pinephone-nuttx/pmic.zig

445 lines
16 KiB
Zig
Raw Permalink Normal View History

2022-12-03 12:19:03 +08:00
//***************************************************************************
//
// Licensed to the Apache Software Foundation (ASF) under one or more
// contributor license agreements. See the NOTICE file distributed with
// this work for additional information regarding copyright ownership. The
// ASF licenses this file to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance with the
// License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
//***************************************************************************
//! PinePhone Power Management IC Driver for Apache NuttX RTOS
2022-12-03 16:37:14 +08:00
//! See https://lupyuen.github.io/articles/de#appendix-power-management-integrated-circuit
2022-12-09 19:58:37 +08:00
//! "A64 Page ???" refers to Allwinner A64 User Manual: https://github.com/lupyuen/pinephone-nuttx/releases/download/doc/Allwinner_A64_User_Manual_V1.1.pdf
2022-12-20 08:49:34 +08:00
//! "A80 Page ???" refers to Allwinner A80 User Manual: https://github.com/lupyuen/pinephone-nuttx/releases/download/doc/A80_User_Manual_v1.3.1_20150513.pdf
2022-12-15 08:39:09 +08:00
//! "AXP803 Page ???" refers to X-Powers AXP803 PMIC Datasheet: https://files.pine64.org/doc/datasheet/pine64/AXP803_Datasheet_V1.0.pdf
2022-12-03 12:19:03 +08:00
/// Import the Zig Standard Library
const std = @import("std");
/// Import NuttX Functions from C
const c = @cImport({
// NuttX Defines
@cDefine("__NuttX__", "");
@cDefine("NDEBUG", "");
@cDefine("FAR", "");
// NuttX Header Files
@cInclude("arch/types.h");
@cInclude("../../nuttx/include/limits.h");
@cInclude("nuttx/config.h");
@cInclude("inttypes.h");
@cInclude("unistd.h");
@cInclude("stdlib.h");
@cInclude("stdio.h");
});
2022-12-03 15:22:43 +08:00
/// PIO Base Address (CPUx-PORT) (A64 Page 376)
const PIO_BASE_ADDRESS = 0x01C2_0800;
2022-12-20 09:23:37 +08:00
/// Address of AXP803 PMIC on Reduced Serial Bus
2022-12-03 12:19:03 +08:00
const AXP803_RT_ADDR = 0x2d;
2022-12-20 08:49:34 +08:00
/// Reduced Serial Bus Base Address (R_RSB) (A64 Page 75)
2022-12-03 12:19:03 +08:00
const R_RSB_BASE_ADDRESS = 0x01f03400;
2022-12-20 08:49:34 +08:00
/// Reduced Serial Bus Offsets (A80 Page 922)
const RSB_CTRL = 0x00; // RSB Control Register
const RSB_STAT = 0x0c; // RSB Status Register
const RSB_AR = 0x10; // RSB Address Register
const RSB_DATA = 0x1c; // RSB Data Buffer Register
const RSB_CMD = 0x2c; // RSB Command Register
const RSB_DAR = 0x30; // RSB Device Address Register
2022-12-03 12:19:03 +08:00
2022-12-20 11:47:29 +08:00
/// Read a byte from Reduced Serial Bus (A80 Page 918)
2022-12-03 12:19:03 +08:00
const RSBCMD_RD8 = 0x8B;
2022-12-20 11:47:29 +08:00
/// Write a byte to Reduced Serial Bus (A80 Page 918)
2022-12-03 12:19:03 +08:00
const RSBCMD_WR8 = 0x4E;
/// Init Display Board.
2022-12-03 16:37:14 +08:00
/// Based on https://lupyuen.github.io/articles/de#appendix-power-management-integrated-circuit
2022-12-03 12:19:03 +08:00
pub export fn display_board_init() void {
debug("display_board_init: start", .{});
defer { debug("display_board_init: end", .{}); }
// Reset LCD Panel at PD23 (Active Low)
// assert reset: GPD(23), 0 // PD23 - LCD-RST (active low)
2022-12-03 15:22:43 +08:00
// Configure PD23 for Output
// Register PD_CFG2_REG (PD Configure Register 2)
// At PIO Offset 0x74 (A64 Page 387)
// Set PD23_SELECT (Bits 28 to 30) to 1 (Output)
2022-12-03 12:19:03 +08:00
// sunxi_gpio_set_cfgpin: pin=0x77, val=1
// sunxi_gpio_set_cfgbank: bank_offset=119, val=1
// clrsetbits 0x1c20874, 0xf0000000, 0x10000000
2022-12-03 15:22:43 +08:00
// TODO: Should 0xf0000000 be 0x70000000 instead?
2022-12-03 16:37:14 +08:00
debug("Configure PD23 for Output", .{});
2022-12-03 15:22:43 +08:00
const PD_CFG2_REG = PIO_BASE_ADDRESS + 0x74;
comptime { assert(PD_CFG2_REG == 0x1c20874); }
const PD23_SELECT: u31 = 0b001 << 28;
const PD23_MASK: u31 = 0b111 << 28;
comptime { assert(PD23_SELECT == 0x10000000); }
comptime { assert(PD23_MASK == 0x70000000); }
modreg32(PD23_SELECT, PD23_MASK, PD_CFG2_REG); // TODO: DMB
// Set PD23 to Low
// Register PD_DATA_REG (PD Data Register)
// At PIO Offset 0x7C (A64 Page 388)
// Set PD23 (Bit 23) to 0 (Low)
2022-12-03 12:19:03 +08:00
// sunxi_gpio_output: pin=0x77, val=0
// before: 0x1c2087c = 0x1c0000
// after: 0x1c2087c = 0x1c0000 (DMB)
2022-12-03 16:37:14 +08:00
debug("Set PD23 to Low", .{});
2022-12-03 15:22:43 +08:00
const PD_DATA_REG = PIO_BASE_ADDRESS + 0x7C;
comptime { assert(PD_DATA_REG == 0x1c2087c); }
const PD23: u24 = 1 << 23;
modreg32(0, PD23, PD_DATA_REG); // TODO: DMB
2022-12-03 12:19:03 +08:00
2022-12-15 09:02:14 +08:00
// Set DLDO1 Voltage to 3.3V
// DLDO1 powers the Front Camera / USB HSIC / I2C Sensors
// Register 0x15: DLDO1 Voltage Control (AXP803 Page 52)
// Set Voltage (Bits 0 to 4) to 26 (2.6V + 0.7V = 3.3V)
debug("Set DLDO1 Voltage to 3.3V", .{});
const DLDO1_Voltage_Control = 0x15;
const DLDO1_Voltage: u5 = 26 << 0;
const ret1 = pmic_write(DLDO1_Voltage_Control, DLDO1_Voltage);
assert(ret1 == 0);
// Power on DLDO1
// Register 0x12: Output Power On-Off Control 2 (AXP803 Page 51)
// Set DLDO1 On-Off Control (Bit 3) to 1 (Power On)
const Output_Power_On_Off_Control2 = 0x12;
const DLDO1_On_Off_Control: u4 = 1 << 3;
const ret2 = pmic_clrsetbits(Output_Power_On_Off_Control2, 0, DLDO1_On_Off_Control);
assert(ret2 == 0);
// Set LDO Voltage to 3.3V
// GPIO0LDO powers the Capacitive Touch Panel
// Register 0x91: GPIO0LDO and GPIO0 High Level Voltage Setting (AXP803 Page 77)
// Set GPIO0LDO and GPIO0 High Level Voltage (Bits 0 to 4) to 26 (2.6V + 0.7V = 3.3V)
debug("Set LDO Voltage to 3.3V", .{});
const GPIO0LDO_High_Level_Voltage_Setting = 0x91;
const GPIO0LDO_High_Level_Voltage: u5 = 26 << 0;
const ret3 = pmic_write(GPIO0LDO_High_Level_Voltage_Setting, GPIO0LDO_High_Level_Voltage);
assert(ret3 == 0);
// Enable LDO Mode on GPIO0
// Register 0x90: GPIO0 (GPADC) Control (AXP803 Page 76)
// Set GPIO0 Pin Function Control (Bits 0 to 2) to 0b11 (Low Noise LDO on)
debug("Enable LDO mode on GPIO0", .{});
const GPIO0_Control = 0x90;
const GPIO0_Pin_Function: u3 = 0b11 << 0;
const ret4 = pmic_write(GPIO0_Control, GPIO0_Pin_Function);
assert(ret4 == 0);
// Set DLDO2 Voltage to 1.8V
// DLDO2 powers the MIPI DSI Connector
// Register 0x16: DLDO2 Voltage Control (AXP803 Page 52)
// Set Voltage (Bits 0 to 4) to 11 (1.1V + 0.7V = 1.8V)
debug("Set DLDO2 Voltage to 1.8V", .{});
const DLDO2_Voltage_Control = 0x16;
const DLDO2_Voltage: u5 = 11 << 0;
const ret5 = pmic_write(DLDO2_Voltage_Control, DLDO2_Voltage);
assert(ret5 == 0);
// Power on DLDO2
// Register 0x12: Output Power On-Off Control 2 (AXP803 Page 51)
// Set DLDO2 On-Off Control (Bit 4) to 1 (Power On)
comptime { assert(Output_Power_On_Off_Control2 == 0x12); }
const DLDO2: u5 = 1 << 4;
const ret6 = pmic_clrsetbits(Output_Power_On_Off_Control2, 0x0, DLDO2);
assert(ret6 == 0);
2022-12-03 15:22:43 +08:00
2022-12-03 12:19:03 +08:00
// Wait for power supply and power-on init
2022-12-03 16:37:14 +08:00
debug("Wait for power supply and power-on init", .{});
2022-12-03 12:19:03 +08:00
_ = c.usleep(15000);
}
/// Write value to PMIC Register
fn pmic_write(
reg: u8,
val: u8
) i32 {
2022-12-20 11:28:18 +08:00
// Write to AXP803 PMIC on Reduced Serial Bus
2022-12-03 12:19:03 +08:00
debug(" pmic_write: reg=0x{x}, val=0x{x}", .{ reg, val });
2022-12-03 14:58:46 +08:00
const ret = rsb_write(AXP803_RT_ADDR, reg, val);
if (ret != 0) { debug(" pmic_write Error: ret={}", .{ ret }); }
return ret;
2022-12-03 12:19:03 +08:00
}
/// Read value from PMIC Register
fn pmic_read(
reg_addr: u8
) i32 {
2022-12-20 11:28:18 +08:00
// Read from AXP803 PMIC on Reduced Serial Bus
2022-12-03 12:19:03 +08:00
debug(" pmic_read: reg_addr=0x{x}", .{ reg_addr });
2022-12-03 14:58:46 +08:00
const ret = rsb_read(AXP803_RT_ADDR, reg_addr);
if (ret < 0) { debug(" pmic_read Error: ret={}", .{ ret }); }
return ret;
2022-12-03 12:19:03 +08:00
}
/// Clear and Set the PMIC Register Bits
fn pmic_clrsetbits(
reg: u8,
clr_mask: u8,
set_mask: u8
) i32 {
2022-12-20 11:28:18 +08:00
// Read from AXP803 PMIC on Reduced Serial Bus
2022-12-03 12:19:03 +08:00
debug(" pmic_clrsetbits: reg=0x{x}, clr_mask=0x{x}, set_mask=0x{x}", .{ reg, clr_mask, set_mask });
const ret = rsb_read(AXP803_RT_ADDR, reg);
if (ret < 0) { return ret; }
2022-12-20 11:28:18 +08:00
// Write to AXP803 PMIC on Reduced Serial Bus
2022-12-03 12:19:03 +08:00
const regval = (@intCast(u8, ret) & ~clr_mask) | set_mask;
return rsb_write(AXP803_RT_ADDR, reg, regval);
}
2022-12-20 11:28:18 +08:00
/// Read a byte from Reduced Serial Bus.
/// Returns -1 on error.
2022-12-03 12:19:03 +08:00
fn rsb_read(
rt_addr: u8,
reg_addr: u8
) i32 {
2022-12-20 11:47:29 +08:00
// RSB Command Register (RSB_CMD) (A80 Page 928)
// At RSB Offset 0x002C
// Set to 0x8B (RD8) to read one byte
2022-12-03 12:19:03 +08:00
debug(" rsb_read: rt_addr=0x{x}, reg_addr=0x{x}", .{ rt_addr, reg_addr });
2022-12-20 11:47:29 +08:00
putreg32(RSBCMD_RD8, R_RSB_BASE_ADDRESS + RSB_CMD); // TODO: DMB
// RSB Device Address Register (RSB_DAR) (A80 Page 928)
// At RSB Offset 0x0030
// Set RTA (Bits 16 to 23) to the Run-Time Address (0x2D for AXP803 PMIC)
2022-12-03 12:19:03 +08:00
const rt_addr_shift: u32 = @intCast(u32, rt_addr) << 16;
2022-12-20 08:49:34 +08:00
putreg32(rt_addr_shift, R_RSB_BASE_ADDRESS + RSB_DAR); // TODO: DMB
2022-12-03 12:19:03 +08:00
2022-12-20 11:47:29 +08:00
// RSB Address Register (RSB_AR) (A80 Page 926)
// At RSB Offset 0x0010
// Set to the Register Address that well read from AXP803 PMIC
putreg32(reg_addr, R_RSB_BASE_ADDRESS + RSB_AR); // TODO: DMB
// RSB Control Register (RSB_CTRL) (A80 Page 923)
// At RSB Offset 0x0000
// Set START_TRANS (Bit 7) to 1 (Start Transaction)
putreg32(0x80, R_RSB_BASE_ADDRESS + RSB_CTRL); // TODO: DMB
// Wait for RSB Status
2022-12-03 14:58:46 +08:00
const ret = rsb_wait_stat("Read RSB");
2022-12-03 12:19:03 +08:00
if (ret != 0) { return ret; }
2022-12-20 11:47:29 +08:00
// RSB Data Buffer Register (RSB_DATA) (A80 Page 926)
// At RSB Offset 0x001c
// Contains the Register Value read from AXP803 PMIC
2022-12-20 08:49:34 +08:00
return getreg8(R_RSB_BASE_ADDRESS + RSB_DATA);
2022-12-03 12:19:03 +08:00
}
2022-12-20 11:28:18 +08:00
/// Write a byte to Reduced Serial Bus.
/// Returns -1 on error.
2022-12-03 12:19:03 +08:00
fn rsb_write(
rt_addr: u8,
reg_addr: u8,
value: u8
) i32 {
2022-12-20 11:47:29 +08:00
// RSB Command Register (RSB_CMD) (A80 Page 928)
// At RSB Offset 0x002C
// Set to 0x4E (WR8) to write one byte
2022-12-03 12:19:03 +08:00
debug(" rsb_write: rt_addr=0x{x}, reg_addr=0x{x}, value=0x{x}", .{ rt_addr, reg_addr, value });
2022-12-20 11:47:29 +08:00
putreg32(RSBCMD_WR8, R_RSB_BASE_ADDRESS + RSB_CMD); // TODO: DMB
// RSB Device Address Register (RSB_DAR) (A80 Page 928)
// At RSB Offset 0x0030
// Set RTA (Bits 16 to 23) to the Run-Time Address (0x2D for AXP803 PMIC)
2022-12-03 12:19:03 +08:00
const rt_addr_shift: u32 = @intCast(u32, rt_addr) << 16;
2022-12-20 08:49:34 +08:00
putreg32(rt_addr_shift, R_RSB_BASE_ADDRESS + RSB_DAR); // TODO: DMB
2022-12-03 12:19:03 +08:00
2022-12-20 11:47:29 +08:00
// RSB Address Register (RSB_AR) (A80 Page 926)
// At RSB Offset 0x0010
// Set to the Register Address that well write to AXP803 PMIC
putreg32(reg_addr, R_RSB_BASE_ADDRESS + RSB_AR); // TODO: DMB
// RSB Data Buffer Register (RSB_DATA) (A80 Page 926)
// At RSB Offset 0x001c
// Set to the Register Value that will be written to AXP803 PMIC
putreg32(value, R_RSB_BASE_ADDRESS + RSB_DATA); // TODO: DMB
// RSB Control Register (RSB_CTRL) (A80 Page 923)
// At RSB Offset 0x0000
// Set START_TRANS (Bit 7) to 1 (Start Transaction)
putreg32(0x80, R_RSB_BASE_ADDRESS + RSB_CTRL); // TODO: DMB
// Wait for RSB Status
2022-12-03 14:58:46 +08:00
return rsb_wait_stat("Write RSB");
2022-12-03 12:19:03 +08:00
}
2022-12-20 11:28:18 +08:00
/// Wait for Reduced Serial Bus and read Status.
/// Returns -1 on error.
2022-12-03 12:19:03 +08:00
fn rsb_wait_stat(
desc: []const u8
) i32 {
2022-12-20 11:47:29 +08:00
// RSB Control Register (RSB_CTRL) (A80 Page 923)
// At RSB Offset 0x0000
// Wait for START_TRANS (Bit 7) to be 0 (Transaction Completed or Error)
2022-12-03 12:19:03 +08:00
const ret = rsb_wait_bit(desc, RSB_CTRL, 1 << 7);
2022-12-03 14:58:46 +08:00
if (ret != 0) {
debug("rsb_wait_stat Timeout ({s})", .{ desc });
return ret;
}
2022-12-03 12:19:03 +08:00
2022-12-20 11:47:29 +08:00
// RSB Status Register (RSB_STAT) (A80 Page 924)
// At RSB Offset 0x000c
// If TRANS_OVER (Bit 0) is 1, then RSB Transfer has completed without error
2022-12-03 12:19:03 +08:00
const reg = getreg32(R_RSB_BASE_ADDRESS + RSB_STAT);
if (reg == 0x01) { return 0; }
2022-12-03 14:58:46 +08:00
debug("rsb_wait_stat Error ({s}): 0x{x}", .{ desc, reg });
2022-12-03 12:19:03 +08:00
return -1;
}
2022-12-20 11:28:18 +08:00
/// Wait for Reduced Serial Bus Transaction to complete.
/// Returns -1 on error.
/// `offset` is RSB_CTRL
/// `mask` is 1 << 7
2022-12-03 12:19:03 +08:00
fn rsb_wait_bit(
desc: []const u8,
offset: u32,
mask: u32
) i32 {
// Wait for transaction to complete
var tries: u32 = 100000;
while (true) {
2022-12-20 11:47:29 +08:00
// RSB Control Register (RSB_CTRL) (A80 Page 923)
// At RSB Offset 0x0000
// Wait for START_TRANS (Bit 7) to be 0 (Transaction Completed or Error)
2022-12-20 11:28:18 +08:00
// `offset` is RSB_CTRL
// `mask` is 1 << 7
2022-12-03 12:19:03 +08:00
const reg = getreg32(R_RSB_BASE_ADDRESS + offset);
if (reg & mask == 0) { break; }
// Check for transaction timeout
tries -= 1;
if (tries == 0) {
2022-12-03 14:58:46 +08:00
debug("rsb_wait_bit Timeout ({s})", .{ desc });
2022-12-03 12:19:03 +08:00
return -1;
}
}
return 0;
}
/// Modify the specified bits in a memory mapped register.
/// Note: Parameters are different from modifyreg32
/// Based on https://github.com/apache/nuttx/blob/master/arch/arm64/src/common/arm64_arch.h#L473
fn modreg32(
comptime val: u32, // Bits to set, like (1 << bit)
comptime mask: u32, // Bits to clear, like (1 << bit)
addr: u64 // Address to modify
) void {
comptime { assert(val & mask == val); }
debug(" *0x{x}: clear 0x{x}, set 0x{x}", .{ addr, mask, val & mask });
putreg32(
(getreg32(addr) & ~(mask))
| ((val) & (mask)),
(addr)
);
}
/// Get the 8-bit value at the address
fn getreg8(addr: u64) u8 {
const ptr = @intToPtr(*const volatile u8, addr);
return ptr.*;
}
/// Get the 32-bit value at the address
fn getreg32(addr: u64) u32 {
const ptr = @intToPtr(*const volatile u32, addr);
return ptr.*;
}
/// Set the 32-bit value at the address
fn putreg32(val: u32, addr: u64) void {
if (enableLog) { debug(" *0x{x} = 0x{x}", .{ addr, val }); }
const ptr = @intToPtr(*volatile u32, addr);
ptr.* = val;
}
/// Set to False to disable log
var enableLog = true;
///////////////////////////////////////////////////////////////////////////////
// Panic Handler
/// Called by Zig when it hits a Panic. We print the Panic Message, Stack Trace and halt. See
/// https://andrewkelley.me/post/zig-stack-traces-kernel-panic-bare-bones-os.html
/// https://github.com/ziglang/zig/blob/master/lib/std/builtin.zig#L763-L847
pub fn panic(
message: []const u8,
_stack_trace: ?*std.builtin.StackTrace
) noreturn {
// Print the Panic Message
_ = _stack_trace;
_ = puts("\n!ZIG PANIC!");
_ = puts(@ptrCast([*c]const u8, message));
// Print the Stack Trace
_ = puts("Stack Trace:");
var it = std.debug.StackIterator.init(@returnAddress(), null);
while (it.next()) |return_address| {
_ = printf("%p\n", return_address);
}
// Halt
c.exit(1);
}
///////////////////////////////////////////////////////////////////////////////
// Logging
/// Called by Zig for `std.log.debug`, `std.log.info`, `std.log.err`, ...
/// https://gist.github.com/leecannon/d6f5d7e5af5881c466161270347ce84d
pub fn log(
comptime _message_level: std.log.Level,
comptime _scope: @Type(.EnumLiteral),
comptime format: []const u8,
args: anytype,
) void {
_ = _message_level;
_ = _scope;
// Format the message
var buf: [100]u8 = undefined; // Limit to 100 chars
var slice = std.fmt.bufPrint(&buf, format, args)
catch { _ = puts("*** log error: buf too small"); return; };
// Terminate the formatted message with a null
var buf2: [buf.len + 1 : 0]u8 = undefined;
std.mem.copy(
u8,
buf2[0..slice.len],
slice[0..slice.len]
);
buf2[slice.len] = 0;
// Print the formatted message
_ = puts(&buf2);
}
///////////////////////////////////////////////////////////////////////////////
// Imported Functions and Variables
/// For safety, we import these functions ourselves to enforce Null-Terminated Strings.
/// We changed `[*c]const u8` to `[*:0]const u8`
extern fn printf(format: [*:0]const u8, ...) c_int;
extern fn puts(str: [*:0]const u8) c_int;
/// Aliases for Zig Standard Library
const assert = std.debug.assert;
const debug = std.log.debug;