//*************************************************************************** // // Licensed to the Apache Software Foundation (ASF) under one or more // contributor license agreements. See the NOTICE file distributed with // this work for additional information regarding copyright ownership. The // ASF licenses this file to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance with the // License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // //*************************************************************************** //! PinePhone MIPI DSI Driver for Apache NuttX RTOS. //! This MIPI DSI Interface is compatible with Zephyr MIPI DSI: //! https://github.com/zephyrproject-rtos/zephyr/blob/main/include/zephyr/drivers/mipi_dsi.h /// Import the Zig Standard Library const std = @import("std"); /// Import the LoRaWAN Library from C const c = @cImport({ // NuttX Defines @cDefine("__NuttX__", ""); @cDefine("NDEBUG", ""); @cDefine("FAR", ""); // NuttX Header Files @cInclude("arch/types.h"); @cInclude("../../nuttx/include/limits.h"); @cInclude("nuttx/config.h"); @cInclude("inttypes.h"); @cInclude("unistd.h"); @cInclude("stdlib.h"); @cInclude("stdio.h"); }); /////////////////////////////////////////////////////////////////////////////// // MIPI DSI Long and Short Packets // Compose MIPI DSI Long Packet. See https://lupyuen.github.io/articles/dsi#long-packet-for-mipi-dsi fn composeLongPacket( pkt: []u8, // Buffer for the Long Packet channel: u8, // Virtual Channel ID cmd: u8, // DCS Command buf: [*c]const u8, // Transmit Buffer len: usize // Buffer Length ) []const u8 { // Returns the Long Packet debug("composeLongPacket: channel={}, cmd=0x{x}, len={}", .{ channel, cmd, len }); // Data Identifier (DI) (1 byte): // - Virtual Channel Identifier (Bits 6 to 7) // - Data Type (Bits 0 to 5) // (Virtual Channel should be 0, I think) assert(channel < 4); assert(cmd < (1 << 6)); const vc: u8 = channel; const dt: u8 = cmd; const di: u8 = (vc << 6) | dt; // Word Count (WC) (2 bytes): // - Number of bytes in the Packet Payload const wc: u16 = @intCast(u16, len); const wcl: u8 = @intCast(u8, wc & 0xff); const wch: u8 = @intCast(u8, wc >> 8); // Data Identifier + Word Count (3 bytes): For computing Error Correction Code (ECC) const di_wc = [3]u8 { di, wcl, wch }; // Compute Error Correction Code (ECC) for Data Identifier + Word Count const ecc: u8 = computeEcc(di_wc); // Packet Header (4 bytes): // - Data Identifier + Word Count + Error Correction COde const header = [4]u8 { di_wc[0], di_wc[1], di_wc[2], ecc }; // Packet Payload: // - Data (0 to 65,541 bytes): // Number of data bytes should match the Word Count (WC) assert(len <= 65_541); const payload = buf[0..len]; // Checksum (CS) (2 bytes): // - 16-bit Cyclic Redundancy Check (CRC) of the Payload (not the entire packet) const cs: u16 = computeCrc(payload); const csl: u8 = @intCast(u8, cs & 0xff); const csh: u8 = @intCast(u8, cs >> 8); // Packet Footer (2 bytes) // - Checksum (CS) const footer = [2]u8 { csl, csh }; // Packet: // - Packet Header (4 bytes) // - Payload (`len` bytes) // - Packet Footer (2 bytes) const pktlen = header.len + len + footer.len; assert(pktlen <= pkt.len); // Increase `pkt` size std.mem.copy(u8, pkt[0..header.len], &header); // 4 bytes std.mem.copy(u8, pkt[header.len..], payload); // `len` bytes std.mem.copy(u8, pkt[(header.len + len)..], &footer); // 2 bytes // Return the packet const result = pkt[0..pktlen]; return result; } // Compose MIPI DSI Short Packet. See https://lupyuen.github.io/articles/dsi#appendix-short-packet-for-mipi-dsi fn composeShortPacket( pkt: []u8, // Buffer for the Long Packet channel: u8, // Virtual Channel ID cmd: u8, // DCS Command buf: [*c]const u8, // Transmit Buffer len: usize // Buffer Length ) []const u8 { // Returns the Short Packet debug("composeShortPacket: channel={}, cmd=0x{x}, len={}", .{ channel, cmd, len }); assert(len == 1 or len == 2); // From BL808 Reference Manual (Page 201): https://github.com/sipeed/sipeed2022_autumn_competition/blob/main/assets/BL808_RM_en.pdf // A Short Packet consists of 8-bit data identification (DI), // two bytes of commands or data, and 8-bit ECC. // The length of a short packet is 4 bytes including ECC. // Thus a MIPI DSI Short Packet (compared with Long Packet)... // - Doesn't have Packet Payload and Packet Footer (CRC) // - Instead of Word Count (WC), the Packet Header now has 2 bytes of data // Everything else is the same. // Data Identifier (DI) (1 byte): // - Virtual Channel Identifier (Bits 6 to 7) // - Data Type (Bits 0 to 5) // (Virtual Channel should be 0, I think) assert(channel < 4); assert(cmd < (1 << 6)); const vc: u8 = channel; const dt: u8 = cmd; const di: u8 = (vc << 6) | dt; // Data (2 bytes), fill with 0 if Second Byte is missing const data = [2]u8 { buf[0], // First Byte if (len == 2) buf[1] else 0, // Second Byte }; // Data Identifier + Data (3 bytes): For computing Error Correction Code (ECC) const di_data = [3]u8 { di, data[0], data[1] }; // Compute Error Correction Code (ECC) for Data Identifier + Word Count const ecc: u8 = computeEcc(di_data); // Packet Header (4 bytes): // - Data Identifier + Word Count + Error Correction COde const header = [4]u8 { di_data[0], di_data[1], di_data[2], ecc }; // Packet: // - Packet Header (4 bytes) const pktlen = header.len; assert(pktlen <= pkt.len); // Increase `pkt` size std.mem.copy(u8, pkt[0..header.len], &header); // 4 bytes // Return the packet const result = pkt[0..pktlen]; return result; } /// Compute the Error Correction Code (ECC) (1 byte): /// Allow single-bit errors to be corrected and 2-bit errors to be detected in the Packet Header /// See "12.3.6.12: Error Correction Code", Page 208 of BL808 Reference Manual: /// https://github.com/sipeed/sipeed2022_autumn_competition/blob/main/assets/BL808_RM_en.pdf fn computeEcc( di_wc: [3]u8 // Data Identifier + Word Count (3 bytes) ) u8 { // Combine DI and WC into a 24-bit word var di_wc_word: u32 = di_wc[0] | (@intCast(u32, di_wc[1]) << 8) | (@intCast(u32, di_wc[2]) << 16); // Extract the 24 bits from the word var d = std.mem.zeroes([24]u1); var i: usize = 0; while (i < 24) : (i += 1) { d[i] = @intCast(u1, di_wc_word & 1); di_wc_word >>= 1; } // Compute the ECC bits var ecc = std.mem.zeroes([8]u1); ecc[7] = 0; ecc[6] = 0; ecc[5] = d[10] ^ d[11] ^ d[12] ^ d[13] ^ d[14] ^ d[15] ^ d[16] ^ d[17] ^ d[18] ^ d[19] ^ d[21] ^ d[22] ^ d[23]; ecc[4] = d[4] ^ d[5] ^ d[6] ^ d[7] ^ d[8] ^ d[9] ^ d[16] ^ d[17] ^ d[18] ^ d[19] ^ d[20] ^ d[22] ^ d[23]; ecc[3] = d[1] ^ d[2] ^ d[3] ^ d[7] ^ d[8] ^ d[9] ^ d[13] ^ d[14] ^ d[15] ^ d[19] ^ d[20] ^ d[21] ^ d[23]; ecc[2] = d[0] ^ d[2] ^ d[3] ^ d[5] ^ d[6] ^ d[9] ^ d[11] ^ d[12] ^ d[15] ^ d[18] ^ d[20] ^ d[21] ^ d[22]; ecc[1] = d[0] ^ d[1] ^ d[3] ^ d[4] ^ d[6] ^ d[8] ^ d[10] ^ d[12] ^ d[14] ^ d[17] ^ d[20] ^ d[21] ^ d[22] ^ d[23]; ecc[0] = d[0] ^ d[1] ^ d[2] ^ d[4] ^ d[5] ^ d[7] ^ d[10] ^ d[11] ^ d[13] ^ d[16] ^ d[20] ^ d[21] ^ d[22] ^ d[23]; // Merge the ECC bits return @intCast(u8, ecc[0]) | (@intCast(u8, ecc[1]) << 1) | (@intCast(u8, ecc[2]) << 2) | (@intCast(u8, ecc[3]) << 3) | (@intCast(u8, ecc[4]) << 4) | (@intCast(u8, ecc[5]) << 5) | (@intCast(u8, ecc[6]) << 6) | (@intCast(u8, ecc[7]) << 7); } /// Compute 16-bit Cyclic Redundancy Check (CRC). /// See "12.3.6.13: Packet Footer", Page 210 of BL808 Reference Manual: /// https://github.com/sipeed/sipeed2022_autumn_competition/blob/main/assets/BL808_RM_en.pdf fn computeCrc( data: []const u8 ) u16 { // Use CRC-16-CCITT (x^16 + x^12 + x^5 + 1) const crc = crc16ccitt(data, 0xffff); // debug("computeCrc: len={}, crc=0x{x}", .{ data.len, crc }); // dump_buffer(&data[0], data.len); return crc; } /// Return a 16-bit CRC-CCITT of the contents of the `src` buffer. /// Based on https://github.com/lupyuen/incubator-nuttx/blob/pinephone/libs/libc/misc/lib_crc16.c fn crc16ccitt(src: []const u8, crc16val: u16) u16 { var i: usize = 0; var v = crc16val; while (i < src.len) : (i += 1) { v = (v >> 8) ^ crc16ccitt_tab[(v ^ src[i]) & 0xff]; } return v; } /// From CRC-16-CCITT (x^16 + x^12 + x^5 + 1) const crc16ccitt_tab = [256]u16 { 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78, }; /////////////////////////////////////////////////////////////////////////////// // MIPI DSI Operations for Allwinner A64 /// MIPI DSI Processor-to-Peripheral transaction types: /// DCS Long Write. See https://lupyuen.github.io/articles/dsi#display-command-set-for-mipi-dsi const MIPI_DSI_DCS_LONG_WRITE = 0x39; /// DCS Short Write (Without Parameter) const MIPI_DSI_DCS_SHORT_WRITE = 0x05; /// DCS Short Write (With Parameter) const MIPI_DSI_DCS_SHORT_WRITE_PARAM = 0x15; /// Base Address of Allwinner A64 MIPI DSI Controller. See https://lupyuen.github.io/articles/dsi#a64-registers-for-mipi-dsi const DSI_BASE_ADDRESS = 0x01CA_0000; /// Instru_En is Bit 0 of DSI_BASIC_CTL0_REG /// (DSI Configuration Register 0) at Offset 0x10 const DSI_BASIC_CTL0_REG = DSI_BASE_ADDRESS + 0x10; const Instru_En = 1 << 0; /// Write the DCS Command to MIPI DSI fn writeDcs(buf: []const u8) void { debug("writeDcs: len={}", .{ buf.len }); dump_buffer(&buf[0], buf.len); assert(buf.len > 0); // Do DCS Short Write or Long Write depending on command length const res = switch (buf.len) { // DCS Short Write (without parameter) 1 => nuttx_mipi_dsi_dcs_write(null, 0, MIPI_DSI_DCS_SHORT_WRITE, &buf[0], buf.len), // DCS Short Write (with parameter) 2 => nuttx_mipi_dsi_dcs_write(null, 0, MIPI_DSI_DCS_SHORT_WRITE_PARAM, &buf[0], buf.len), // DCS Long Write else => nuttx_mipi_dsi_dcs_write(null, 0, MIPI_DSI_DCS_LONG_WRITE, &buf[0], buf.len), }; assert(res == buf.len); } /// Write to MIPI DSI. See https://lupyuen.github.io/articles/dsi#transmit-packet-over-mipi-dsi pub export fn nuttx_mipi_dsi_dcs_write( dev: [*c]const mipi_dsi_device, // MIPI DSI Host Device channel: u8, // Virtual Channel ID cmd: u8, // DCS Command buf: [*c]const u8, // Transmit Buffer len: usize // Buffer Length ) isize { // On Success: Return number of written bytes. On Error: Return negative error code _ = dev; debug("mipi_dsi_dcs_write: channel={}, cmd=0x{x}, len={}", .{ channel, cmd, len }); if (cmd == MIPI_DSI_DCS_SHORT_WRITE) { assert(len == 1); } if (cmd == MIPI_DSI_DCS_SHORT_WRITE_PARAM) { assert(len == 2); } // Allocate Packet Buffer var pkt_buf = std.mem.zeroes([128]u8); // Compose Short or Long Packet depending on DCS Command const pkt = switch (cmd) { // For DCS Long Write: Compose Long Packet MIPI_DSI_DCS_LONG_WRITE => composeLongPacket(&pkt_buf, channel, cmd, buf, len), // For DCS Short Write (with and without parameter): // Compose Short Packet MIPI_DSI_DCS_SHORT_WRITE, MIPI_DSI_DCS_SHORT_WRITE_PARAM => composeShortPacket(&pkt_buf, channel, cmd, buf, len), // DCS Command not supported else => unreachable, }; // Dump the packet debug("packet: len={}", .{ pkt.len }); dump_buffer(&pkt[0], pkt.len); // Set the following bits to 1 in DSI_CMD_CTL_REG (DSI Low Power Control Register) at Offset 0x200: // RX_Overflow (Bit 26): Clear flag for "Receive Overflow" // RX_Flag (Bit 25): Clear flag for "Receive has started" // TX_Flag (Bit 9): Clear flag for "Transmit has started" // All other bits must be set to 0. const DSI_CMD_CTL_REG = DSI_BASE_ADDRESS + 0x200; const RX_Overflow = 1 << 26; const RX_Flag = 1 << 25; const TX_Flag = 1 << 9; putreg32( RX_Overflow | RX_Flag | TX_Flag, DSI_CMD_CTL_REG ); // Write the Long Packet to DSI_CMD_TX_REG // (DSI Low Power Transmit Package Register) at Offset 0x300 to 0x3FC const DSI_CMD_TX_REG = DSI_BASE_ADDRESS + 0x300; var addr: u64 = DSI_CMD_TX_REG; var i: usize = 0; while (i < pkt.len) : (i += 4) { // Fetch the next 4 bytes, fill with 0 if not available const b = [4]u32 { pkt[i], if (i + 1 < pkt.len) pkt[i + 1] else 0, if (i + 2 < pkt.len) pkt[i + 2] else 0, if (i + 3 < pkt.len) pkt[i + 3] else 0, }; // Merge the next 4 bytes into a 32-bit value const v: u32 = b[0] + (b[1] << 8) + (b[2] << 16) + (b[3] << 24); // Write the 32-bit value assert(addr <= DSI_BASE_ADDRESS + 0x3FC); modifyreg32(addr, 0xFFFF_FFFF, v); addr += 4; } // Set Packet Length - 1 in Bits 0 to 7 (TX_Size) of // DSI_CMD_CTL_REG (DSI Low Power Control Register) at Offset 0x200 modifyreg32(DSI_CMD_CTL_REG, 0xFF, @intCast(u32, pkt.len) - 1); // Set DSI_INST_JUMP_SEL_REG (Offset 0x48, undocumented) // to begin the Low Power Transmission (LPTX) const DSI_INST_JUMP_SEL_REG = DSI_BASE_ADDRESS + 0x48; const DSI_INST_ID_LPDT = 4; const DSI_INST_ID_LP11 = 0; const DSI_INST_ID_END = 15; putreg32( DSI_INST_ID_LPDT << (4 * DSI_INST_ID_LP11) | DSI_INST_ID_END << (4 * DSI_INST_ID_LPDT), DSI_INST_JUMP_SEL_REG ); // Disable DSI Processing then Enable DSI Processing disableDsiProcessing(); enableDsiProcessing(); // Wait for transmission to complete const res = waitForTransmit(); if (res < 0) { disableDsiProcessing(); return res; } // Return number of written bytes return @intCast(isize, len); } /// Wait for transmit to complete. Returns 0 if completed, -1 if timeout. /// See https://lupyuen.github.io/articles/dsi#transmit-packet-over-mipi-dsi fn waitForTransmit() isize { // Wait up to 5,000 microseconds var i: usize = 0; while (i < 5_000) : (i += 1) { // To check whether the transmission is complete, we poll on Instru_En if ((getreg32(DSI_BASIC_CTL0_REG) & Instru_En) == 0) { // If Instru_En is 0, then transmission is complete return 0; } // Sleep 1 microsecond _ = c.usleep(1); } // Return Timeout std.log.err("waitForTransmit: timeout", .{}); return -1; } /// Disable DSI Processing. See https://lupyuen.github.io/articles/dsi#transmit-packet-over-mipi-dsi fn disableDsiProcessing() void { // Set Instru_En to 0 modifyreg32(DSI_BASIC_CTL0_REG, Instru_En, 0); } /// Enable DSI Processing. See https://lupyuen.github.io/articles/dsi#transmit-packet-over-mipi-dsi fn enableDsiProcessing() void { // Set Instru_En to 1 modifyreg32(DSI_BASIC_CTL0_REG, Instru_En, Instru_En); } /// Atomically modify the specified bits in a memory mapped register. /// Based on https://github.com/lupyuen/incubator-nuttx/blob/pinephone/arch/arm/src/common/arm_modifyreg32.c#L38-L57 fn modifyreg32( addr: u64, // Address to modify clearbits: u32, // Bits to clear, like (1 << bit) setbits: u32 // Bit to set, like (1 << bit) ) void { debug("modifyreg32: addr=0x{x:0>3}, val=0x{x:0>8}", .{ addr - DSI_BASE_ADDRESS, setbits & clearbits }); // TODO: flags = spin_lock_irqsave(NULL); var regval = getreg32(addr); regval &= ~clearbits; regval |= setbits; putreg32(regval, addr); // TODO: spin_unlock_irqrestore(NULL, flags); } /// Get the 32-bit value at the address fn getreg32(addr: u64) u32 { const ptr = @intToPtr(*const volatile u32, addr); return ptr.*; } /// Set the 32-bit value at the address fn putreg32(val: u32, addr: u64) void { const ptr = @intToPtr(*volatile u32, addr); ptr.* = val; } /////////////////////////////////////////////////////////////////////////////// // ST7703 LCD Controller /// Initialise the ST7703 LCD Controller in Xingbangda XBD599 LCD Panel. /// See https://lupyuen.github.io/articles/dsi#initialise-lcd-controller pub export fn nuttx_panel_init() void { debug("nuttx_panel_init", .{}); // Most of these commands are documented in the ST7703 Datasheet: // https://files.pine64.org/doc/datasheet/pinephone/ST7703_DS_v01_20160128.pdf // Command #1 writeDcs(&[_]u8 { 0xB9, // SETEXTC (Page 131): Enable USER Command 0xF1, // Enable User command 0x12, // (Continued) 0x83 // (Continued) }); // Command #2 writeDcs(&[_]u8 { 0xBA, // SETMIPI (Page 144): Set MIPI related register 0x33, // Virtual Channel = 0 (VC_Main = 0) ; Number of Lanes = 4 (Lane_Number = 3) 0x81, // LDO = 1.7 V (DSI_LDO_SEL = 4) ; Terminal Resistance = 90 Ohm (RTERM = 1) 0x05, // MIPI Low High Speed driving ability = x6 (IHSRX = 5) 0xF9, // TXCLK speed in DSI LP mode = fDSICLK / 16 (Tx_clk_sel = 2) 0x0E, // Min HFP number in DSI mode = 14 (HFP_OSC = 14) 0x0E, // Min HBP number in DSI mode = 14 (HBP_OSC = 14) 0x20, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x44, // Undocumented 0x25, // Undocumented 0x00, // Undocumented 0x91, // Undocumented 0x0a, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x02, // Undocumented 0x4F, // Undocumented 0x11, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x37 // Undocumented }); // Command #3 writeDcs(&[_]u8 { 0xB8, // SETPOWER_EXT (Page 142): Set display related register 0x25, // External power IC or PFM: VSP = FL1002, VSN = FL1002 (PCCS = 2) ; VCSW1 / VCSW2 Frequency for Pumping VSP / VSN = 1/4 Hsync (ECP_DC_DIV = 5) 0x22, // VCSW1/VCSW2 soft start time = 15 ms (DT = 2) ; Pumping ratio of VSP / VSN with VCI = x2 (XDK_ECP = 1) 0x20, // PFM operation frequency FoscD = Fosc/1 (PFM_DC_DIV = 0) 0x03 // Enable power IC pumping frequency synchronization = Synchronize with external Hsync (ECP_SYNC_EN = 1) ; Enable VGH/VGL pumping frequency synchronization = Synchronize with external Hsync (VGX_SYNC_EN = 1) }); // Command #4 writeDcs(&[_]u8 { 0xB3, // SETRGBIF (Page 134): Control RGB I/F porch timing for internal use 0x10, // Vertical back porch HS number in Blank Frame Period = Hsync number 16 (VBP_RGB_GEN = 16) 0x10, // Vertical front porch HS number in Blank Frame Period = Hsync number 16 (VFP_RGB_GEN = 16) 0x05, // HBP OSC number in Blank Frame Period = OSC number 5 (DE_BP_RGB_GEN = 5) 0x05, // HFP OSC number in Blank Frame Period = OSC number 5 (DE_FP_RGB_GEN = 5) 0x03, // Undocumented 0xFF, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x00, // Undocumented 0x00 // Undocumented }); // Command #5 writeDcs(&[_]u8 { 0xC0, // SETSCR (Page 147): Set related setting of Source driving 0x73, // Source OP Amp driving period for positive polarity in Normal Mode: Source OP Period = 115*4/Fosc (N_POPON = 115) 0x73, // Source OP Amp driving period for negative polarity in Normal Mode: Source OP Period = 115*4/Fosc (N_NOPON = 115) 0x50, // Source OP Amp driving period for positive polarity in Idle mode: Source OP Period = 80*4/Fosc (I_POPON = 80) 0x50, // Source OP Amp dirivng period for negative polarity in Idle Mode: Source OP Period = 80*4/Fosc (I_NOPON = 80) 0x00, // (SCR Bits 24-31 = 0x00) 0xC0, // (SCR Bits 16-23 = 0xC0) 0x08, // Gamma bias current fine tune: Current xIbias = 4 (SCR Bits 9-13 = 4) ; (SCR Bits 8-15 = 0x08) 0x70, // Source and Gamma bias current core tune: Ibias = 1 (SCR Bits 0-3 = 0) ; Source bias current fine tune: Current xIbias = 7 (SCR Bits 4-8 = 7) ; (SCR Bits 0-7 = 0x70) 0x00 // Undocumented }); // Command #6 writeDcs(&[_]u8 { 0xBC, // SETVDC (Page 146): Control NVDDD/VDDD Voltage 0x4E // NVDDD voltage = -1.8 V (NVDDD_SEL = 4) ; VDDD voltage = 1.9 V (VDDD_SEL = 6) }); // Command #7 writeDcs(&[_]u8 { 0xCC, // SETPANEL (Page 154): Set display related register 0x0B // Enable reverse the source scan direction (SS_PANEL = 1) ; Normal vertical scan direction (GS_PANEL = 0) ; Normally black panel (REV_PANEL = 1) ; S1:S2:S3 = B:G:R (BGR_PANEL = 1) }); // Command #8 writeDcs(&[_]u8 { 0xB4, // SETCYC (Page 135): Control display inversion type 0x80 // Extra source for Zig-Zag Inversion = S2401 (ZINV_S2401_EN = 1) ; Row source data dislocates = Even row (ZINV_G_EVEN_EN = 0) ; Disable Zig-Zag Inversion (ZINV_EN = 0) ; Enable Zig-Zag1 Inversion (ZINV2_EN = 0) ; Normal mode inversion type = Column inversion (N_NW = 0) }); // Command #9 writeDcs(&[_]u8 { 0xB2, // SETDISP (Page 132): Control the display resolution 0xF0, // Gate number of vertical direction = 480 + (240*4) (NL = 240) 0x12, // (RES_V_LSB = 0) ; Non-display area source output control: Source output = VSSD (BLK_CON = 1) ; Channel number of source direction = 720RGB (RESO_SEL = 2) 0xF0 // Source voltage during Blanking Time when accessing Sleep-Out / Sleep-In command = GND (WHITE_GND_EN = 1) ; Blank timing control when access sleep out command: Blank Frame Period = 7 Frames (WHITE_FRAME_SEL = 7) ; Source output refresh control: Refresh Period = 0 Frames (ISC = 0) }); // Command #10 writeDcs(&[_]u8 { 0xE3, // SETEQ (Page 159): Set EQ related register 0x00, // Temporal spacing between HSYNC and PEQGND = 0*4/Fosc (PNOEQ = 0) 0x00, // Temporal spacing between HSYNC and NEQGND = 0*4/Fosc (NNOEQ = 0) 0x0B, // Source EQ GND period when Source up to positive voltage = 11*4/Fosc (PEQGND = 11) 0x0B, // Source EQ GND period when Source down to negative voltage = 11*4/Fosc (NEQGND = 11) 0x10, // Source EQ VCI period when Source up to positive voltage = 16*4/Fosc (PEQVCI = 16) 0x10, // Source EQ VCI period when Source down to negative voltage = 16*4/Fosc (NEQVCI = 16) 0x00, // Temporal period of PEQVCI1 = 0*4/Fosc (PEQVCI1 = 0) 0x00, // Temporal period of NEQVCI1 = 0*4/Fosc (NEQVCI1 = 0) 0x00, // (Reserved) 0x00, // (Reserved) 0xFF, // (Undocumented) 0x00, // (Reserved) 0xC0, // White pattern to protect GOA glass (ESD_DET_DATA_WHITE = 1) ; Enable ESD detection function to protect GOA glass (ESD_WHITE_EN = 1) 0x10 // No Need VSYNC (additional frame) after Sleep-In command to display sleep-in blanking frame then into Sleep-In State (SLPIN_OPTION = 1) ; Enable video function detection (VEDIO_NO_CHECK_EN = 0) ; Disable ESD white pattern scanning voltage pull ground (ESD_WHITE_GND_EN = 0) ; ESD detection function period = 0 Frames (ESD_DET_TIME_SEL = 0) }); // Command #11 writeDcs(&[_]u8 { 0xC6, // Undocumented 0x01, // Undocumented 0x00, // Undocumented 0xFF, // Undocumented 0xFF, // Undocumented 0x00 // Undocumented }); // Command #12 writeDcs(&[_]u8 { 0xC1, // SETPOWER (Page 149): Set related setting of power 0x74, // VGH Voltage Adjustment = 17 V (VBTHS = 7) ; VGL Voltage Adjustment = -11 V (VBTLS = 4) 0x00, // Enable VGH feedback voltage detection. Output voltage = VBTHS (FBOFF_VGH = 0) ; Enable VGL feedback voltage detection. Output voltage = VBTLS (FBOFF_VGL = 0) 0x32, // VSPROUT Voltage = (VRH[5:0] x 0.05 + 3.3) x (VREF/4.8) if VREF [4]=0 (VRP = 50) 0x32, // VSNROUT Voltage = (VRH[5:0] x 0.05 + 3.3) x (VREF/5.6) if VREF [4]=1 (VRN = 50) 0x77, // Undocumented 0xF1, // Enable VGL voltage Detect Function = VGL voltage Abnormal (VGL_DET_EN = 1) ; Enable VGH voltage Detect Function = VGH voltage Abnormal (VGH_DET_EN = 1) ; Enlarge VGL Voltage at "FBOFF_VGL=1" = "VGL=-15V" (VGL_TURBO = 1) ; Enlarge VGH Voltage at "FBOFF_VGH=1" = "VGH=20V" (VGH_TURBO = 1) ; (APS = 1) 0xFF, // Left side VGH stage 1 pumping frequency = 1.5 MHz (VGH1_L_DIV = 15) ; Left side VGL stage 1 pumping frequency = 1.5 MHz (VGL1_L_DIV = 15) 0xFF, // Right side VGH stage 1 pumping frequency = 1.5 MHz (VGH1_R_DIV = 15) ; Right side VGL stage 1 pumping frequency = 1.5 MHz (VGL1_R_DIV = 15) 0xCC, // Left side VGH stage 2 pumping frequency = 2.6 MHz (VGH2_L_DIV = 12) ; Left side VGL stage 2 pumping frequency = 2.6 MHz (VGL2_L_DIV = 12) 0xCC, // Right side VGH stage 2 pumping frequency = 2.6 MHz (VGH2_R_DIV = 12) ; Right side VGL stage 2 pumping frequency = 2.6 MHz (VGL2_R_DIV = 12) 0x77, // Left side VGH stage 3 pumping frequency = 4.5 MHz (VGH3_L_DIV = 7) ; Left side VGL stage 3 pumping frequency = 4.5 MHz (VGL3_L_DIV = 7) 0x77 // Right side VGH stage 3 pumping frequency = 4.5 MHz (VGH3_R_DIV = 7) ; Right side VGL stage 3 pumping frequency = 4.5 MHz (VGL3_R_DIV = 7) }); // Command #13 writeDcs(&[_]u8 { 0xB5, // SETBGP (Page 136): Internal reference voltage setting 0x07, // VREF Voltage: 4.2 V (VREF_SEL = 7) 0x07 // NVREF Voltage: 4.2 V (NVREF_SEL = 7) }); // Command #14 writeDcs(&[_]u8 { 0xB6, // SETVCOM (Page 137): Set VCOM Voltage 0x2C, // VCOMDC voltage at "GS_PANEL=0" = -0.67 V (VCOMDC_F = 0x2C) 0x2C // VCOMDC voltage at "GS_PANEL=1" = -0.67 V (VCOMDC_B = 0x2C) }); // Command #15 writeDcs(&[_]u8 { 0xBF, // Undocumented 0x02, // Undocumented 0x11, // Undocumented 0x00 // Undocumented }); // Command #16 writeDcs(&[_]u8 { 0xE9, // SETGIP1 (Page 163): Set forward GIP timing 0x82, // SHR0, SHR1, CHR, CHR2 refer to Internal DE (REF_EN = 1) ; (PANEL_SEL = 2) 0x10, // Starting position of GIP STV group 0 = 4102 HSYNC (SHR0 Bits 8-12 = 0x10) 0x06, // (SHR0 Bits 0-7 = 0x06) 0x05, // Starting position of GIP STV group 1 = 1442 HSYNC (SHR1 Bits 8-12 = 0x05) 0xA2, // (SHR1 Bits 0-7 = 0xA2) 0x0A, // Distance of STV rising edge and HYSNC = 10*2 Fosc (SPON Bits 0-7 = 0x0A) 0xA5, // Distance of STV falling edge and HYSNC = 165*2 Fosc (SPOFF Bits 0-7 = 0xA5) 0x12, // STV0_1 distance with STV0_0 = 1 HSYNC (SHR0_1 = 1) ; STV0_2 distance with STV0_0 = 2 HSYNC (SHR0_2 = 2) 0x31, // STV0_3 distance with STV0_0 = 3 HSYNC (SHR0_3 = 3) ; STV1_1 distance with STV1_0 = 1 HSYNC (SHR1_1 = 1) 0x23, // STV1_2 distance with STV1_0 = 2 HSYNC (SHR1_2 = 2) ; STV1_3 distance with STV1_0 = 3 HSYNC (SHR1_3 = 3) 0x37, // STV signal high pulse width = 3 HSYNC (SHP = 3) ; Total number of STV signal = 7 (SCP = 7) 0x83, // Starting position of GIP CKV group 0 (CKV0_0) = 131 HSYNC (CHR = 0x83) 0x04, // Distance of CKV rising edge and HYSNC = 4*2 Fosc (CON Bits 0-7 = 0x04) 0xBC, // Distance of CKV falling edge and HYSNC = 188*2 Fosc (COFF Bits 0-7 = 0xBC) 0x27, // CKV signal high pulse width = 2 HSYNC (CHP = 2) ; Total period cycle of CKV signal = 7 HSYNC (CCP = 7) 0x38, // Extra gate counter at blanking area: Gate number = 56 (USER_GIP_GATE = 0x38) 0x0C, // Left side GIP output pad signal = ??? (CGTS_L Bits 16-21 = 0x0C) 0x00, // (CGTS_L Bits 8-15 = 0x00) 0x03, // (CGTS_L Bits 0-7 = 0x03) 0x00, // Normal polarity of Left side GIP output pad signal (CGTS_INV_L Bits 16-21 = 0x00) 0x00, // (CGTS_INV_L Bits 8-15 = 0x00) 0x00, // (CGTS_INV_L Bits 0-7 = 0x00) 0x0C, // Right side GIP output pad signal = ??? (CGTS_R Bits 16-21 = 0x0C) 0x00, // (CGTS_R Bits 8-15 = 0x00) 0x03, // (CGTS_R Bits 0-7 = 0x03) 0x00, // Normal polarity of Right side GIP output pad signal (CGTS_INV_R Bits 16-21 = 0x00) 0x00, // (CGTS_INV_R Bits 8-15 = 0x00) 0x00, // (CGTS_INV_R Bits 0-7 = 0x00) 0x75, // Left side GIP output pad signal = ??? (COS1_L = 7) ; Left side GIP output pad signal = ??? (COS2_L = 5) 0x75, // Left side GIP output pad signal = ??? (COS3_L = 7) ; (COS4_L = 5) 0x31, // Left side GIP output pad signal = ??? (COS5_L = 3) ; (COS6_L = 1) 0x88, // Reserved (Parameter 32) 0x88, // Reserved (Parameter 33) 0x88, // Reserved (Parameter 34) 0x88, // Reserved (Parameter 35) 0x88, // Reserved (Parameter 36) 0x88, // Left side GIP output pad signal = ??? (COS17_L = 8) ; Left side GIP output pad signal = ??? (COS18_L = 8) 0x13, // Left side GIP output pad signal = ??? (COS19_L = 1) ; Left side GIP output pad signal = ??? (COS20_L = 3) 0x88, // Left side GIP output pad signal = ??? (COS21_L = 8) ; Left side GIP output pad signal = ??? (COS22_L = 8) 0x64, // Right side GIP output pad signal = ??? (COS1_R = 6) ; Right side GIP output pad signal = ??? (COS2_R = 4) 0x64, // Right side GIP output pad signal = ??? (COS3_R = 6) ; Right side GIP output pad signal = ??? (COS4_R = 4) 0x20, // Right side GIP output pad signal = ??? (COS5_R = 2) ; Right side GIP output pad signal = ??? (COS6_R = 0) 0x88, // Reserved (Parameter 43) 0x88, // Reserved (Parameter 44) 0x88, // Reserved (Parameter 45) 0x88, // Reserved (Parameter 46) 0x88, // Reserved (Parameter 47) 0x88, // Right side GIP output pad signal = ??? (COS17_R = 8) ; Right side GIP output pad signal = ??? (COS18_R = 8) 0x02, // Right side GIP output pad signal = ??? (COS19_R = 0) ; Right side GIP output pad signal = ??? (COS20_R = 2) 0x88, // Right side GIP output pad signal = ??? (COS21_R = 8) ; Right side GIP output pad signal = ??? (COS22_R = 8) 0x00, // (TCON_OPT = 0x00) 0x00, // (GIP_OPT Bits 16-22 = 0x00) 0x00, // (GIP_OPT Bits 8-15 = 0x00) 0x00, // (GIP_OPT Bits 0-7 = 0x00) 0x00, // Starting position of GIP CKV group 1 (CKV1_0) = 0 HSYNC (CHR2 = 0x00) 0x00, // Distance of CKV1 rising edge and HYSNC = 0*2 Fosc (CON2 Bits 0-7 = 0x00) 0x00, // Distance of CKV1 falling edge and HYSNC = 0*2 Fosc (COFF2 Bits 0-7 = 0x00) 0x00, // CKV1 signal high pulse width = 0 HSYNC (CHP2 = 0) ; Total period cycle of CKV1 signal = 0 HSYNC (CCP2 = 0) 0x00, // (CKS Bits 16-21 = 0x00) 0x00, // (CKS Bits 8-15 = 0x00) 0x00, // (CKS Bits 0-7 = 0x00) 0x00, // (COFF Bits 8-9 = 0) ; (CON Bits 8-9 = 0) ; (SPOFF Bits 8-9 = 0) ; (SPON Bits 8-9 = 0) 0x00 // (COFF2 Bits 8-9 = 0) ; (CON2 Bits 8-9 = 0) }); // Command #17 writeDcs(&[_]u8 { 0xEA, // SETGIP2 (Page 170): Set backward GIP timing 0x02, // YS2 Signal Mode = INYS1/INYS2 (YS2_SEL = 0) ; YS2 Signal Mode = INYS1/INYS2 (YS1_SEL = 0) ; Don't reverse YS2 signal (YS2_XOR = 0) ; Don't reverse YS1 signal (YS1_XOR = 0) ; Enable YS signal function (YS_FLAG_EN = 1) ; Disable ALL ON function (ALL_ON_EN = 0) 0x21, // (GATE = 0x21) 0x00, // (CK_ALL_ON_EN = 0) ; (STV_ALL_ON_EN = 0) ; Timing of YS1 and YS2 signal = ??? (CK_ALL_ON_WIDTH1 = 0) 0x00, // Timing of YS1 and YS2 signal = ??? (CK_ALL_ON_WIDTH2 = 0) 0x00, // Timing of YS1 and YS2 signal = ??? (CK_ALL_ON_WIDTH3 = 0) 0x00, // (YS_FLAG_PERIOD = 0) 0x00, // (YS2_SEL_2 = 0) ; (YS1_SEL_2 = 0) ; (YS2_XOR_2 = 0) ; (YS_FLAG_EN_2 = 0) ; (ALL_ON_EN_2 = 0) 0x00, // Distance of GIP ALL On rising edge and DE = ??? (USER_GIP_GATE1_2 = 0) 0x00, // (CK_ALL_ON_EN_2 = 0) ; (STV_ALL_ON_EN_2 = 0) ; (CK_ALL_ON_WIDTH1_2 = 0) 0x00, // (CK_ALL_ON_WIDTH2_2 = 0) 0x00, // (CK_ALL_ON_WIDTH3_2 = 0) 0x00, // (YS_FLAG_PERIOD_2 = 0) 0x02, // (COS1_L_GS = 0) ; (COS2_L_GS = 2) 0x46, // (COS3_L_GS = 4) ; (COS4_L_GS = 6) 0x02, // (COS5_L_GS = 0) ; (COS6_L_GS = 2) 0x88, // Reserved (Parameter 16) 0x88, // Reserved (Parameter 17) 0x88, // Reserved (Parameter 18) 0x88, // Reserved (Parameter 19) 0x88, // Reserved (Parameter 20) 0x88, // (COS17_L_GS = 8) ; (COS18_L_GS = 8) 0x64, // (COS19_L_GS = 6) ; (COS20_L_GS = 4) 0x88, // (COS21_L_GS = 8) ; (COS22_L_GS = 8) 0x13, // (COS1_R_GS = 1) ; (COS2_R_GS = 3) 0x57, // (COS3_R_GS = 5) ; (COS4_R_GS = 7) 0x13, // (COS5_R_GS = 1) ; (COS6_R_GS = 3) 0x88, // Reserved (Parameter 27) 0x88, // Reserved (Parameter 28) 0x88, // Reserved (Parameter 29) 0x88, // Reserved (Parameter 30) 0x88, // Reserved (Parameter 31) 0x88, // (COS17_R_GS = 8) ; (COS18_R_GS = 8) 0x75, // (COS19_R_GS = 7) ; (COS20_R_GS = 5) 0x88, // (COS21_R_GS = 8) ; (COS22_R_GS = 8) 0x23, // GIP output EQ signal: P_EQ = Yes, N_EQ = No (EQOPT = 2) ; GIP output EQ signal level: P_EQ = GND, N_EQ = GND (EQ_SEL = 3) 0x14, // Distance of EQ rising edge and HYSNC = 20 Fosc (EQ_DELAY = 0x14) 0x00, // Distance of EQ rising edge and HYSNC = 0 HSYNC (EQ_DELAY_HSYNC = 0) 0x00, // (HSYNC_TO_CL1_CNT10 Bits 8-9 = 0) 0x02, // GIP reference HSYNC between external HSYNC = 2 Fosc (HSYNC_TO_CL1_CNT10 Bits 0-7 = 2) 0x00, // Undocumented (Parameter 40) 0x00, // Undocumented (Parameter 41) 0x00, // Undocumented (Parameter 42) 0x00, // Undocumented (Parameter 43) 0x00, // Undocumented (Parameter 44) 0x00, // Undocumented (Parameter 45) 0x00, // Undocumented (Parameter 46) 0x00, // Undocumented (Parameter 47) 0x00, // Undocumented (Parameter 48) 0x00, // Undocumented (Parameter 49) 0x00, // Undocumented (Parameter 50) 0x00, // Undocumented (Parameter 51) 0x00, // Undocumented (Parameter 52) 0x00, // Undocumented (Parameter 53) 0x00, // Undocumented (Parameter 54) 0x03, // Undocumented (Parameter 55) 0x0A, // Undocumented (Parameter 56) 0xA5, // Undocumented (Parameter 57) 0x00, // Undocumented (Parameter 58) 0x00, // Undocumented (Parameter 59) 0x00, // Undocumented (Parameter 60) 0x00 // Undocumented (Parameter 61) }); // Command #18 writeDcs(&[_]u8 { 0xE0, // SETGAMMA (Page 158): Set the gray scale voltage to adjust the gamma characteristics of the TFT panel 0x00, // (PVR0 = 0x00) 0x09, // (PVR1 = 0x09) 0x0D, // (PVR2 = 0x0D) 0x23, // (PVR3 = 0x23) 0x27, // (PVR4 = 0x27) 0x3C, // (PVR5 = 0x3C) 0x41, // (PPR0 = 0x41) 0x35, // (PPR1 = 0x35) 0x07, // (PPK0 = 0x07) 0x0D, // (PPK1 = 0x0D) 0x0E, // (PPK2 = 0x0E) 0x12, // (PPK3 = 0x12) 0x13, // (PPK4 = 0x13) 0x10, // (PPK5 = 0x10) 0x12, // (PPK6 = 0x12) 0x12, // (PPK7 = 0x12) 0x18, // (PPK8 = 0x18) 0x00, // (NVR0 = 0x00) 0x09, // (NVR1 = 0x09) 0x0D, // (NVR2 = 0x0D) 0x23, // (NVR3 = 0x23) 0x27, // (NVR4 = 0x27) 0x3C, // (NVR5 = 0x3C) 0x41, // (NPR0 = 0x41) 0x35, // (NPR1 = 0x35) 0x07, // (NPK0 = 0x07) 0x0D, // (NPK1 = 0x0D) 0x0E, // (NPK2 = 0x0E) 0x12, // (NPK3 = 0x12) 0x13, // (NPK4 = 0x13) 0x10, // (NPK5 = 0x10) 0x12, // (NPK6 = 0x12) 0x12, // (NPK7 = 0x12) 0x18 // (NPK8 = 0x18) }); // Command #19 writeDcs(&[_]u8 { 0x11 // SLPOUT (Page 89): Turns off sleep mode (MIPI_DCS_EXIT_SLEEP_MODE) }); // Wait 120 milliseconds _ = c.usleep(120 * 1000); // Command #20 writeDcs(&[_]u8 { 0x29 // Display On (Page 97): Recover from DISPLAY OFF mode (MIPI_DCS_SET_DISPLAY_ON) }); } /////////////////////////////////////////////////////////////////////////////// // MIPI DSI Types /// MIPI DSI Device pub const mipi_dsi_device = extern struct { /// Number of Data Lanes data_lanes: u8, /// Display Timings timings: mipi_dsi_timings, /// Pixel Format pixfmt: u32, /// Mode Flags mode_flags: u32, }; /// MIPI DSI Read / Write Message pub const mipi_dsi_msg = extern struct { /// Payload Data Type type: u8, /// Flags controlling message transmission flags: u16, /// Command (only for DCS) cmd: u8, /// Transmit Buffer Length tx_len: usize, /// Transmit Buffer tx_buf: [*c]const u8, /// Receive Buffer Length rx_len: usize, /// Receive Buffer rx_buf: [*c]u8, }; /// MIPI DSI Display Timings pub const mipi_dsi_timings = extern struct { /// Horizontal active video hactive: u32, /// Horizontal front porch hfp: u32, /// Horizontal back porch hbp: u32, /// Horizontal sync length hsync: u32, /// Vertical active video vactive: u32, /// Vertical front porch vfp: u32, /// Vertical back porch vbp: u32, /// Vertical sync length vsync: u32, }; /////////////////////////////////////////////////////////////////////////////// // Test Functions /// Main Function for Null App pub export fn null_main(_argc: c_int, _argv: [*]const [*]const u8) c_int { _ = _argc; _ = _argv; test_zig(); return 0; } /// Zig Test Function pub export fn test_zig() void { _ = printf("HELLO ZIG ON PINEPHONE!\n"); // Allocate Packet Buffer var pkt_buf = std.mem.zeroes([128]u8); // Test Compose Short Packet (Without Parameter) debug("Testing Compose Short Packet (Without Parameter)...", .{}); const short_pkt = [_]u8 { 0x11, }; const short_pkt_result = composeShortPacket( &pkt_buf, // Packet Buffer 0, // Virtual Channel MIPI_DSI_DCS_SHORT_WRITE, // DCS Command &short_pkt, // Transmit Buffer short_pkt.len // Buffer Length ); debug("Result:", .{}); dump_buffer(&short_pkt_result[0], short_pkt_result.len); assert( // Verify result std.mem.eql( u8, short_pkt_result, &[_]u8 { 0x05, 0x11, 0x00, 0x36 } ) ); // Write to MIPI DSI // _ = nuttx_mipi_dsi_dcs_write( // null, // Device // 0, // Virtual Channel // MIPI_DSI_DCS_SHORT_WRITE, // DCS Command // &short_pkt, // Transmit Buffer // short_pkt.len // Buffer Length // ); // Test Compose Short Packet (With Parameter) debug("Testing Compose Short Packet (With Parameter)...", .{}); const short_pkt_param = [_]u8 { 0xbc, 0x4e, }; const short_pkt_param_result = composeShortPacket( &pkt_buf, // Packet Buffer 0, // Virtual Channel MIPI_DSI_DCS_SHORT_WRITE_PARAM, // DCS Command &short_pkt_param, // Transmit Buffer short_pkt_param.len // Buffer Length ); debug("Result:", .{}); dump_buffer(&short_pkt_param_result[0], short_pkt_param_result.len); assert( // Verify result std.mem.eql( u8, short_pkt_param_result, &[_]u8 { 0x15, 0xbc, 0x4e, 0x35 } ) ); // Write to MIPI DSI // _ = nuttx_mipi_dsi_dcs_write( // null, // Device // 0, // Virtual Channel // MIPI_DSI_DCS_SHORT_WRITE_PARAM, // DCS Command // &short_pkt_param, // Transmit Buffer // short_pkt_param.len // Buffer Length // ); // Test Compose Long Packet debug("Testing Compose Long Packet...", .{}); const long_pkt = [_]u8 { 0xe9, 0x82, 0x10, 0x06, 0x05, 0xa2, 0x0a, 0xa5, 0x12, 0x31, 0x23, 0x37, 0x83, 0x04, 0xbc, 0x27, 0x38, 0x0c, 0x00, 0x03, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x03, 0x00, 0x00, 0x00, 0x75, 0x75, 0x31, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x13, 0x88, 0x64, 0x64, 0x20, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x02, 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; const long_pkt_result = composeLongPacket( &pkt_buf, // Packet Buffer 0, // Virtual Channel MIPI_DSI_DCS_LONG_WRITE, // DCS Command &long_pkt, // Transmit Buffer long_pkt.len // Buffer Length ); debug("Result:", .{}); dump_buffer(&long_pkt_result[0], long_pkt_result.len); assert( // Verify result std.mem.eql( u8, long_pkt_result, &[_]u8 { 0x39, 0x40, 0x00, 0x25, 0xe9, 0x82, 0x10, 0x06, 0x05, 0xa2, 0x0a, 0xa5, 0x12, 0x31, 0x23, 0x37, 0x83, 0x04, 0xbc, 0x27, 0x38, 0x0c, 0x00, 0x03, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x03, 0x00, 0x00, 0x00, 0x75, 0x75, 0x31, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x13, 0x88, 0x64, 0x64, 0x20, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x02, 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x03, } ) ); // Write to MIPI DSI // _ = nuttx_mipi_dsi_dcs_write( // null, // Device // 0, // Virtual Channel // MIPI_DSI_DCS_LONG_WRITE, // DCS Command // &long_pkt, // Transmit Buffer // long_pkt.len // Buffer Length // ); } // Test Case for DCS Short Write (Without Parameter): // mipi_dsi_dcs_write: short len=1 // 11 // .{ 0x0300, 0x36001105 }, // header: 36001105 // .{ 0x0200, 0x00000003 }, // len: 3 // Test Case for DCS Short Write (With Parameter): // mipi_dsi_dcs_write: short len=2 // bc 4e // .{ 0x0300, 0x354ebc15 }, // header: 354ebc15 // .{ 0x0200, 0x00000003 }, // len: 3 // Test Case for DCS Long Write: // mipi_dsi_dcs_write: long len=64 // e9 82 10 06 05 a2 0a a5 // 12 31 23 37 83 04 bc 27 // 38 0c 00 03 00 00 00 0c // 00 03 00 00 00 75 75 31 // 88 88 88 88 88 88 13 88 // 64 64 20 88 88 88 88 88 // 88 02 88 00 00 00 00 00 // 00 00 00 00 00 00 00 00 // .{ 0x0300, 0x25004039 }, // header: 25004039 // display_zalloc: size=70 // .{ 0x0304, 0x061082e9 }, // .{ 0x0308, 0xa50aa205 }, // .{ 0x030c, 0x37233112 }, // .{ 0x0310, 0x27bc0483 }, // .{ 0x0314, 0x03000c38 }, // .{ 0x0318, 0x0c000000 }, // .{ 0x031c, 0x00000300 }, // .{ 0x0320, 0x31757500 }, // .{ 0x0324, 0x88888888 }, // .{ 0x0328, 0x88138888 }, // .{ 0x032c, 0x88206464 }, // .{ 0x0330, 0x88888888 }, // .{ 0x0334, 0x00880288 }, // .{ 0x0338, 0x00000000 }, // .{ 0x033c, 0x00000000 }, // .{ 0x0340, 0x00000000 }, // .{ 0x0344, 0x00000365 }, // payload[0]: 061082e9 // payload[1]: a50aa205 // payload[2]: 37233112 // payload[3]: 27bc0483 // payload[4]: 03000c38 // payload[5]: 0c000000 // payload[6]: 00000300 // payload[7]: 31757500 // payload[8]: 88888888 // payload[9]: 88138888 // payload[10]: 88206464 // payload[11]: 88888888 // payload[12]: 00880288 // payload[13]: 00000000 // payload[14]: 00000000 // payload[15]: 00000000 // payload[16]: 00000365 // .{ 0x0200, 0x00000045 }, // len: 69 // Expected Result for DCS Long Write: // packet: len=70 // 39 40 00 25 e9 82 10 06 // 05 a2 0a a5 12 31 23 37 // 83 04 bc 27 38 0c 00 03 // 00 00 00 0c 00 03 00 00 // 00 75 75 31 88 88 88 88 // 88 88 13 88 64 64 20 88 // 88 88 88 88 88 02 88 00 // 00 00 00 00 00 00 00 00 // 00 00 00 00 65 03 // modifyreg32: addr=0x300, val=0x25004039 // modifyreg32: addr=0x304, val=0x061082e9 // modifyreg32: addr=0x308, val=0xa50aa205 // modifyreg32: addr=0x30c, val=0x37233112 // modifyreg32: addr=0x310, val=0x27bc0483 // modifyreg32: addr=0x314, val=0x03000c38 // modifyreg32: addr=0x318, val=0x0c000000 // modifyreg32: addr=0x31c, val=0x00000300 // modifyreg32: addr=0x320, val=0x31757500 // modifyreg32: addr=0x324, val=0x88888888 // modifyreg32: addr=0x328, val=0x88138888 // modifyreg32: addr=0x32c, val=0x88206464 // modifyreg32: addr=0x330, val=0x88888888 // modifyreg32: addr=0x334, val=0x00880288 // modifyreg32: addr=0x338, val=0x00000000 // modifyreg32: addr=0x33c, val=0x00000000 // modifyreg32: addr=0x340, val=0x00000000 // modifyreg32: addr=0x344, val=0x00000365 // modifyreg32: addr=0x200, val=0x00000045 /////////////////////////////////////////////////////////////////////////////// // Panic Handler /// Called by Zig when it hits a Panic. We print the Panic Message, Stack Trace and halt. See /// https://andrewkelley.me/post/zig-stack-traces-kernel-panic-bare-bones-os.html /// https://github.com/ziglang/zig/blob/master/lib/std/builtin.zig#L763-L847 pub fn panic( message: []const u8, _stack_trace: ?*std.builtin.StackTrace ) noreturn { // Print the Panic Message _ = _stack_trace; _ = puts("\n!ZIG PANIC!"); _ = puts(@ptrCast([*c]const u8, message)); // Print the Stack Trace _ = puts("Stack Trace:"); var it = std.debug.StackIterator.init(@returnAddress(), null); while (it.next()) |return_address| { _ = printf("%p\n", return_address); } // Halt c.exit(1); } /////////////////////////////////////////////////////////////////////////////// // Logging /// Called by Zig for `std.log.debug`, `std.log.info`, `std.log.err`, ... /// https://gist.github.com/leecannon/d6f5d7e5af5881c466161270347ce84d pub fn log( comptime _message_level: std.log.Level, comptime _scope: @Type(.EnumLiteral), comptime format: []const u8, args: anytype, ) void { _ = _message_level; _ = _scope; // Format the message var buf: [100]u8 = undefined; // Limit to 100 chars var slice = std.fmt.bufPrint(&buf, format, args) catch { _ = puts("*** log error: buf too small"); return; }; // Terminate the formatted message with a null var buf2: [buf.len + 1 : 0]u8 = undefined; std.mem.copy( u8, buf2[0..slice.len], slice[0..slice.len] ); buf2[slice.len] = 0; // Print the formatted message _ = puts(&buf2); } /////////////////////////////////////////////////////////////////////////////// // Imported Functions and Variables /// From apps/examples/hello/hello_main.c extern fn dump_buffer(data: [*c]const u8, len: usize) void; /// For safety, we import these functions ourselves to enforce Null-Terminated Strings. /// We changed `[*c]const u8` to `[*:0]const u8` extern fn printf(format: [*:0]const u8, ...) c_int; extern fn puts(str: [*:0]const u8) c_int; /// Aliases for Zig Standard Library const assert = std.debug.assert; const debug = std.log.debug;