_QUICK_CMD_DET
R_MST_CLOCK_EXTND_TIMEOUT
R_SLV_CLOCK_EXTND_TIMEOUT

012345678910

https://solvnet.synopsys.com
www.designware.com

238 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

5 R_ARP_RST_CMD_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

4 R_ARP_PREPARE_CMD_DE
T

R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

3 R_HOST_NOTIFY_MST_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

2 R_QUICK_CMD_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

1 R_MST_CLOCK_EXTND_TIM
EOUT

R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

0 R_SLV_CLOCK_EXTND_TIM
EOUT

R See IC_SMBUS_INTR_RAW_STATUS for a detailed description of
this bit.
Reset value: 0x0

Table 6-61 I2C SMBUS Interrupt Status Register Field Descriptions (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 239SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.59 IC_SMBUS_INTR_MASK

■ Name: I2C Interrupt Mask Register

■ Size: 32 bits

■ Address Offset: 0xcc

■ Read/Write Access: Read/Write

.

Table 6-62 I2C Interrupt Mask Register Field Descriptions

Bits Name R/W Description

31:11 Reserved NA Reserved

10 M_SMBUS_ALERT_DET R/W This bit masks the R_SMBUS_ALERT_DET interrupt bit in the
IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS_SUSPEND_ALERT=1.
Reset Value: 0x1

9 M_SMBUS_SUSPEND_DET R/W This bit masks the R_SMBUS_SUSPEND_DET interrupt bit in the
IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS_SUSPEND_ALERT=1.
Reset Value: 0x1

8 M_SLV_RX_PEC_NACK R/W This bit masks the R_SLV_RX_PEC_NACK interrupt bit in the
IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS_ARP=1.
Reset Value: 0x1

7 M_ARP_ASSGN_ADDR_CMD
_DET

R/W This bit masks the R_ARP_ASSGN_ADDR_CMD_DET interrupt bit
in the IC_SMBUS_INTR_STAT register. This bit is enabled only
when IC_SMBUS_ARP=1.
Reset Value: 0x1

6 M_ARP_GET_UDID_CMD_D
ET

R/W This bit masks the R_ARP_GET_UDID_CMD_DET interrupt bit in
the IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS_ARP=1.
Reset Value: 0x1

31:11

Reserved
M_SMBUS_ALERT_DET

M_SMBUS_SUSPEND_DET
M_SLV_RX_PEC_NACK

M_ARP_ASSGN_ADDR_CMD_DET
M_ARP_GET_UDID_CMD_DET

M_ARP_RST_CMD_DET
M_ARP_PREPARE_CMD_DET
M_HOST_NOTIFY_MST_DET

M_QUICK_CMD_DET
M_MST_CLOCK_EXTND_TIMEOUT
M_SLV_CLOCK_EXTND_TIMEOUT

012345678910

https://solvnet.synopsys.com
www.designware.com

240 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

5 M_ARP_RST_CMD_DET R/W This bit masks the R_ARP_RST_CMD_DET interrupt bit in the
IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS_ARP=1.
Reset Value: 0x1

4 M_ARP_PREPARE_CMD_DE
T

R/W This bit masks the R_ARP_PREPARE_CMD_DET interrupt bit in
the IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS_ARP=1.
Reset Value: 0x1

3 M_HOST_NOTIFY_MST_DET R/W This bit masks the R_HOST_NOTIFY_DET interrupt bit in the
IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS =1.
Reset Value: 0x1

2 M_QUICK_CMD_DET R/W This bit masks the R_QUICK_CMD_DET interrupt bit in the
IC_SMBUS_INTR_STAT register. This bit is enabled only when
IC_SMBUS=1.
Reset Value: 0x1

1 M_MST_CLOCK_EXTND_TIM
EOUT

R/W This bit masks the R_MST_CLOCK_EXTND_TIMEOUT interrupt
bit in the IC_SMBUS_INTR_STAT register. This bit is enabled only
when IC_SMBUS=1.
Reset Value: 0x1

0 M_SLV_CLOCK_EXTND_TIM
EOUT

R/W This bit masks the R_SLV_CLOCK_EXTND_TIMEOUT interrupt bit
in the IC_SMBUS_INTR_STAT register. This bit is enabled only
when IC_SMBUS=1.
Reset Value: 0x1

Table 6-62 I2C Interrupt Mask Register Field Descriptions (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 241SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.60 IC_SMBUS_INTR_RAW_STATUS

■ Name: I2C SMBUS Raw Interrupt Status Register

■ Size: 32 bits

■ Address Offset: 0xd0

■ Read/Write Access: Read only

.

Table 6-63 I2C SMBUS Raw Interrupt Status Register Field Descriptions

Bits Name R/W Description

31:11 Reserved NA Reserved

10 SMBUS_ALERT_DET R Indicates whether a SMBALERT (ic_smbalert_in_n) signal is driven
low by the slave.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS_SUSPEND_ALERT is set to 1.
Reset Value: 0x0

9 SMBUS_SUSPEND_DET R Indicates whether a SMBSUS (ic_smbsus_in_n) signal is driven low
by the Host.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS_SUSPEND_ALERT is set to 1.
Reset Value: 0x0

8 SLV_RX_PEC_NACK R Indicates whether a Slave generates a NACK for the PEC Byte of
the ARP command from the slave.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS_ARP is set to 1.
Reset Value: 0x0

7 ARP_ASSGN_ADDR_CMD_D
ET

R Indicates whether an Assign Address ARP command has been
received.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS_ARP is set to 1.
Reset Value: 0x0

31:11
Reserved

SMBUS_ALERT_DET
SMBUS_SUSPEND_DET

SLV_RX_PEC_NACK
ARP_ASSGN_ADDR_CMD_DET

ARP_GET_UDID_CMD_DET
ARP_RST_CMD_DET

ARP_PREPARE_CMD_DET
HOST_NTFY_MST_DET

QUICK_CMD_DET
MST_CLOCK_EXTND_TIMEOUT
SLV_CLOCK_EXTND_TIMEOUT

012345678910

https://solvnet.synopsys.com
www.designware.com

242 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6 ARP_GET_UDID_CMD_DET R Indicates whether a General or directed Get UDID ARP command
has been received.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS_ARP is set to 1.
Reset Value: 0x0

5 ARP_RST_CMD_DET R Indicates whether a General or Directed Reset ARP command has
been received.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS_ARP is set to 1.
Reset Value: 0x0

4 ARP_PREPARE_CMD_DET R Indicates whether a Prepare to ARP command has been received.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS_ARP is set to 1.
Reset Value: 0x0

3 HOST_NTFY_MST_DET R Indicates whether a Host Notify command has been received.
Dependencies: This register bit is valid only if configuration
parameter IC_SMBUS is set to 1.
Reset Value: 0x0

2 QUICK_CMD_DET R Indicates whether a Quick command has been received on the
SMBus interface regardless of whether DW_apb_i2c is operating in
slave or master mode. This bit is enabled only when IC_SMBUS=1
is set to 1.
Reset Value: 0x0

1 MST_CLOCK_EXTND_TIME
OUT

R Indicates whether the Master device transaction (START-to-ACK,
ACK-to-ACK, or ACK-to-STOP) from START to STOP exceeds
IC_SMBUS_CLOCK_LOW_MEXT time in each byte of message.
This bit is enabled only when:

■ IC_SMBUS=1

■ IC_CON[0]=1

■ IC_EMPTYFIFO_HOLD_MASTER_EN=1 or
IC_RX_FULL_HLD_BUS_EN=1

0 SLV_CLOCK_EXTND_TIMEO
UT

R Indicates whether the transaction from Slave (that is, from START to
STOP) exceeds IC_SMBUS_CLOCK_LOW_SEXT time.
This bit is enabled only when

■ IC_SMBUS=1

■ IC_CON[0]=1

Table 6-63 I2C SMBUS Raw Interrupt Status Register Field Descriptions (Continued)

Bits Name R/W Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 243SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.61 IC_CLR_SMBUS_INTR

■ Name: Clear SMBUS Interrupt Register

■ Size: 32 bits

■ Address Offset: 0xD4

■ Read/Write Access: Write only

.

Table 6-64 Clear SMBUS Interrupt Register Field Descriptions

Bits Name R/W Description

31:11 Reserved NA Reserved

10 CLR_SMBUS_ALERT_DET W Write this register to clear the SMBUS_ALERT_DET interrupt (bit
10) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

9 CLR_SMBUS_SUSPEND_DE
T

W Write this register to clear the R_SMBUS_SUSPEND_DET
interrupt (bit 9) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

8 CLR_SLV_RX_PEC_NACK W Write this register to clear the SLV_RX_PEC_NACK interrupt (bit 8)
of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

7 CLR_ARP_ASSGN_ADDR_C
MD_DET

W Write this register to clear the ARP_ASSGN_ADDR_CMD_DET
interrupt (bit 7) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

6 CLR_ARP_GET_UDID_CMD_
DET

W Write this register to clear the ARP_GET_UDID_CMD_DET
interrupt (bit 6) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

5 CLR_ARP_RST_CMD_DET W Write this register to clear the ARP_RST_CMD_DET interrupt (bit
5) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

31:11
Reserved

CLR_SMBUS_ALERT_DET
CLR_SMBUS_SUSPEND_DET

CLR_SLV_RX_PEC_NACK
CLR_ARP_ASSGN_ADDR_CMD_DET

CLR_ARP_GET_UDID_CMD_DET
CLR_ARP_RST_CMD_DET

CLR_ARP_PREPARE_CMD_DET
CLR_HOST_NOTIFY_MST_DET

CLR_QUICK_CMD_DET
CLR_MST_CLOCK_EXTND_TIMEOUT
CLR_SLV_CLOCK_EXTND_TIMEOUT

012345678910

https://solvnet.synopsys.com
www.designware.com

244 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

6.3.62 IC_OPTIONAL_SAR

■ Name: I2C Optional Slave Address Register

■ Size: 7 bits

■ Address Offset: 0xD8

■ Read/Write Access: Read/Write

.

4 CLR_ARP_PREPARE_CMD_
DET

W Write this register to clear the ARP_PREPARE_CMD_DET interrupt
(bit 4) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

3 CLR_HOST_NOTIFY_MST_D
ET

W Write this register to clear the HOST_NOTIFY_MST_DET interrupt
(bit 3) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

2 CLR_QUICK_CMD_DET W Write this register to clear the QUICK_CMD_DET interrupt (bit 2) of
the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

1 CLR_MST_CLOCK_EXTND_
TIMEOUT

W Write this register to clear the MST_CLOCK_EXTND_TIMEOUT
interrupt (bit 1) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

0 CLR_SLV_CLOCK_EXTND_TI
MEOUT

W Write this register to clear the SLV_CLOCK_EXTND_TIMEOUT
interrupt (bit 0) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

Table 6-65 I2C Optional Slave Address Register Field Descriptions

Bits Name R/W Description

15:11 Reserved NA Reserved

6:0 IC_OPTIONAL_SAR R/W Optional Slave address for DW_apb_i2c when operating as a slave
in SMBus Mode.
Dependencies: This register bit is valid only if configuration
parameter IC_OPTIONAL_SAR is set to 1.
Reset Value: IC_OPTIONAL_SAR_DEFAULT

Table 6-64 Clear SMBUS Interrupt Register Field Descriptions (Continued)

Bits Name R/W Description

15:11

Reserved
IC_OPTIONAL_SAR

6:0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 245SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Registers

6.3.63 IC_SMBUS_UDID_LSB

■ Name: SMBUS ARP UDID LSB Register

■ Size: 32 bits

■ Address Offset: 0xDC

■ Read/Write Access: Read/Write

■ Dependencies: This register is present only if IC_SMBUS_ARP =1.

This register can be written only when the DW_apb_i2c is disabled, which corresponds to
IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS_ARP is set to 1.

This register is used to store the LSB 32 bit value of Slave UDID register used in Address Resolution
Protocol of SMBus.

.

0 CLR_SLV_CLOCK_EXTND_TI
MEOUT

W Write this register to clear the SLV_CLOCK_EXTND_TIMEOUT
interrupt (bit 0) of the IC_SMBUS_RAW_INTR_STAT register.
Reset value: 0x0

Table 6-66 SMBUS ARP UDID LSB Register Field Description

Bits Name R/W Description

31:0 IC_SMBUS_ARP_UDID_LSB R/W This field is used to store the LSB 32 bit value of slave unique
device identifier used in Address Resolution Protocol.
Reset Value: IC_SMBUS_UDID_LSB_DEFAULT

Table 6-65 I2C Optional Slave Address Register Field Descriptions (Continued)

Bits Name R/W Description

31:0

IC_SMBUS_ARP_UDID_

https://solvnet.synopsys.com
www.designware.com

246 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Registers DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 247SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Internal Parameter Descriptions

7
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table 7-1 Internal Parameters

Parameter Name Equals To

IC_ADDR_SLICE_LHS 3'b111

blank intentionally left blank

https://solvnet.synopsys.com
www.designware.com

248 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Internal Parameter Descriptions DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 249

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

8
Programming the DW_apb_i2c

The DW_apb_i2c can be programmed via software registers or the DW_apb_i2c low-level software driver.

8.1 Software Registers
For information about programming the software registers in terms of DW_apb_i2c operation, refer to
“Slave Mode Operation” on page 56 and “Master Mode Operation” on page 60. The software registers are
described in more detail in “Registers” on page 153.

8.2 Software Drivers
The family of DesignWare Synthesizable Components includes a Driver Kit for the DW_apb_i2c
component. This low-level Driver Kit allows you to easily program a DW_apb_i2c component and integrate
your code into a larger software system. The Driver Kit provides the following benefits to IP designers:

■ Proven method of access to DW_apb_i2c minimizing usage errors

■ Rapid software development with minimum overhead

■ Detailed knowledge of DW_apb_i2c register bit fields not required

■ Easy integration of DW_apb_i2c into existing software system

■ Programming at register level eliminated

You must purchase a source code license (DWC-APB-Advanced-Source) to use the DW_apb_i2c Driver Kit.
However, you can access some Driver Kit files and documentation in
$DESIGNWARE_HOME/drivers/DW_apb_i2c/latest. For more information about the Driver Kit, refer to
the DW_apb_i2c Driver Kit User Guide. For more information about purchasing the source code license and
obtaining a download of the Driver Kit, contact Synopsys at designware@synopsys.com for details.

http://www.synopsys.com/dw/doc.php/drivers/DW_apb_i2c/latest/doc/dw_apb_i2c_driver.pdf
https://solvnet.synopsys.com
www.designware.com

250 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

8.3 Programming Example
The flow diagram in Figure 8-1 shows an overview of programming the DW_apb_i2c.

Figure 8-1 Flowchart for DW_ahb_dmac and DW_apb_i2c Programming Example

Program CTL0 as required for transfer:

1. Set DONE field to 0
2. Set BLOCK_TS to 19
3. Set LLP_SRC_EN to 0
4. Set LLP_DST_EN to 0
5. Set SMS field to 00 = AHB master1
6. Set DMS field to 01 = AHB master2
7. Set TT_FC field to 001 for memory-to-
 peripheral transfer
8. Set SRC_MSIZE to 001 for four data items
9. Set DEST_MSIZE to 001 for four data items
10. Set SINC field to 00 = Increment
11. Set DINC field to 10 = No change
12. Set SRC_TR_WIDTH to 000 for eight bits
13. Set DST_TR_WIDTH to 000 for eight bits
14. Set INT_EN field to 1 to enable interrupts

ChEnReg[0]
= 0?

N

YClear all DMAC
interrupts by writing
to Clear* registers

Read ChEnReg to
check if Channel0

is free

Write address of
IC_DATA_CMD

register to SAR0

Write address of
system memory
location to DAR0

Program CFGx as required for transfer:

1. Set SRC_PER field to 0
2. Set SS_UPD_EN field to 0
3. Set DS_UPD_EN field to 0
4. Set PROTCTL field to data access value
5. Set FIFO_MODE field to 0 – single transfer
mode
6. Set FCMODE field to 0
7. Set RELOAD_DST field to 0
8. Set RELOAD_SRC field to 0
9. Set MAX_ABRST field to 0
10. Set SRC_HS_POL and DST_HS_POL
 fields to 0 – active high handshaking
 interface polarity
11. Set LOCK_B field to 0
12. Set LOCK_CH field to 0
13. Set LOCK_B_L field to 2’b00
14. Set LOCK_CH_L field to 2’b00
15. Set HS_SEL_DST field to 0 = hardware
 handshaking
16. Set CH_SUSP field to 1’b0
17. Set CH_PRIOR field to 1’b0

Write to
DmaCfgReg to set
Global DMA Enable

Write to
ChEnReg to

enable Channel 0

Write to IC_ENABLE
register to disable

DW_apb_i2c

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to SAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_ENABLE to

enable
Dw_apb_i2c

DW_ahb_dmac Programming

DW_apb_i2c Programming

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_DMA_CR to
enable transmit

FIFO DMA channel

Write to
IC_DMA_TDLR to
set Transmit Data

Level for DMA requests

* I2C asserts dma_tx_req to the
DMAC when Tx FIFO level is below
IC_DMA_TDLR
* DMAC responds by writing to I2C Tx
FIFO and asserting dma_ack
* I2C transfer begins when a
command is available in Tx FIFO

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 251SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

The following outlines details regarding reads and writes to/from DW_apb_i2c masters/slaves and VIP
master/slaves:

■ For DW_apb_i2c master writes to a slave VIP model, bear in mind when using the DMA that you are
writing characters from the byte stream. However, for a write, the DW_apb_i2c needs a halfword. To
use the DMA, you should write software similar to the following:

short int temp_array[];
char * ptr=(char *) temp_array;
foreach byte in bytes {
 store byte ptr++;
 store '0x01' write command ptr++
}

a. Program the DMA to read a stream of halfwords from memory and write them to the
DW_apb_i2c using the hardware interface.

b. Program the DW_apb_i2c to do a write using the transmit DMA.

■ For DW_apb_i2c master reads from a slave VIP model:

a. Create a read command halfword.

b. Program DMA channel 0 to do a fixed read of the read command halfword—that is, no address
increment—to the DW_apb_i2c transmit buffer.

c. Program DMA channel 1 to read the data from the read buffer and store it in memory.

d. Program the DW_apb_i2c to do a master read by setting both DMA channels.

■ For DW_apb_i2c slave writes from a master VIP model:

a. Program the DW_apb_i2c to be a slave with the RX buffer DMA enabled.

b. Program the DMA to read the buffer and store the bytes in memory.

■ For DW_apb_i2c slave reads from a master VIP model:

a. Enable IC_INTR_MASK.RD_REQ; otherwise the DW_apb_i2c will not acknowledge the read.

b. When you get the RD_REQ interrrupt, program the DMA to write the TX buffer with the read
data.

c. Program the DW_apb_i2c to enable the TX DMA.

NoteNoteNoteNote When there is at least one entry in the DW_apb_i2c Rx FIFO, the DW_apb_i2c asserts
dma_single to the DMAC. When the number of entries in the DW_apb_i2c Rx FIFO reaches
reaches IC_DMA_RDLR, the DW_apb_i2c asserts dma_rx_req to the DMAC. In this example,
in order to read nineteen data items from the DW_apb_i2c Rx FIFO, the DMAC samples
dma_req for three BURST transfers of four beats of size 1 byte each, and it samples
dma_single for three SINGLE transfers of size 1 byte each.

https://solvnet.synopsys.com
www.designware.com

252 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

The flow diagram in Figure 8-2 shows a programming example for the DW_apb_i2c Master.

Figure 8-2 Flowchart for DW_apb_i2c Master

The flow diagram in Figure 8-3 shows a programming example for the DW_apb_i2c master in standard
mode, fast mode, or fast mode plus with 7-bit addressing.

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to TAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Write to IC_DATA_CMD to
push Write command and write data

TX_EMPTY
interrupt

asserted? Read
IC_DATA_CMD[7:0]

to retrieve

Y

Y

N

or Read command Tx FIFO

IC_STATUS[5]
(MST_ACTIVITY)

= 0?

Is

Y

N

Y

Command is
Write?

RX_FULL
interrupt

asserted?

received byte

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

commands
to send?

MoreY

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 253SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 8-3 Flowchart for DW_apb_i2c Master in Standard Mode, Fast Mode, or Fast Mode Plus

Write to IC_ENABLE
register to disable

DW_apb_i2c

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to TAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write to
IC_ENABLE to

enable
DW_apb_i2c

Tx FIFO
empty?

Is

Write I2C command to Tx FIFO.
∗ For Write command:
 ∗ Program IC_DATA_CMD[8] with 0
 ∗ Program IC_DATA_CMD[7:0] with data to be transmitted
∗ For Read command:
 ∗ Program IC_DATA_CMD[8] with 1
 ∗ Read IC_DATA_CMD[7:0] to retrieve received data

DW_apb_i2c Master pops command
from Tx FIFO and processes it

DW_apb_i2c Master issues START
bit as soon as command is

EMPTYFIFO_
HOLD_MASTER_EN

= 1?

IC_

last command of
transfer? Is STOP bit
(IC_DATA_CMD[9])

Is this

DW_apb_i2c Master holds SCL
low and waits for next command;

Write next
I2C command

to Tx FIFO

DW_apb_i2c Master
issues STOP bit

and ends transfer

Y

Y

N

N

N

available in Tx FIFO

= 1?

EMPTYFIFO_
HOLD_MASTER_EN

= 1?

IC_

DW_apb_i2c Master does not
issue STOP bit

Y

N

Y

IC_RX_FULL_HLD
_BUS_EN=1

N

Y

Is command a READ?
Is Rx FIFO full?

DW_apb_i2c Master holds
SCL low and waits for Rx
FIFo to get some space

Y

N

https://solvnet.synopsys.com
www.designware.com

254 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

The flow diagram in Figure 8-4 shows a programming example for DW_apb_i2c as master with TAR
address update. This flow shows how the MST_ON_HOLD interrupt is used when the software needs
information from the hardware to safely update the TAR address.

NoteNoteNoteNote When the software has full knowledge of when it is safe to update the TAR
address without requiring information from hardware, the MST_ON_HOLD
interrupt is not required to update the TAR address.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 255SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 8-4 Flowchart for DW_apb_i2c Master with TAR Address Update

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to TAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Write to IC_DATA_CMD to
push Write command and write data

Read
IC_DATA_CMD[7:0]

to retrieve

Y

Y

N

or Read command Tx FIFO

IC_STATUS[5]
(MST_ACTIVITY)

= 0?

Is

Y

N

Y

Command is
Write?

received byte

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

commands
to send?

MoreY

Y

N

Y

Y

N

IC_EMPTY_FIFO_HOLD_MASTER_EN=1
&& DYNAMIC_TAR_UPDATE=1 ?

last command of
transfer? Is STOP bit
(IC_DATA_CMD[9])

Is this

= 1?

MST_ON_HOLD
interrupt asserted?

Update IC_TAR Register and issue
first command with RESTART bit
set in IC_DATA_CMD

DW_apb_i2c
issues a
STOP and
ends

RX_FULL
interrupt
asserted?

Is Tx FIFO
empty?

https://solvnet.synopsys.com
www.designware.com

256 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

The flow diagram in Figure 8-5 shows a programming example for the DW_apb_i2c Slave in standard
mode, fast mode, or fast mode plus with 7-bit addressing.

Figure 8-5 Flowchart for DW_apb_i2c Slave in Standard Mode, Fast Mode, or Fast Mode Plus with 7-bit
Addressing

8.4 Programming Flow for SCL and SDA Bus Recovery
The flow diagram in Figure 8-6 shows a programming example for SCL and SDA bus recovery.

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 0 – Slave
 enabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 0 – Master
 disabled

Program IC_SAR
with address to

which DW_apb_i2c
slave responds

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write to
IC_INTR_MASK

to unmask
required interrupts

interrupt
(IC_RAW_INTR_STAT[5]) or

RX_FULL interrupt

RD_REQ

(IC_RAW_INTR_STAT[6])
asserted?

Is TX_ABRT
interrupt asserted or

IC_RAW_INTR_STAT[6] = 1?

Write data to be transmitted
 to IC_DATA_CMD[7:0];

write 0 to IC_DATA_CMD[8]
to specify direction of transfer

Read IC_CLR_TX_ABRT
to clear TX_ABRT interrupt

Read
IC_DATA_CMD[7:0]

to retrieve
received byte

Read IC_CLR_RD_REQ
to clear RD_REQ interrupt

RX_FULL
interrupt

RD_REQ
interrupt

RX_FULL interrupt

RD_REQ interrupt

N

Y

Is
IC_STATUS[6]

(SLV_ACTIVITY)
= 0?

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Y

N

Y

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 257SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 8-6 Flowchart for SCL and SDA Bus Recovery

8.5 Programming Flow for Reading the Device ID
Figure 8-7 shows a programming flow in the master to initiate a Device ID read.

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write 1 to IC_CON[11] to enable the bus feature
Program SCL Stuck Timeout (IC_SCL_STUCK_LOW_TIMEOUT)
Program SDA Stuck Timeout (IC_SDA_STUCK_LOW_TIMEOUT)

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Any interrupt?

Perform normal transfers

ic_tx_abort_intr?
Is IC_TX_ABORT_SOURCE[17]

=1

ic_scl_stuck_at_low_intr? Reset the entire DW_apb_i2c system

Write 1 to IC_ENABLE[3] to initiate recovery
on required Master

Y

N

Y

Y

Poll for recovery IC_ENABLE[3]=0?

IC_STATUS[11]=1?

1. Clear the interrupt
2. Read IC_CLR_TX_ABRT

Process with normal transfers

Reset the entire DW_apb_i2c system

N

Y

N

Y

Not recovered
Recovered

https://solvnet.synopsys.com
www.designware.com

258 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

Figure 8-7 Flowchart for Reading a Device ID

As the Device ID consists of 3 bytes, the user must issue 3 read commands in IC_DATA_CMD register. One
read command populates one byte of Device ID in RX FIFO. If more than 3 commands are issued, the
Device ID will roll back.

8.6 Programming Flow for SMBUS Timeout in Master Mode
Figure 8-8 shows a programming flow for SMBus timeout in master mode.

Write 0 to IC_ENABLE[0] to disable DW_apb_i2c

Write 1 to IC_TAR[13] and IC_TAR[11] to enable a Device ID read

Write 1 to IC_ENABLE to enable DW_apb_i2c

Push 3 read commands into IC_DATA_CMD

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 259SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 8-8 SMBUS Timeout Programming Flow in Master Mode

8.7 Programming Flow for SMBUS Timeout in Slave Mode
Figure 8-9 shows a programming flow for SMBus timeout in slave mode.

Figure 8-9 SMBUS Timeout Programming Flow in Slave Mode

Program following registers to detect SMBUS timeouts:
- IC_SCL_STUCK_TIMEOUT

- IC_SMBUS_CLK_LOW_SEXT
- IC_SMBUS_CLK_LOW_MEXT

- IC_SDA_STUCK_TIMEOUT

Program IC_ENABLE[0] to 1 to enable DW_apb_i2c

Any interrupt?
Has IC_TX_ABORT_INTR occurred?
Is IC_TX_ABRT_SOURCE[17]=1?
Has SMBDAT timeout occurred?

Y Y

Has SMBUS_CLK_LOW_MEXT_INTR occurred?

This interrupt intimates that the master
is violating the tLOW;MEXT timeout

Has SCL_CLK_LOW_TIMEOUT_INTR occurred?
tTIMEOUT;MIN Violation
or
Has SMBUS_CLK_LOW_SEXT_INTR occurred?
tLOW;SEXT Violation

N

Perform normal transfers
Enable SMBUS_CLK_RESET

Enable USER ABORT (IC_ENABLE[1])

(IC_ENABLE[16]) to reset the
SMBus bus

to abort the transfer

Y

Y

Is SMBUS_CLK_RESET (IC_ENABLE[16])
=1?

Is USER_ABORT (IC_ENABLE[1])=0?
N NY Y

Program IC_ENABLE[0] to 1 to enable DW_apb_i2c

Any interrupt?

N

Y

Program IC_SCL_STUCK_TIMEOUT registers to detect the SMBUS tTIMEOUT; MIN Timeout

SCL_CLK_LOW_TIMEOUT_INTR?
tTIMEOUT;MIN Violation

Perform Normal Transfer
Communication Link (SCL and SDA)
Automatically Reset and FIFOs Flushed

https://solvnet.synopsys.com
www.designware.com

260 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

8.8 ARP Master Programming Flow
Figure 8-10 shows the programming flow for an ARP master.

Figure 8-10 ARP Master Programming Flow

8.9 ARP Slave Programming Flow
Figure 8-11 shows the programming flow for an ARP slave.

Add Address to the Used

Reset

Send “Prepare to ARP”
Command

Is the packet
 acknowledged?

Send “Get UDID”
Command

Y

Are the initial 3 bytes

Y

acknowledged and
Receive byte counts = 0x11?

Send “Assign Address” command with the UDID
received from the “Get UDID” command

Y

Is the packet
 acknowledged?

Address Pool

ARP Complete

Switch to Slave Mode if the

Host Notify Protocol
Device Requires to Detect

Has ic_smbus_host_notify_intr N

Y

occurred?

Is DW_apb_i2c in master mode?

N

(Is IC_CON[0] =1 &&
IC_CON[6]=1)

Switch to Master Mode for
Performing ARP

N

Y

N

N

A

A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 261SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 8-11 ARP Slave Programming Flow

Reset

DW_apb_i2c acknowledges
and responds to device function

Is the address

DW_apb_i2c acknowledges the

Does DW_apb_i2c have
 a persistent slave address?

Hardware Clears the Address Valid

Y

Set the slave address (IC_SAR) to

N

persistent slave address

Hardware sets:
- Address valid flag to 1
- Address resolved flag to 0

and Address Resolved Flags

Slave address field matches
the SMBus ARP Address

Prepare for ARP command

General reset command?
DW_apb_i2c acknowledges the packet

packet and clears the address
resolved flag

and clears these flags:
- Address Resolved Flag
- Address valid flag if non-PSA

valid flag set?

Does slave address field
match with IC_SAR?

Y

Y

Y

N

N

N

N

Y

N

Y

AB CD

https://solvnet.synopsys.com
www.designware.com

262 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

DW_apb_i2c NACKs

Y

Return UDID

Assign address
Y

Y

B A C

command?

General get UDID
 command?

Is
the address resolved

flag set?

UDID match?
Y

- DW_apb_i2c acknowledges

- Set IC_SAR slave address
to assigned address

- Set address resolved and
address valid flags.

 the packetIs the address
value flag set?

Directed Reset
 command?

Directed Get
 UDID command?

Return UDID and
IC_SAR slavethe unknown ARP

command address

Return 0xFF for the

N

Is the address

Return IC_SAR current

valid flag set?
YN

device slave address
field

slave address for the

field
device slave address

N

N

N

Y

D
Y

N N

Y

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 263SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

8.10 SMBus SUSPEND Programming Flow in Host Mode

Figure 8-12 Suspend Programming Flow in Host Mode

Reset

Enable the SUSPEND signal

IC_ENABLE[17] Register Bit
through writing 1 to

DW_apb_i2c checks whether
 Master activity is enabled?

Y

N

DW_apb_i2c Master waits

completed
for Master activity to be

DW_apb_i2c asserts
ic_smbus_out_n signal

Insert Delay and wait

de-assert suspend signal

DW_apb_i2c de-asserts
ic_smbus_out_n signal

for specific time to

https://solvnet.synopsys.com
www.designware.com

264 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

8.11 SMBus SUSPEND Programming Flow in Device Mode

Figure 8-13 SMBus SUSPEND Programming flow in Device Mode

Reset

Is ic_smbus_det_intr
 interrupt received?

Y

N

Proceed with Normal
SMBus Transfers

Software initiates the Low
Power Mode and clears

Periodically polls for

Bit in IC_STATUS Register
SMBUS_SUSPEND_STATUS

the interrupt

Is IC_STATUS[19] =0?

Resume SMBus Device
from Low Power Mode

Y

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 265SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

8.12 SMBus ALERT Programming Flow in Host Mode

Figure 8-14 SMBus Alert Programming Flow in Host Mode

Reset

Has ic_smbalert_det_intr
 occurred?

N Proceed with Normal
SMBus Transfers

Load Tx-FIFO for one or two

DW_apb_i2c receives the Slave
address and puts it in Rx-FIFO

Is IC_STATUS[20] =0?
Y

N

Is DW_apb_i2c in

Y

N

Master Mode?

Switch to Master Mode for
sending the Alert Response
Address

Y

Software Clears the Interrupt
and Updates IC_TAR Register
with Alert Response Address (0xC)

Read Byte command.
Two commands are required if PEC
is appended at the end of the message

https://solvnet.synopsys.com
www.designware.com

266 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

8.13 SMBus ALERT Programming Flow in Device Mode

Figure 8-15 SMBus Alert Programming Flow in Device Mode

Reset

Is IC_ENABLE[18] = 1
N

De-assert ic_smbalert_oe signal and

Y

Perform normal

DW_apb_i2c responds with the device slave

DW_apb_i2c asserts
ic_smbalert_oe signal

Is incoming slave address

Y

N

equal to Alert response
address?

address (IC_SAR) for the Read Request. If PEC
is enabled, DW_apb_i2c appends the PEC
byte at the end of transfer.

auto-clear IC_ENABLE[18] bit

SMBus Transfers

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 267SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

8.14 Programming Flow Of DW_apb_i2c in Ultra-Fast Mode

8.14.1 DW_apb_i2c Master Mode

Figure 8-16 DW_apb_i2c Ultra-Fast Master Mode

Is this last

N

DW_apb_i2c Master holds SCL low and waits

Y DW_apb_i2c master

Is TX_FIFO empty?

Y

N

Write to IC_ENABLE
register to disable
DW_apb_i2c

Program IC_CON register fields as required:
- Set IC_SLAVE_DISABLE = 1 - Slave disabled
- Set IC_RESTART_EN = 1 - Enable Start Mode
- Set IC_10BITADDR_MASTER to 0 – 7-bit addressing
- Set IC_10BITADDR_SLAVE to 0 – 7-bit addressing
- Set IC_MASTER_MODE to 1 - Master enabled

Set address of target
Slave by writing it to TAR

Write to
IC_UFM_SCL_HCNT
IC_UFM_SCL_LCNT
IC_UFM_TBUF_CNT
IC_UFM_SPKLEN registers to

 set HIGH period, Low period,
tBuf count and spike length
value of SCL

Write to IC_INTR_MASK
to enable all interrupts

Write to IC_RX_TL to
set Rx FIFO threshold level

Write to IC_TX_TL to
set Tx FIFO threshold level

Write to IC_ENABLE to
enable DW_apb_i2c

- Write I2C command to Tx FIFO

DW_apb_i2c Master issues START bit as

- Program IC_DATA_CMD[8] with 0
- Program IC_DATA_CMD[7:0] with data to be transmitted
- Program IC_DATA_CMD[9] with 1 if the current command

is the last bye of transfer

soon as the command is available in Tx FIFO

DW_apb_i2c Master pops command
from Tx FIFO and processes it

Is STOP bit
command of transfer?

IC_DATA_CMD[9]=1?

Is IC_EMPTY_FIFO_

Y

HOLD_MASTER_EN
= 1?

waits for next command
DW_apb_i2c Master does not issue STOP bit

Write next I2C
command to
Tx FIFO

issues STOP bit
and ends transfer

N

https://solvnet.synopsys.com
www.designware.com

268 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

8.14.2 DW_apb_i2c Slave Mode

Figure 8-17 DW_apb_i2c Ultra-Fast Slave Mode

Write 0 to IC_ENABLE to

RX_FULL interrupt Y

disable DW_apb_i2c

Program IC_SAR with address to
which DW_apb_i2c slave responds

Program IC_CON register fields as required:
- Set IC_SLAVE_DISABLE to 0 (Slave enabled)
- Set IC_RESTART_EN to 1 (Enable restart mode)
- Set IC_10BITADDR_MASTER to 0 (7-bit addressing)
- Set IC_10BITADDR_SLAVE to 0 (7-bit addressing)
- Set IC_MASTER_MODE to 0 (Master disabled)

Write to IC_INTR_MASK to
unmask required interrupts

Write to IC_ENABLE to enable
DW_apb_i2c

(IC_RAW_INTR_STAT[6])
asserted?

Write 0 to IC_ENABLE to disable DW_apb_i2c

Read IC_DATA_CMD[7:0]

Y

Is IC_STATUS[6]

to retrieve received byte

SLV_ACTIVITY = 0?

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 269

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

9
Verification

This chapter provides an overview of the testbench available for DW_apb_i2c verification. Once you have
configured the DW_apb_i2c in coreConsultant and have set up the verification environment, you can run
simulations automatically.

9.1 Overview of Vera Tests
The DW_apb_i2c verification testbench performs the following set of tests that have been written to
exhaustively verify the functionality and have also achieved maximum RTL code coverage.

9.1.1 APB Slave Interface

This suite of tests is run to verify that the APB interface functions correctly by checking the following:

■ All non-configuration parameter register reset values are verified.

■ All read-only registers are written to with opposite values to verify that they are read only.

■ All writable registers are written to with opposite values to verify that they can be written.

■ Some registers can be written only when the DW_apb_i2c is disabled.Confirm that those registers are
non-writable in that mode. Attempt to write the opposite values to those registers while the
DW_apb_i2c is disabled and verify that the writes are ignored.

■ The *CNT registers can be written to only if the configuration parameter IC_HC_COUNT_VALUES =
0. Verify that the registers are read-only when IC_HC_COUNT_VALUES = 0 and writable when
IC_HC_COUNT_VALUES = 1.

NoteNoteNoteNote The DW_apb_i2c verification testbench is built with DesignWare Verification IP (VIP). Please
make sure you have the supported version of the VIP components for this release, otherwise,
you may experience some tool compatibility problems. For more information about supported
tools in this release, refer to the following web page:
www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf

NoteNoteNoteNote All tests use the APB Interface to program memory mapped registers dynamically during
tests.

http://www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

270 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Verification DesignWare DW_apb_i2c Databook

■ Confirm that it is not possible to write the transmit buffer threshold level (IC_TX_TL) higher than the
size of the transmit buffer. Verify that if a larger value is written that the value becomes set to the size
of the transmit buffer (max).

■ Confirm that it is not possible to write the receive buffer threshold level (IC_RX_TL) higher than the
size of the transmit buffer. Verify that if a larger value is written that the value becomes set to the size
of the transmit buffer (max).

■ Write illegal value 0 to SPEED bits in IC_CON and verify that the new value is parameter
IC_MAX_SPEED_MODE.

■ Verify that the SPEED bits in IC_CON cannot be written to higher speeds than configuration
parameter IC_MAX_SPEED_MODE.

9.1.2 DW_apb_i2c Master Operation

This suite of tests is run only when the DW_apb_i2c is configured as a master. For instance, these tests go
through all combinations of speed, addressing, read/write, and multi-byte transfers. Commands are issued
to the DW_apb_i2c, and the I2C Slave is the target and used to verify the transfers. The tests also verify the
following:

■ SCL low and SCL high times are with I2C specification

■ Operation of all registers

■ Master arbitration

■ Debug outputs

■ Disabling of DW_apb_i2c shown correctly on ic_en output

■ Programmed count values for all the *CNT registers

■ The current source enable output operates correctly

■ Combined format operation (7- and 10-bit addressing modes)

■ Restart enable and disable

■ Clock synchronization by stretching SCL

■ Loop-back operation by performing simultaneous master-transmitter, slave-receiver sending
multiple bytes. A single-byte transfer with master-receiver, slave-transmitter is also performed

9.1.3 DW_apb_i2c Slave Operation

This suite of tests is run only when the DW_apb_i2c is configured as a slave. Similar to the tests developed
for the master, the driving force is the Serial Master BFM. For instance, these tests go through all
combinations of speed, addressing, read/write, and multi-byte transfers. The I2C master is used to generate
transfers and the DW_apb_i2c is the target; the AHB Master is used to verify the transfers. The tests also
verify the following:

■ Operation of all registers

■ Debug outputs

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 271SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Verification

■ Disabling of DW_apb_i2c shown correctly on ic_en output

■ Combined format operation (7- and 10-bit addressing modes)

9.1.4 DW_apb_i2c Interrupts

These tests verify that the DW_apb_i2c generates and handles the servicing of interrupts correctly. They
also verify operation of the debug ports.

9.1.5 DMA Handshaking Interface

These tests verify that DW_apb_i2c generates and responds through the handshaking interface. Transfers
are generated within the DMA BFM and transmitted through the I2C protocol from the DUT to the
ALT_DUT and vice versa. Different watermark levels are selected to control the clearing on the
dma_tx_req/dma_rx_req lines once an acknowledgement is received. A random number of bytes are
transferred using only the handshaking interface.

9.1.6 DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update

This test is run only if the DW_apb_i2c is configured as a master and the parameter
I2C_DYNAMIC_TAR_UPDATE = 1. This test verifies that DW_apb_i2c Master Target address (IC_TAR)
and the parameter IC_10BITADDR_MASTER can be updated dynamically while the DW_apb_i2c Slave is
involved in an I2C transfer on the I2C bus.

9.1.7 Generate NACK as a Slave-Receiver

This test is always run and tests the functionality of DW_apb_i2c, depending on whether the parameter
IC_SLV_DATA_NACK_ONLY is set to 0 or 1. This test verifies that ACK/NACKs are generated correctly
when DW_apb_i2c is acting as a slave-receiver, depending on whether IC_SLV_DATA_NACK_ONLY
register exists (set by having parameter IC_SLV_DATA_NACK_ONLY=1). If the register exists, its value is
set to 1 for the duration of the test. If the register exists (and therefore its value is 1), a NACK is generated by
the slave when data is sent to it, the transfer is aborted, and data is not written to the receive buffer.
Otherwise, ACKs are generated for the duration of the transfer, the transfer completes successfully, and the
data is written to the receive buffer successfully.

9.1.8 SCL Held Low for Duration Specified in IC_SDA_SETUP

This test verifies that during a Slave-Receive I2C transfer, DW_apb_i2c asserts the output port ic_data_oe,
holding SCL low for the minimum period specified in the IC_SDA_SETUP register. This only happens
every time the I2C master ACKs a data byte, and the transmit FIFO in DW_apb_i2c is not filled to satisfy this
read request.

9.1.9 Generate ACK/NACK for General Call

This test verifies that the IC_ACK_GENERAL_CALL bit controls whether DW_apb_i2c ACK or NACKs an
I2C general call address.

https://solvnet.synopsys.com
www.designware.com

272 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Verification DesignWare DW_apb_i2c Databook

9.2 Overview of DW_apb_i2c Testbench
As illustrated in Figure 9-1, the Verilog DW_apb_i2c testbench includes two instantiations of the design
under test (DUT), AHB and APB Bridge bus models, and a Vera shell. The Vera shell consists of a number of
serial slave BFMs, a master slave BFM, and a DMA BFM to simulate and stimulate traffic to and from the
DW_apb_i2c.

Figure 9-1 DW_apb_i2c Testbench

The test_DW_apb_i2c.v file shows the instantiation of the top-level MacroCell in a testbench and resides in
the workspace/sim/testbench directory. The testbench tests the user configuration specified in the Specify
Configuration task of coreConsultant. The testbench also tests that the component is AMBA-compliant and
includes a self-checking mechanism. When a coreKit has been unpacked and configured, the verification

AHB Master
BFM

DW_ahb

AHB Monitor

DW_apb

DUT
DW_apb_i2c.v

(APB Slave)

Vera Tests
(test stimuli and results)

(AHB Slave)

test_DW_apb_i2c.v

I2C Slave
BFM

APB Monitor

I2C Master
BFM

Interrupts,
debug outputs

Vera Stimulus

= Vera shell, all other Verilog

I2C Monitor

to Vera

AHB Slave
BFM

APB Slave
BFM

ALT_DUT
DW_apb_i2c.v

(APB Slave)

APB bus

I2C bus

DMA
BFM

DMA
BFM

M M

M = master

Handshaking I/F Handshaking I/F

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 273SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Verification

environment is stored in workspace/sim. Files in workspace/sim/test_i2c form the actual testbench for
DW_apb_i2c.

https://solvnet.synopsys.com
www.designware.com

274 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Verification DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 275

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

10
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment. The following sections discuss general
integration considerations.

10.1 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

Performing

This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb_i2c.

10.1.1 Area

This section provides information to help you configure area for your configuration.

The following table includes synthesis results that have been generated using the TSMC 65nm technology
library.

Table 10-1 Synthesis Results Using TSMC 65nmTechnology Library

Configuration Operating Frequency Gate Count

Default Configuration 166 MHz 11419 gates

https://solvnet.synopsys.com
www.designware.com

276 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Integration Considerations DesignWare DW_apb_i2c Databook

The following table includes synthesis results that have been generated using the TSMC 28nm technology
library.

10.1.2 Power Consumption

The following table provides information about the power consumption of the DW_apb_i2c using the
TSMC 65nm technology library and how it affects performance.

Minimum Configuration:
IC_CLK_TYPE=0
IC_MAX_SPEED_MODE=1
IC_10BITADDR_MASTER=0
IC_10BITADDR_SLAVE=0
IC_MASTER_MODE=0
IC_TX_BUFFER_DEPTH=2
IC_RX_BUFFER_DEPTH=2
IC_HC_COUNT_VALUES=1

166 MHz 6253 gates

Maximum Configuration:
IC_CLK_TYPE=1
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16

166 MHz 12768 gates

Table 10-2 Synthesis Results Using TSMC 28nm Technology Library

Configuration Operating Frequency Gate Count

Default Configuration 166 MHz 11164 gates

Minimum Configuration:
IC_CLK_TYPE=0
IC_MAX_SPEED_MODE=1
IC_10BITADDR_MASTER=0
IC_10BITADDR_SLAVE=0
IC_MASTER_MODE=0
IC_TX_BUFFER_DEPTH=2
IC_RX_BUFFER_DEPTH=2
IC_HC_COUNT_VALUES=1

166 MHz 6151 gates

Maximum Configuration:
IC_CLK_TYPE=1
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16

166 MHz 12659 gates

Table 10-1 Synthesis Results Using TSMC 65nmTechnology Library (Continued)

Configuration Operating Frequency Gate Count

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 277SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Integration Considerations

The following table provides information about the power consumption of the DW_apb_i2c using the
TSMC 28nm technology library and how it affects performance.

Table 10-3 Power Consumption of DW_apb_i2c Using TSMC 65nm Technology Library

Configuration Operating Frequency Static Power Consumption
Dynamic Power
Consumption

Default Configuration 166 MHz 3.0260 µW 1.2895 mW

Minimum Configuration:
IC_CLK_TYPE=0
IC_MAX_SPEED_MODE=1
IC_10BITADDR_MASTER=0
IC_10BITADDR_SLAVE=0
IC_MASTER_MODE=0
IC_TX_BUFFER_DEPTH=2
IC_RX_BUFFER_DEPTH=2
IC_HC_COUNT_VALUES=1

166 MHz 1.6878 µW 671.0817 µW

Maximum Configuration:
IC_CLK_TYPE=1
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16

166 MHz 3.3545 µW 1.4755 mW

Table 10-4 Power Consumption of DW_apb_i2c Using TSMC 28nm Technology Library

Configuration Operating Frequency Static Power Consumption
Dynamic Power
Consumption

Default Configuration 166 MHz 1.1252 mW 877.4711 µW

Minimum Configuration:
IC_CLK_TYPE=0
IC_MAX_SPEED_MODE=1
IC_10BITADDR_MASTER=0
IC_10BITADDR_SLAVE=0
IC_MASTER_MODE=0
IC_TX_BUFFER_DEPTH=2
IC_RX_BUFFER_DEPTH=2
IC_HC_COUNT_VALUES=1

166 MHz 625.7431 µW 452.3128 µW

Maximum Configuration:
IC_CLK_TYPE=1
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16

166 MHz 1.2889 mW 999.9554 µW

https://solvnet.synopsys.com
www.designware.com

278 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Integration Considerations DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 279

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_apb_i2c to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_apb_i2c” on page 280

■ “Synchronizer 1: Simple Double Register Synchronizer” on page 281

■ “Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset” on
page 281

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
www.synopsys.com/products/designware/docs/doc/dwf/datasheets/interface_cdc_overview.pdf

http://www.synopsys.com/products/designware/docs/doc/dwf/datasheets/interface_cdc_overview.pdf
https://solvnet.synopsys.com
www.designware.com

280 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Synchronizer Methods DesignWare DW_apb_i2c Databook

A.1 Synchronizers Used in DW_apb_i2c
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_apb_i2c are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used in a building block fashion.

Table A-1 Synchronizers used in DW_apb_i2c

Synchronizer module
file Sub module file Synchronizer Type and Number

DW_apb_i2c_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

DW_apb_i2c_bcm41.v DW_apb_i2c_bcm21.v Synchronizer 2: Simple Multiple Register Synchronizer with
Configurable Polarity Reset

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 281SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer
This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries. The synchronization scheme depends on core configuration. If pclk and ic_clk are
asynchronous (IC_CLK_TYPE =ASYNC) then DW_apb_i2c_bcm21 is instantiated inside the core for
synchronization. This uses two stage synchronization process () both using positive edge of clock.

Figure A-1 Block Diagram of Synchronizer 1 With Two Stage Synchronization (Both Positive Edges)

A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable
Polarity Reset

This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries with configurable polarity reset. The synchronization scheme depends on core configuration. If
pclk and ic_clk are asynchronous (IC_CLK_TYPE =ASYNC) then DW_apb_i2c_bcm41 is instantiated inside
the core for synchronization of ic_clk_in_a and ic_data_in_a input signals. This DW_apb_i2c_bcm41
synchronizer is similar to the DW_apb_i2c_bcm21 synchronizer and the polarity of the output of this
synchronizer can be configured. Figure A-2 shows the block diagram of Synchronizer 2.

D Q data_ddata_s
width

D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width

D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

282 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Synchronizer Methods DesignWare DW_apb_i2c Databook

Figure A-2 Block Diagram of Synchronizer 2 With Two Stage Synchronization (Both Positive Edges)

Configured as : f_sync_type = 3, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
data_s

test

width

width

Configured as : f_sync_type = 3, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

data_ddata_s
width

D Q
width

test

width

width
width

D Q

D Q
width

D Q

D Q

data_d
width width

D Q
width

D Q D Q

width

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 283

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

B
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and
off-chip external memory interfaces (ARM Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by ARM
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (ARM Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB
bus.

application design Overall chip-level design into which a subsystem or subsystems are
integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in
a word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

https://solvnet.synopsys.com
www.designware.com

284 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Glossary DesignWare DW_apb_i2c Databook

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels
execute command streams independently of each other to provide full-duplex
mode function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable
block that can be instantiated as a single entity (VHDL) or module (Verilog) in a
design.

configuration The act of specifying parameters for a core prior to synthesis; can also be
used in the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a
big piece of IIP. Anything that requires coreConsultant for configuration, as well
as anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in
the DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable
cores into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design
views and synthesis views you need to integrate the core into your design. Can
also synthesize the core and run the unit-level testbench supplied with the
core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format
back to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 285SolvNet
DesignWare.com

2.00a
June 2015

DesignWare DW_apb_i2c Databook Glossary

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant
or coreAssembler to quickly build DesignWare Synthesizable Component
designs.

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is
authorized by a single DesignWare license. Products include SmartModels,
VMT model suites, DesignWare Memory Models, Building Block IP, and the
DesignWare Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code
by non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

https://solvnet.synopsys.com
www.designware.com

286 Synopsys, Inc. SolvNet
DesignWare.com

2.00a
June 2015

Glossary DesignWare DW_apb_i2c Databook

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

RTL Register Transfer Level. A higher level of abstraction that implies a certain
gate-level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as
synthesizable IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically
generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology
through synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component.
The files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in
any form, including a Design View.

workspace A network location that contains a personal copy of a component or
subsystem. After you configure the component or subsystem (using
coreConsultant or coreAssembler), the workspace contains the configured
component/subsystem and generated views needed for integration of the
component/subsystem at the top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing
easier interfacing. Usually requires an extra, sometimes automated, step to
create the wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 287

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.00a
June 2015

Index

A
active command queue

definition 283
activity

definition 283
AHB

definition 283
AMBA

definition 283
APB

definition 283
APB bridge

definition 283
APB Interface, and DW_apb_i2c 103
APB_DATA_WIDTH 105
application design

definition 283
arbiter

definition 283
Arbitration, of master 53

B
BFM

definition 283
big-endian

definition 283
Block diagram, of DW_apb_i2c 19
blocked command stream

definition 283
blocking command

definition 284
bus bridge

definition 284

C
Clock synchronization 55
command channel

definition 284

command stream
definition 284

component
definition 284

Configuration
of IC_CLK frequency 79

configuration
definition 284

configuration intent
definition 284

Configuration parameters 105
core

definition 284
core developer

definition 284
core integrator

definition 284
coreAssembler

definition 284
overview of usage flow 30

coreConsultant
definition 284
overview of usage flow 24

coreKit
definition 284

Customer Support 10
cycle command

definition 284

D
decoder

definition 284
design context

definition 284
design creation

definition 284
Design View

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_i2c Databook

288 Synopsys, Inc.SolvNet
DesignWare.com

2.00a
June 2015

definition 285
DesignWare cores

definition 285
DesignWare Library

definition 285
DesignWare Synthesizable Components

definition 285
Disabling DW_apb_i2c

version 1.06a 62
DMA Controller

and DW_apb_i2c 93
dual role device

definition 285
DW_apb_i2c

block diagram of 19
functional behavior 37
functional overview 19
memory map of 154
operation modes 56
overview of 37
parameters 105
programming of 153
protocols 43
registers 161
testbench

overview of 272
overview of tests 269

Dynamic update of IC_TAR
initial configuration of master mode 60
or 10-bit addressing for master mode 61

E
endian

definition 285
Environment, licenses 21

F
Full-Functional Mode

definition 285
Functional behavior, of DW_apb_i2c 37
Functional overview, of DW_apb_i2c 19

G
GPIO

definition 285
GTECH

definition 285

H
hard IP

definition 285
HDL

definition 285

I
IC_10BITADDR_MASTER 107
IC_ACK_GENERAL_CALL 219
IC_ADD_ENCODED_PARAMS 110
IC_CAP_LOADING 113
IC_CLK frequency, configuration of 79
IC_CLOCK_FREQ 111
IC_CLR_ACTIVITY 195
IC_CLR_GEN_CALL 197
IC_CLR_INTR 192
IC_CLR_RD_REQ 194
IC_CLR_RX_DONE 195
IC_CLR_RX_OVER 193
IC_CLR_RX_UNDER 192
IC_CLR_START_DET 196
IC_CLR_STOP_DET 196
IC_CLR_TX_ABRT 194
IC_CLR_TX_OVER 193
IC_CON 161
IC_DATA_CMD 173
IC_DEFAULT_ACK_GENERAL_CALL 109
IC_DEFAULT_FS_SPKLEN 114
IC_DEFAULT_HS_SPKLEN 114
IC_DEFAULT_SDA_HOLD 109
IC_DEFAULT_SDA_SETUP 109
IC_DEFAULT_SLAVE_ADDR 106
IC_DMA_CR 215
IC_DMA_RDLR 217
IC_DMA_TDLR 216
IC_ENABLE 198
IC_ENABLE_STATUS 220
IC_FS_SCL_HCNT 177
IC_FS_SCL_HIGH_COUNT 112
IC_FS_SCL_LCNT 178
IC_FS_SCL_LOW_COUNT 113
IC_HC_COUNT_VALUES 111
IC_HS_MADDR 171
IC_HS_MASTER_CODE 106

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_i2c Databook Index

Synopsys, Inc. 2892.00a
June 2015

SolvNet
DesignWare.com

IC_HS_SCL_HCNT 179
IC_HS_SCL_HIGH_COUNT 113
IC_HS_SCL_LCNT 180
IC_HS_SCL_LOW_COUNT 107, 114
IC_INTR_IO 109
IC_INTR_MASK 183
IC_INTR_POL 110
IC_INTR_STAT 182
IC_MASTER_MODE 107
IC_MAX_SPEED_MODE 106
IC_RAW_INTR_STAT 186
IC_RESTART_EN 108
IC_RX_BUFFER_DEPTH 108
IC_RX_TL 108, 190
IC_RXFLR 206
IC_SAR 171
IC_SDA_HOLD 207
IC_SDA_SETUP 218
IC_SLV_DATA_NACK_ONLY 214
IC_SS_CDNT 176
IC_SS_HCNT 175
IC_SS_SCL_HIGH_COUNT 112
IC_SS_SCL_LOW_COUNT 112
IC_STATUS 201
IC_TAR 168
IC_TX_ABRT_SOURCE 208
IC_TX_BUFFER_DEPTH 108
IC_TX_TL 108, 191
IC_TXFLR 205
IC_USE_COUNTS 110
IIP

definition 285
implementation view

definition 285
instantiate

definition 285
interface

definition 285
Interfaces

APB 103
DMA Controller 93

IP
definition 285

L
Licenses 21
little-endian

definition 285

M
MacroCell

definition 285
master

definition 285
Master arbitration 53
Master mode 60
Memory map, of DW_apb_i2c 154
model

definition 285
monitor

definition 285

N
non-blocking command

definition 286

O
Operation modes 56
Output files

GTECH 35
RTL-level 35
Simulation model 35
synthesis 36
verification 36

P
Parameters

description of 105
peripheral

definition 286
Programming DW_apb_i2c

memory map 153
registers 161

Protocols, of I2C 43

R
Register

IC_HS_MADDR 171
Registers

Clear ACTIVITY Interrupt 195
Clear Combined and Individual Interrupts 192
Clear GEN_CALL Interrupt 197
Clear RD_REQ Interrupt 194

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_i2c Databook

290 Synopsys, Inc.SolvNet
DesignWare.com

2.00a
June 2015

Clear RX_DONE Interrupt 195
Clear RX_OVER Interrupt 193
Clear RX_UNDER Interrupt 192
Clear START_DET Interrupt 196
Clear STOP_DET Interrupt 196
Clear TX_ABRT Interrupt 194
Clear TX_OVER Interrupt 193
Control 161
DMA Control 215
DMA Transmit Data Level 216
Enable Status 220
Fast Speed I2C Clock SCL High Count 177
Fast Speed I2C Clock SCL Low Count 178
Generate Slave Data NACK 214
High Speed I2C Clock SCL High Count 179
High Speed I2C Clock SCL Low Count 180
HS Master Mode Code Address 171
HS Spike Suppression Limit 223
I2C Enable 198
I2C Receive Data Level 217
IC_ACK_GENERAL_CALL 219
IC_CLR_ACTIVITY 195
IC_CLR_GEN_CALL 197
IC_CLR_INTR 192
IC_CLR_RD_REQ 194
IC_CLR_RX_DONE 195
IC_CLR_RX_OVER 193
IC_CLR_RX_UNDER 192
IC_CLR_START_DET 196
IC_CLR_STOP_DET 196
IC_CLR_TX_ABRT 194
IC_CLR_TX_OVER 193
IC_CON 161
IC_DATA_CMD 173
IC_DMA_CR 215
IC_DMA_RDLR 217
IC_DMA_TDLR 216
IC_ENABLE 198
IC_ENABLE_STATUS 220
IC_FS_SCL_HCNT 177
IC_FS_SCL_LCNT 178
IC_FS_SPKLENS 222
IC_HS_SCL_HCNT 179
IC_HS_SCL_LCNT 180
IC_HS_SPKLENS 223
IC_INTR_MASK 183
IC_INTR_STAT 182
IC_RAW_INTR_STAT 186
IC_RX_TL 190
IC_RXFLR 206

IC_SAR 171
IC_SDA_HOLD 207
IC_SDA_SETUP 218
IC_SLV_DATA_NACK_ONLY 214
IC_SS_HCNT 175
IC_SS_LCNT 176
IC_STATUS 201
IC_TAR 168
IC_TX_ABRT_SOURCE 208
IC_TX_TL 191
IC_TXFLR 205
Interrupt Mask 183
Interrupt Status 186
of DW_apb_i2c 161
Raw Interrupt Status 182
Receive Buffer Threshold 190
Rx/Tx Data buffer and Command 173
SDA Setup 218
Slave Address 171
SS/FS Spike Suppression Limit 222
Standard Speed I2C Clock SCL High Count 175
Standard Speed I2C Clock SCL Low Count 176
Target Address 168
Transmit Buffer Threshold 191

RTL
definition 286

S
SDRAM

definition 286
SDRAM controller

definition 286
Simple double register synchronizer 281
Simulation

of DW_apb_i2c 272
slave

definition 286
Slave mode 56
SoC

definition 286
SoC Platform

AHB contained in 17
APB, contained in 17
defined 17

soft IP
definition 286

SSI_HAS_DMA 109
static controller

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_i2c Databook Index

Synopsys, Inc. 2912.00a
June 2015

SolvNet
DesignWare.com

definition 286
subsystem

definition 286
Synchronizer

simple double register 281
synthesis intent

definition 286
synthesizable IP

definition 286

T
technology-independent

definition 286
test_DW_apb_i2c.v 272
Testsuite Regression Environment (TRE)

definition 286
TRE

definition 286

V
Vera, overview of tests 269
Verification

and Vera tests 269
of DW_apb_i2c 272

VIP
definition 286

W
workspace

definition 286
wrap

definition 286
wrapper

definition 286

Z
zero-cycle command

definition 286

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_i2c Databook

292 Synopsys, Inc.SolvNet
DesignWare.com

2.00a
June 2015

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	Installation Guide
	Contents
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	Revision History
	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_apb_i2c Block Diagram

	1.3 Features
	1.3.1 I2C Features
	1.3.2 DesignWare APB Slave Interface

	1.4 Standards Compliance
	1.5 Verification Environment Overview
	1.6 Licenses

	2 Building and Verifying a Component or Subsystem
	2.1 Setting up Your Environment
	2.2 Overview of the coreConsultant Configuration and Integration Process
	2.2.1 coreConsultant Usage
	2.2.2 Configuring the DW_apb_i2c within coreConsultant
	2.2.3 Creating Gate-Level Netlists within coreConsultant
	2.2.4 Verifying the DW_apb_i2c within coreConsultant
	2.2.5 Running Leda on Generated Code with coreConsultant
	2.2.6 Running SpyGlass® Lint and SpyGlass® CDC
	2.2.6.1 Fixed Settings
	2.2.6.2 SpyGlass Lint
	2.2.6.3 SpyGlass CDC

	2.3 Overview of the coreAssembler Configuration and Integration Process
	2.3.1 coreAssembler Usage
	2.3.2 Configuring the DW_apb_i2c within a Subsystem
	2.3.3 Creating Gate-Level Netlists within coreAssembler
	2.3.4 Verifying the DW_apb_i2c within coreAssembler
	2.3.5 Running Leda on Generated Code with coreAssembler
	2.3.6 Running Spyglass on Generated Code with coreAssembler

	2.4 Database Files
	2.4.1 Design/HDL Files
	2.4.1.1 RTL-Level Files
	2.4.1.2 Simulation Model Files

	2.4.2 Synthesis Files
	2.4.3 Verification Reference Files

	3 Functional Description
	3.1 Overview
	3.2 I2C Terminology
	3.2.1 I2C Bus Terms
	3.2.2 Bus Transfer Terms

	3.3 I2C Behavior
	3.3.1 START and STOP Generation
	3.3.2 Combined Formats

	3.4 I2C Protocols
	3.4.1 START and STOP Conditions
	3.4.2 Addressing Slave Protocol
	3.4.2.1 7-bit Address Format
	3.4.2.2 10-bit Address Format

	3.4.3 Transmitting and Receiving Protocol
	3.4.3.1 Master-Transmitter and Slave-Receiver
	3.4.3.2 Master-Receiver and Slave-Transmitter

	3.4.4 START BYTE Transfer Protocol

	3.5 Tx FIFO Management and START, STOP and RESTART Generation
	3.5.1 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 0
	3.5.2 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 1

	3.6 Multiple Master Arbitration
	3.7 Clock Synchronization
	3.8 Operation Modes
	3.8.1 Slave Mode Operation
	3.8.1.1 Initial Configuration
	3.8.1.2 Slave-Transmitter Operation for a Single Byte
	3.8.1.3 Slave-Receiver Operation for a Single Byte
	3.8.1.4 Slave-Transfer Operation For Bulk Transfers

	3.8.2 Master Mode Operation
	3.8.2.1 Initial Configuration
	3.8.2.2 Dynamic IC_TAR or IC_10BITADDR_MASTER Update
	3.8.2.3 Master Transmit and Master Receive

	3.8.3 Disabling DW_apb_i2c
	3.8.3.1 Procedure

	3.8.4 Aborting I2C Transfers
	3.8.4.1 Procedure

	3.9 Spike Suppression
	3.10 Fast Mode Plus Operation
	3.11 Bus Clear Feature
	3.11.1 SDA Line Stuck at LOW Recovery
	3.11.2 SCL Line is Stuck at LOW

	3.12 Device ID
	3.13 Ultra-Fast Speed Mode
	3.14 SMBus/PMBus
	3.14.1 tTimeout,MIN Parameter
	3.14.2 Master Device Clock Extension
	3.14.3 Slave Device Clock Extension
	3.14.4 SMBDAT Low Timeout
	3.14.5 Bus Protocols
	3.14.6 SMBUS Address Resolution Protocol
	3.14.6.1 Procedure to Perform ARP in Master Mode
	3.14.6.2 Procedure to Perform ARP in Slave Mode

	3.14.7 SMBUS Additional Slave Address
	3.14.8 SMBUS Optional Signals
	3.14.8.1 SMBus Suspend Signal
	3.14.8.2 SMBus Alert Signal

	3.15 IC_CLK Frequency Configuration
	3.15.1 Minimum High and Low Counts in SS, FS, FM+ and HS Modes With IC_CLK_FREQ_OPTIMIZATION = 0.
	3.15.2 Minimum High and Low Counts in SS, FS, FM+ and HS Modes With IC_CLK_FREQ_OPTIMIZATION = 1
	3.15.3 Minimum High and Low counts in Ultra-Fast mode (IC_ULTRA_FAST_MODE = 1)
	3.15.4 Minimum IC_CLK Frequency
	3.15.4.1 Standard Mode (SM), Fast Mode (FM), and Fast Mode Plus (FM+) with IC_CLK_FREQ_OPTIMIZATION = 0
	3.15.4.2 High-Speed (HS) Mode With IC_CLK_FREQ_OPTIMIZATION = 0
	3.15.4.3 SM, FM, FM+ and HS Modes With IC_CLK_FREQ_OPTIMIZATION = 1
	3.15.4.4 ULTRA-FAST Mode
	3.15.4.5 Calculating High and Low Counts with IC_CLK_FREQ_OPTIMIZATION = 0
	3.15.4.6 Calculating High and Low counts with IC_CLK_FREQ_OPTIMIZATION = 1

	3.16 SDA Hold Time
	3.16.1 SDA Hold Timings in Receiver
	3.16.2 SDA Hold Timings in Transmitter

	3.17 DMA Controller Interface
	3.17.1 Enabling the DMA Controller Interface
	3.17.2 Overview of Operation
	3.17.3 Transmit Watermark Level and Transmit FIFO Underflow
	3.17.4 Choosing the Transmit Watermark Level
	3.17.4.1 Case 1: IC_DMA_TDLR = 2
	3.17.4.2 Case 2: IC_DMA_TDLR = 6

	3.17.5 Selecting DEST_MSIZE and Transmit FIFO Overflow
	3.17.6 Receive Watermark Level and Receive FIFO Overflow
	3.17.7 Choosing the Receive Watermark level
	3.17.8 Selecting SRC_MSIZE and Receive FIFO Underflow
	3.17.9 Handshaking Interface Operation
	3.17.9.1 dma_tx_req, dma_rx_req
	3.17.9.2 dma_tx_single, dma_rx_single

	3.18 APB Interface

	4 Parameters
	4.1 Parameter Descriptions
	4.2 Configuration Parameters

	5 Signal Descriptions
	5.1 Interrupts Signals
	5.2 I2C Interface (Master/Slave) Signals
	5.3 APB Slave Interface Signals
	5.4 DMA Interface Signals
	5.5 SMBus Interface Signals
	5.6 I2C Debug Signals

	6 Registers
	6.1 Register Memory Map
	6.2 Operation of Interrupt Registers
	6.3 Registers and Field Descriptions
	6.3.1 IC_CON
	6.3.2 IC_TAR
	6.3.3 IC_SAR
	6.3.4 IC_HS_MADDR
	6.3.5 IC_DATA_CMD
	6.3.6 IC_SS_SCL_HCNT
	6.3.7 IC_SS_SCL_LCNT
	6.3.8 IC_FS_SCL_HCNT
	6.3.9 IC_FS_SCL_LCNT
	6.3.10 IC_HS_SCL_HCNT
	6.3.11 IC_HS_SCL_LCNT
	6.3.12 IC_INTR_STAT
	6.3.13 IC_INTR_MASK
	6.3.14 IC_RAW_INTR_STAT
	6.3.15 IC_RX_TL
	6.3.16 IC_TX_TL
	6.3.17 IC_CLR_INTR
	6.3.18 IC_CLR_RX_UNDER
	6.3.19 IC_CLR_RX_OVER
	6.3.20 IC_CLR_TX_OVER
	6.3.21 IC_CLR_RD_REQ
	6.3.22 IC_CLR_TX_ABRT
	6.3.23 IC_CLR_RX_DONE
	6.3.24 IC_CLR_ACTIVITY
	6.3.25 IC_CLR_STOP_DET
	6.3.26 IC_CLR_START_DET
	6.3.27 IC_CLR_GEN_CALL
	6.3.28 IC_ENABLE
	6.3.29 IC_STATUS
	6.3.30 IC_TXFLR
	6.3.31 IC_RXFLR
	6.3.32 IC_SDA_HOLD
	6.3.33 IC_TX_ABRT_SOURCE
	6.3.34 IC_SLV_DATA_NACK_ONLY
	6.3.35 IC_DMA_CR
	6.3.36 IC_DMA_TDLR
	6.3.37 IC_DMA_RDLR
	6.3.38 IC_SDA_SETUP
	6.3.39 IC_ACK_GENERAL_CALL
	6.3.40 IC_ENABLE_STATUS
	6.3.41 IC_FS_SPKLEN
	6.3.42 IC_HS_SPKLEN
	6.3.43 IC_CLR_RESTART_DET
	6.3.44 IC_COMP_PARAM_1
	6.3.45 IC_COMP_VERSION
	6.3.46 IC_COMP_TYPE
	6.3.47 IC_SCL_STUCK_AT_LOW_TIMEOUT
	6.3.48 IC_SDA_STUCK_AT_LOW_TIMEOUT
	6.3.49 IC_CLR_SCL_STUCK_DET
	6.3.50 IC_DEVICE_ID
	6.3.51 IC_UFM_SCL_HCNT
	6.3.52 IC_UFM_SCL_LCNT
	6.3.53 IC_UFM_SPKLEN
	6.3.54 IC_UFM_TBUF_CNT
	6.3.55 IC_SMBUS_CLOCK_LOW_SEXT
	6.3.56 IC_SMBUS_CLOCK_LOW_MEXT
	6.3.57 IC_SMBUS_THIGH_MAX_IDLE_COUNT
	6.3.58 IC_SMBUS_INTR_STAT
	6.3.59 IC_SMBUS_INTR_MASK
	6.3.60 IC_SMBUS_INTR_RAW_STATUS
	6.3.61 IC_CLR_SMBUS_INTR
	6.3.62 IC_OPTIONAL_SAR
	6.3.63 IC_SMBUS_UDID_LSB

	7 Internal Parameter Descriptions
	8 Programming the DW_apb_i2c
	8.1 Software Registers
	8.2 Software Drivers
	8.3 Programming Example
	8.4 Programming Flow for SCL and SDA Bus Recovery
	8.5 Programming Flow for Reading the Device ID
	8.6 Programming Flow for SMBUS Timeout in Master Mode
	8.7 Programming Flow for SMBUS Timeout in Slave Mode
	8.8 ARP Master Programming Flow
	8.9 ARP Slave Programming Flow
	8.10 SMBus SUSPEND Programming Flow in Host Mode
	8.11 SMBus SUSPEND Programming Flow in Device Mode
	8.12 SMBus ALERT Programming Flow in Host Mode
	8.13 SMBus ALERT Programming Flow in Device Mode
	8.14 Programming Flow Of DW_apb_i2c in Ultra-Fast Mode
	8.14.1 DW_apb_i2c Master Mode
	8.14.2 DW_apb_i2c Slave Mode

	9 Verification
	9.1 Overview of Vera Tests
	9.1.1 APB Slave Interface
	9.1.2 DW_apb_i2c Master Operation
	9.1.3 DW_apb_i2c Slave Operation
	9.1.4 DW_apb_i2c Interrupts
	9.1.5 DMA Handshaking Interface
	9.1.6 DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update
	9.1.7 Generate NACK as a Slave-Receiver
	9.1.8 SCL Held Low for Duration Specified in IC_SDA_SETUP
	9.1.9 Generate ACK/NACK for General Call

	9.2 Overview of DW_apb_i2c Testbench

	10 Integration Considerations
	10.1 Accessing Top-level Constraints
	10.1.1 Area
	10.1.2 Power Consumption

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_apb_i2c
	A.2 Synchronizer 1: Simple Double Register Synchronizer
	A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset

	B Glossary
	Index

