Add power management register defintions and clock control logic for the SAM4L

This commit is contained in:
Gregory Nutt 2013-06-05 13:35:19 -06:00
parent 82d37c755b
commit 19b38fa95f
6 changed files with 945 additions and 68 deletions

View file

@ -4902,4 +4902,9 @@
LED interfaces (2013-6-5).
* arch/arm/src/sam34/sam4l_gpio.c and arch/arm/src/sam34/chip/sam4l_gpio.h:
Fix GPIO port address; fix compilation errors (2013-6-5).
* arch/arm/src/sam34/chip/sam4l_flashcalw.h: Add header file
for SAM4L FLASH and PICOCACHE definitions (2013-6-5).
* arch/arm/src/sam34/chip/sam4l_pm.h: Add header file for SAM4L
Power Management. Leveraged from AVR32 (2013-6-5).
* arch/arm/src/sam34/sarm4l_clockconfig.c: SAM4L clock configuration
logic (leveraged from AVR32).

View file

@ -4,6 +4,8 @@
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* This file is derived from nuttx/arch/avr/src/at32uc3/at32uc3_flashc.h.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
@ -33,8 +35,8 @@
*
************************************************************************************/
#ifndef __ARCH_ARM_SRC_SAM34_CHIP_SAM4LFLASHCALW_H
#define __ARCH_ARM_SRC_SAM34_CHIP_SAM4LFLASHCALW_H
#ifndef __ARCH_ARM_SRC_SAM34_CHIP_SAM4L_FLASHCALW_H
#define __ARCH_ARM_SRC_SAM34_CHIP_SAM4L_FLASHCALW_H
/************************************************************************************
* Included Files
@ -343,5 +345,5 @@
* Public Functions
************************************************************************************/
#endif /* __ARCH_ARM_SRC_SAM34_CHIP_SAM4LFLASHCALW_H */
#endif /* __ARCH_ARM_SRC_SAM34_CHIP_SAM4L_FLASHCALW_H */

View file

@ -0,0 +1,335 @@
/************************************************************************************
* arch/avr/src/sam34/sam4l_pm.h
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* This file is derived from nuttx/arch/avr/src/at32uc3/at32uc3_pm.h.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
#ifndef __ARCH_ARM_SRC_SAM34_CHIP_SAM4L_PM_H
#define __ARCH_ARM_SRC_SAM34_CHIP_SAM4L_PM_H
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include "chip.h"
#include "chip/sam_memorymap.h"
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Register offsets *****************************************************************/
#define SAM_PM_MCCTRL_OFFSET 0x0000 /* Main Clock Control Register */
#define SAM_PM_CPUSEL_OFFSET 0x0004 /* CPU Clock Select Register */
#define SAM_PM_PBASEL_OFFSET 0x000c /* PBA Clock Select Register */
#define SAM_PM_PBBSEL_OFFSET 0x0010 /* PBB Clock Select Register */
#define SAM_PM_PBCSEL_OFFSET 0x0014 /* PBC Clock Select Register */
#define SAM_PM_PBDSEL_OFFSET 0x0018 /* PBD Clock Select Register */
#define SAM_PM_CPUMASK_OFFSET 0x0020 /* CPU Mask Register */
#define SAM_PM_HSBMASK_OFFSET 0x0024 /* HSB Mask Register */
#define SAM_PM_PBAMASK_OFFSET 0x0028 /* PBA Mask Register */
#define SAM_PM_PBBMASK_OFFSET 0x002c /* PBB Mask Register */
#define SAM_PM_PBCMASK_OFFSET 0x0030 /* PBC Mask Register */
#define SAM_PM_PBDMASK_OFFSET 0x0034 /* PBD Mask Register */
#define SAM_PM_PBADIVMASK_OFFSET 0x0040 /* PBA Divided Mask */
#define SAM_PM_CFDCTRL_OFFSET 0x0054 /* Clock Failure Detector Control */
#define SAM_PM_UNLOCK_OFFSET 0x0058 /* Unlock Register */
#define SAM_PM_IER_OFFSET 0x00c0 /* Interrupt Enable Register */
#define SAM_PM_IDR_OFFSET 0x00c4 /* Interrupt Disable Register */
#define SAM_PM_IMR_OFFSET 0x00c8 /* Interrupt Mask Register */
#define SAM_PM_ISR_OFFSET 0x00cc /* Interrupt Status Register */
#define SAM_PM_ICR_OFFSET 0x00d0 /* Interrupt Clear Register */
#define SAM_PM_SR_OFFSET 0x00d4 /* Status Register Register */
#define SAM_PM_PPCR_OFFSET 0x0160 /* Peripheral Power Control Register */
#define SAM_PM_RCAUSE_OFFSET 0x0180 /* Reset Cause Register */
#define SAM_PM_WCAUSE_OFFSET 0x0184 /* Wake Cause Register */
#define SAM_PM_AWEN_OFFSET 0x0188 /* Asynchronous Wake Up Enable Register */
#define SAM_PM_PROTCTRL_OFFSET 0x018c /* Protection Control Register */
#define SAM_PM_FASTSLEEP_OFFSET 0x0194 /* Fast Sleep Register */
#define SAM_PM_CONFIG_OFFSET 0x03f8 /* Configuration Register */
#define SAM_PM_VERSION_OFFSET 0x03fc /* Version Register */
/* Register Addresses ***************************************************************/
#define SAM_PM_MCCTRL (SAM_PM_BASE+SAM_PM_MCCTRL_OFFSET)
#define SAM_PM_CPUSEL (SAM_PM_BASE+SAM_PM_CPUSEL_OFFSET)
#define SAM_PM_PBASEL (SAM_PM_BASE+SAM_PM_PBASEL_OFFSET)
#define SAM_PM_PBBSEL (SAM_PM_BASE+SAM_PM_PBBSEL_OFFSET)
#define SAM_PM_PBCSEL (SAM_PM_BASE+SAM_PM_PBCSEL_OFFSET)
#define SAM_PM_PBDSEL (SAM_PM_BASE+SAM_PM_PBDSEL_OFFSET)
#define SAM_PM_CPUMASK (SAM_PM_BASE+SAM_PM_CPUMASK_OFFSET)
#define SAM_PM_HSBMASK (SAM_PM_BASE+SAM_PM_HSBMASK_OFFSET)
#define SAM_PM_PBAMASK (SAM_PM_BASE+SAM_PM_PBAMASK_OFFSET)
#define SAM_PM_PBBMASK (SAM_PM_BASE+SAM_PM_PBBMASK_OFFSET)
#define SAM_PM_PBCMASK (SAM_PM_BASE+SAM_PM_PBCMASK_OFFSET)
#define SAM_PM_PBDMASK (SAM_PM_BASE+SAM_PM_PBDMASK_OFFSET)
#define SAM_PM_PBADIVMASK (SAM_PM_BASE+SAM_PM_PBADIVMASK_OFFSET)
#define SAM_PM_CFDCTRL (SAM_PM_BASE+SAM_PM_CFDCTRL_OFFSET)
#define SAM_PM_UNLOCK (SAM_PM_BASE+SAM_PM_UNLOCK_OFFSET)
#define SAM_PM_IER (SAM_PM_BASE+SAM_PM_IER_OFFSET)
#define SAM_PM_IDR (SAM_PM_BASE+SAM_PM_IDR_OFFSET)
#define SAM_PM_IMR (SAM_PM_BASE+SAM_PM_IMR_OFFSET)
#define SAM_PM_ISR (SAM_PM_BASE+SAM_PM_ISR_OFFSET)
#define SAM_PM_ICR (SAM_PM_BASE+SAM_PM_ICR_OFFSET)
#define SAM_PM_SR (SAM_PM_BASE+SAM_PM_SR_OFFSET)
#define SAM_PM_PPCR (SAM_PM_BASE+SAM_PM_PPCR_OFFSET)
#define SAM_PM_RCAUSE (SAM_PM_BASE+SAM_PM_RCAUSE_OFFSET)
#define SAM_PM_WCAUSE (SAM_PM_BASE+SAM_PM_WCAUSE_OFFSET)
#define SAM_PM_AWEN (SAM_PM_BASE+SAM_PM_AWEN_OFFSET)
#define SAM_PM_PROTCTRL (SAM_PM_BASE+SAM_PM_PROTCTRL_OFFSET)
#define SAM_PM_FASTSLEEP (SAM_PM_BASE+SAM_PM_FASTSLEEP_OFFSET)
#define SAM_PM_CONFIG (SAM_PM_BASE+SAM_PM_CONFIG_OFFSET)
#define SAM_PM_VERSION (SAM_PM_BASE+SAM_PM_VERSION_OFFSET)
/* Register Bit-field Definitions ***************************************************/
/* Main Clock Control Register Bit-field Definitions */
#define PM_MCCTRL_MCSEL_SHIFT (0) /* Bits 0-2: Main Clock Select */
#define PM_MCCTRL_MCSEL_MASK (7 << PM_MCCTRL_MCSEL_SHIFT)
# define PM_MCCTRL_MCSEL_RCSYS (0 << PM_MCCTRL_MCSEL_SHIFT) /* System RC oscillator */
# define PM_MCCTRL_MCSEL_OSC0 (1 << PM_MCCTRL_MCSEL_SHIFT) /* Oscillator0 */
# define PM_MCCTRL_MCSEL_PLL (2 << PM_MCCTRL_MCSEL_SHIFT) /* PLL */
# define PM_MCCTRL_MCSEL_DFLL (3 << PM_MCCTRL_MCSEL_SHIFT) /* DFLL */
# define PM_MCCTRL_MCSEL_RC80M (4 << PM_MCCTRL_MCSEL_SHIFT) /* 80MHz RC oscillator */
# define PM_MCCTRL_MCSEL_RCFAST (5 << PM_MCCTRL_MCSEL_SHIFT) /* 4/8/12 MHz RC oscillator */
# define PM_MCCTRL_MCSEL_RC1M (6 << PM_MCCTRL_MCSEL_SHIFT) /* 1 MHz RC oscillator */
/* CPU Clock Select Register Bit-field Definitions */
#define PM_CPUSEL_SHIFT (0) /* Bits 0-2: CPU Clock Select */
#define PM_CPUSEL_MASK (7 << PM_CPUSEL_CPUSEL_SHIFT)
#define PM_CPUSEL_CPUDIV (1 << 7) /* Bit 7: CPU Division */
/* PBA/PBB/PBC/PBD Clock Select Register Bit-field Definitions */
#define PM_PBSEL_SHIFT (0) /* Bits 0-2: PBx Clock Select */
#define PM_PBSEL_MASK (7 << PM_PBASEL_SHIFT)
#define PM_PBSEL_DIV (1 << 7) /* Bit 7: PBx Division */
/* CPU Mask Register Bit-field Definitions */
#define PM_CPUMASK_OCD (1 << 0) /* Bit 0: OCD */
/* HSB Mask Register Bit-field Definitions */
#define PM_HSBMASK_PDCA (1 << 0) /* Bit 0: PDCA */
#define PM_HSBMASK_FLASHCALW (1 << 1) /* Bit 1: FLASHCALW */
#define PM_HSBMASK_HRAMC1 (1 << 2) /* Bit 2: HRAMC1 (picoCache RAM) */
#define PM_HSBMASK_USBC (1 << 3) /* Bit 3: USBC */
#define PM_HSBMASK_CRCCU (1 << 4) /* Bit 4: CRCCU */
#define PM_HSBMASK_APBA (1 << 5) /* Bit 5: APBA bridge */
#define PM_HSBMASK_APBB (1 << 6) /* Bit 5: APBB bridge */
#define PM_HSBMASK_APBC (1 << 7) /* Bit 5: APBC bridge */
#define PM_HSBMASK_APBD (1 << 8) /* Bit 5: APBD bridge */
#define PM_HSBMASK_AESA (1 << 9) /* Bit 5: AESA */
/* PBA Mask Register Bit-field Definitions */
#define PM_PBAMASK_IISC (1 << 0) /* Bit 0: IISC */
#define PM_PBAMASK_SPI (1 << 1) /* Bit 1: SPI */
#define PM_PBAMASK_TC0 (1 << 2) /* Bit 2: TC0 */
#define PM_PBAMASK_TC1 (1 << 3) /* Bit 3: TC1 */
#define PM_PBAMASK_TWIM0 (1 << 4) /* Bit 4: TWIM0 */
#define PM_PBAMASK_TWIS0 (1 << 5) /* Bit 5: TWIS0 */
#define PM_PBAMASK_TWIM1 (1 << 6) /* Bit 6: TWIM1 */
#define PM_PBAMASK_TWIS1 (1 << 7) /* Bit 7: TWIS1 */
#define PM_PBAMASK_USART0 (1 << 8) /* Bit 8: USART0 */
#define PM_PBAMASK_USART1 (1 << 9) /* Bit 9: USART1 */
#define PM_PBAMASK_USART2 (1 << 10) /* Bit 10: USART2 */
#define PM_PBAMASK_USART3 (1 << 11) /* Bit 11: USART3 */
#define PM_PBAMASK_ADCIFE (1 << 12) /* Bit 12: ADCIFE */
#define PM_PBAMASK_DACC (1 << 13) /* Bit 13: DACC */
#define PM_PBAMASK_ACIFC (1 << 14) /* Bit 14: ACIFC */
#define PM_PBAMASK_GLOC (1 << 15) /* Bit 15: GLOC */
#define PM_PBAMASK_ABDACB (1 << 16) /* Bit 16: ABDACB */
#define PM_PBAMASK_TRNG (1 << 17) /* Bit 17: TRNG */
#define PM_PBAMASK_PARC (1 << 18) /* Bit 18: PARC */
#define PM_PBAMASK_CATB (1 << 19) /* Bit 19: CATB */
#define PM_PBAMASK_TWIM2 (1 << 21) /* Bit 21: TWIM2 */
#define PM_PBAMASK_TWIM3 (1 << 22) /* Bit 22: TWIM3 */
#define PM_PBAMASK_LCDCA (1 << 23) /* Bit 23: LCDCA*/
/* PBB Mask Register Bit-field Definitions */
#define PM_PBBMASK_FLASHCALW (1 << 0) /* Bit 0: FLASHCALW */
#define PM_PBBMASK_HRAMC1 (1 << 1) /* Bit 1: HRAMC1 */
#define PM_PBBMASK_HMATRIX (1 << 2) /* Bit 2: HMATRIX */
#define PM_PBBMASK_PDCA (1 << 3) /* Bit 3: PDCA */
#define PM_PBBMASK_CRCCU (1 << 4) /* Bit 4: CRCCU */
#define PM_PBBMASK_USBC (1 << 5) /* Bit 5: USBC */
#define PM_PBBMASK_PEVC (1 << 6) /* Bit 6: PEVC */
/* PBC Mask Register Bit-field Definitions */
#define PM_PBCMASK_PM (1 << 0) /* Bit 0: PM */
#define PM_PBCMASK_CHIPID (1 << 1) /* Bit 1: CHIPID */
#define PM_PBCMASK_SCIF (1 << 2) /* Bit 2: SCIF */
#define PM_PBCMASK_FREQM (1 << 3) /* Bit 3: FREQM */
#define PM_PBCMASK_GPIO (1 << 4) /* Bit 4: GPIO */
/* PBD Mask Register Bit-field Definitions */
#define PM_PBDMASK_BPM (1 << 0) /* Bit 0: BPM */
#define PM_PBDMASK_BSCIF (1 << 1) /* Bit 1: BSCIF */
#define PM_PBDMASK_AST (1 << 2) /* Bit 2: AST */
#define PM_PBDMASK_WDT (1 << 3) /* Bit 3: WDT */
#define PM_PBDMASK_EIC (1 << 4) /* Bit 4: EIC */
#define PM_PBDMASK_PICOUART (1 << 5) /* Bit 5: PICOUART */
/* PBA Divided Mask */
#define PM_PBADIVMASK_TIMER_CLOCK2 (1 << 0) /* Bit 0: TIMER_CLOCK2 (TC0-1) */
#define PM_PBADIVMASK_CLK_USART (1 << 2) /* Bit 2: CLK_USART/DIV (USART0-3) */
#define PM_PBADIVMASK_TIMER_CLOCK3 (1 << 2) /* Bit 2: TIMER_CLOCK3 (TC0-1) */
#define PM_PBADIVMASK_TIMER_CLOCK4 (1 << 4) /* Bit 4: TIMER_CLOCK4 (TC0-1) */
#define PM_PBADIVMASK_TIMER_CLOCK5 (1 << 6) /* Bit 5: TIMER_CLOCK5 (TC0-1) */
/* Clock Failure Detector Control */
#define PM_CFDCTRL_CFDEN (1 << 0) /* Bit 0: Clock Failure Detection Enable */
#define PM_CFDCTRL_SFV (1 << 31) /* Bit 31: Store Final Value */
/* Unlock Register */
#define PM_UNLOCK_ADDR_SHIFT (0) /* Bits 0-9: Unlock Address */
#define PM_UNLOCK_ADDR_MASK (0x3ff << PM_UNLOCK_ADDR_SHIFT)
#define PM_UNLOCK_KEY_SHIFT (24) /* Bits 24-31: Unlock Key */
#define PM_UNLOCK_KEY_MASK (0xff << PM_UNLOCK_KEY_SHIFT)
/* Interrupt Enable Register Bit-field Definitions */
/* Interrupt Disable Register Bit-field Definitions */
/* Interrupt Mask Register Bit-field Definitions */
/* Interrupt Status Register Bit-field Definitions */
/* Interrupt Clear Register Bit-field Definitions */
/* Status Register Register */
#define PM_INT_CFD (1 << 0) /* Bit 0: CFD */
#define PM_INT_CKRDY (1 << 5) /* Bit 5: CKRDY */
#define PM_INT_WAKE (1 << 8) /* Bit 8: WAKE */
/* Peripheral Power Control Register */
#define PM_PPCR_RSTPUN (1 << 0) /* Bit 0: Reset Pullup */
#define PM_PPCR_CATBRCMASK (1 << 1) /* Bit 1: CAT Request Clock Mask */
#define PM_PPCR_ACIFCRCMASK (1 << 2) /* Bit 2: ACIFC Request Clock Mask */
#define PM_PPCR_ASTRCMASK (1 << 3) /* Bit 3: AST Request Clock Mask */
#define PM_PPCR_TWIS0RCMASK (1 << 4) /* Bit 4: TWIS0 Request Clock Mask */
#define PM_PPCR_TWIS1RCMASK (1 << 5) /* Bit 5: TWIS1 Request Clock Mask */
#define PM_PPCR_PEVCRCMASK (1 << 6) /* Bit 6: PEVC Request Clock Mask */
#define PM_PPCR_ADCIFERCMASK (1 << 7) /* Bit 7: ADCIFE Request Clock Mask */
#define PM_PPCR_VREGRCMASK (1 << 8) /* Bit 8: VREG Request Clock Mask */
#define PM_PPCR_FWBGREF (1 << 9) /* Bit 9: Flash Wait BGREF */
#define PM_PPCR_FWBOD18 (1 << 10) /* Bit 10: Flash Wait BOD18 */
/* Reset Cause Register */
#define PM_RCAUSE_POR (1 << 0) /* Bit 0: Power-on Reset */
#define PM_RCAUSE_BOD (1 << 1) /* Bit 1: Brown-out Reset */
#define PM_RCAUSE_EXT (1 << 2) /* Bit 2: External Reset Pin */
#define PM_RCAUSE_WDT (1 << 3) /* Bit 3: Watchdog Reset */
#define PM_RCAUSE_BKUP (1 << 6) /* Bit 6: Backup reset */
#define PM_RCAUSE_OCDRST (1 << 8) /* Bit 8: OCD Reset */
#define PM_RCAUSE_POR33 (1 << 10) /* Bit 10: Power-on 3.3v Reset */
#define PM_RCAUSE_BOD33 (1 << 13) /* Bit 13: Brown-out 3.3v Reset */
/* Wake Cause Register */
#define PM_WCAUSE_TWIS0 (1 << 0) /* Bit 0: 0 TWI Slave 0 */
#define PM_WCAUSE_TWIS1 (1 << 1) /* Bit 1: 1 TWI Slave 1 */
#define PM_WCAUSE_USBC (1 << 2) /* Bit 2: 2 USBC */
#define PM_WCAUSE_PSOK (1 << 3) /* Bit 3: 3 PSOK */
#define PM_WCAUSE_BOD18 (1 << 4) /* Bit 4: 4 BOD18 IRQ */
#define PM_WCAUSE_BOD33 (1 << 5) /* Bit 5: 5 BOD33 IRQ */
#define PM_WCAUSE_PICOUART (1 << 6) /* Bit 6: 6 PICOUART */
#define PM_WCAUSE_LCDCA (1 << 7) /* Bit 7: 7 LCDCA */
#define PM_WCAUSE_EIC (1 << 16) /* Bit 16: 16 EIC */
#define PM_WCAUSE_AST (1 << 17) /* Bit 17: 17 AST */
/* Asynchronous Wake Up Enable Register Bit-field Definitions */
#define PM_AWEN_TWIS0 (1 << 0) /* Bit 0: TWI Slave 0 */
#define PM_AWEN_TWIS1 (1 << 1) /* Bit 1: TWI Slave 1 */
#define PM_AWEN_USBC (1 << 2) /* Bit 2: USBC */
#define PM_AWEN_PSOK (1 << 3) /* Bit 3: PSOK */
#define PM_AWEN_BOD18 (1 << 4) /* Bit 4: BOD18 IRQ */
#define PM_AWEN_BOD33 (1 << 5) /* Bit 5: BOD33 IRQ */
#define PM_AWEN_PICOUART (1 << 6) /* Bit 6: PICOUART */
#define PM_AWEN_LCDCA (1 << 7) /* Bit 7: LCDCA */
/* Protection Control Register */
/* Fast Sleep Register */
#define PM_FASTSLEEP_
#define PM_FASTSLEEP_OSC (1 << 0) /* Bit 0: Oscillator */
#define PM_FASTSLEEP_PLL (1 << 0) /* Bit 0: PLL */
#define PM_FASTSLEEP_FASTRCOSC_SHIFT (0) /* Bits 0-9: FASTRCOSC */
#define PM_FASTSLEEP_FASTRCOSC_MASK (31 << PM_FASTSLEEP_FASTRCOSC_SHIFT)
# define PM_FASTSLEEP_RC80 (1 << PM_FASTSLEEP_FASTRCOSC_SHIFT)
# define PM_FASTSLEEP_RCFAST (2 << PM_FASTSLEEP_FASTRCOSC_SHIFT)
# define PM_FASTSLEEP_RC1M (4 << PM_FASTSLEEP_FASTRCOSC_SHIFT)
#define PM_FASTSLEEP_DFLL (1 << 0) /* Bit 0: DFLL */
/* Configuration Register */
#define PM_CONFIG_PBA (1 << 0) /* Bit 0: APBA Implemented */
#define PM_CONFIG_PBB (1 << 1) /* Bit 1: APBB Implemented */
#define PM_CONFIG_PBC (1 << 2) /* Bit 2: APBC Implemented */
#define PM_CONFIG_PBD (1 << 3) /* Bit 3: APBD Implemented */
#define PM_CONFIG_HSBPEVC (1 << 7) /* Bit 7: HSB PEVC Clock Implemented */
/* Version Register */
#define PM_VERSION_SHIFT (0) /* Bits 0-11: Version Number */
#define PM_VERSION_MASK (0xfff << PM_VERSION_VERSION_SHIFT)
#define PM_VERSION_VARIANT_SHIFT (16) /* Bits 16-19: Variant Number */
#define PM_VERSION_VARIANT_MASK (15 << PM_VERSION_VARIANT_SHIFT)
/************************************************************************************
* Public Types
************************************************************************************/
/************************************************************************************
* Public Data
************************************************************************************/
/************************************************************************************
* Public Functions
************************************************************************************/
#endif /* __ARCH_ARM_SRC_SAM34_CHIP_SAM4L_PM_H */

View file

@ -0,0 +1,506 @@
/****************************************************************************
* arch/avr/src/sam34/sam4l_clockconfig.c
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* This file is derived from nuttx/arch/avr/src/at32uc3/at32uc3_clkinit.c
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <arch/board/board.h>
#include "up_arch.h"
#include "up_internal.h"
#include "chip/sam4l_pm.h"
#include "chip/sam4l_flashcalw.h"
/****************************************************************************
* Private Definitions
****************************************************************************/
#if defined(SAM_CLOCK_OSC0) || \
(defined (SAM_CLOCK_PLL0) && defined(SAM_CLOCK_PLL0_OSC0)) || \
(defined (SAM_CLOCK_PLL1) && defined(SAM_CLOCK_PLL1_OSC0))
# define NEED_OSC0
#endif
#if defined(SAM_CLOCK_OSC1) || \
(defined (SAM_CLOCK_PLL0) && defined(SAM_CLOCK_PLL0_OSC1)) || \
(defined (SAM_CLOCK_PLL1) && defined(SAM_CLOCK_PLL1_OSC1))
# define NEED_OSC1
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/****************************************************************************
* Global Variables
****************************************************************************/
/****************************************************************************
* Private Variables
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: up_enableosc32
*
* Description:
* Initialiaze the 32KHz oscillaor. This oscillaor is used by the RTC
* logic to provide the sysem timer.
*
****************************************************************************/
#ifdef SAM_CLOCK_OSC32
static inline void up_enableosc32(void)
{
uint32_t regval;
/* Select the 32KHz oscillator crystal */
regval = getreg32(SAM_PM_OSCCTRL32);
regval &= ~PM_OSCCTRL32_MODE_MASK;
regval |= PM_OSCCTRL32_MODE_XTAL;
putreg32(regval, SAM_PM_OSCCTRL32);
/* Enable the 32-kHz clock */
regval = getreg32(SAM_PM_OSCCTRL32);
regval &= ~PM_OSCCTRL32_STARTUP_MASK;
regval |= PM_OSCCTRL32_EN|(SAM_OSC32STARTUP << PM_OSCCTRL32_STARTUP_SHIFT);
putreg32(regval, SAM_PM_OSCCTRL32);
}
#endif
/****************************************************************************
* Name: up_enableosc0
*
* Description:
* Initialiaze OSC0 settings per the definitions in the board.h file.
*
****************************************************************************/
#ifdef NEED_OSC0
static inline void up_enableosc0(void)
{
uint32_t regval;
/* Enable OSC0 in the correct crystal mode by setting the mode value in OSCCTRL0 */
regval = getreg32(SAM_PM_OSCCTRL0);
regval &= ~PM_OSCCTRL_MODE_MASK;
#if SAM_FOSC0 < 900000
regval |= PM_OSCCTRL_MODE_XTALp9; /* Crystal XIN 0.4-0.9MHz */
#elif SAM_FOSC0 < 3000000
regval |= PM_OSCCTRL_MODE_XTAL3; /* Crystal XIN 0.9-3.0MHz */
#elif SAM_FOSC0 < 8000000
regval |= PM_OSCCTRL_MODE_XTAL8; /* Crystal XIN 3.0-8.0MHz */
#else
regval |= PM_OSCCTRL_MODE_XTALHI; /* Crystal XIN above 8.0MHz */
#endif
putreg32(regval, SAM_PM_OSCCTRL0);
/* Enable OSC0 using the startup time provided in board.h. This startup time
* is critical and depends on the characteristics of the crystal.
*/
regval = getreg32(SAM_PM_OSCCTRL0);
regval &= ~PM_OSCCTRL_STARTUP_MASK;
regval |= (SAM_OSC0STARTUP << PM_OSCCTRL_STARTUP_SHIFT);
putreg32(regval, SAM_PM_OSCCTRL0);
/* Enable OSC0 */
regval = getreg32(SAM_PM_MCCTRL);
regval |= PM_MCCTRL_OSC0EN;
putreg32(regval, SAM_PM_MCCTRL);
/* Wait for OSC0 to be ready */
while ((getreg32(SAM_PM_POSCSR) & PM_POSCSR_OSC0RDY) == 0);
}
#endif
/****************************************************************************
* Name: up_enableosc1
*
* Description:
* Initialiaze OSC0 settings per the definitions in the board.h file.
*
****************************************************************************/
#ifdef NEED_OSC1
static inline void up_enableosc1(void)
{
uint32_t regval;
/* Enable OSC1 in the correct crystal mode by setting the mode value in OSCCTRL1 */
regval = getreg32(SAM_PM_OSCCTRL1);
regval &= ~PM_OSCCTRL_MODE_MASK;
#if SAM_FOSC1 < 900000
regval |= PM_OSCCTRL_MODE_XTALp9; /* Crystal XIN 0.4-0.9MHz */
#elif SAM_FOSC1 < 3000000
regval |= PM_OSCCTRL_MODE_XTAL3; /* Crystal XIN 0.9-3.0MHz */
#elif SAM_FOSC1 < 8000000
regval |= PM_OSCCTRL_MODE_XTAL8; /* Crystal XIN 3.0-8.0MHz */
#else
regval |= PM_OSCCTRL_MODE_XTALHI; /* Crystal XIN above 8.0MHz */
#endif
putreg32(regval, SAM_PM_OSCCTRL1);
/* Enable OSC1 using the startup time provided in board.h. This startup time
* is critical and depends on the characteristics of the crystal.
*/
regval = getreg32(SAM_PM_OSCCTRL1);
regval &= ~PM_OSCCTRL_STARTUP_MASK;
regval |= (SAM_OSC1STARTUP << PM_OSCCTRL_STARTUP_SHIFT);
putreg32(regval, SAM_PM_OSCCTRL1);
/* Enable OSC1 */
regval = getreg32(SAM_PM_MCCTRL);
regval |= PM_MCCTRL_OSC1EN;
putreg32(regval, SAM_PM_MCCTRL);
/* Wait for OSC1 to be ready */
while ((getreg32(SAM_PM_POSCSR) & PM_POSCSR_OSC1RDY) == 0);
}
#endif
/****************************************************************************
* Name: up_enablepll0
*
* Description:
* Initialiaze PLL0 settings per the definitions in the board.h file.
*
****************************************************************************/
#ifdef SAM_CLOCK_PLL0
static inline void up_enablepll0(void)
{
/* Setup PLL0 */
regval = (SAM_PLL0_DIV << PM_PLL_PLLDIV_SHIFT) | (SAM_PLL0_MUL << PM_PLL_PLLMUL_SHIFT) | (16 << PM_PLL_PLLCOUNT_SHIFT)
/* Select PLL0/1 oscillator */
#if SAM_CLOCK_PLL_OSC1
regval |= PM_PLL_PLLOSC;
#endif
putreg32(regval, SAM_PM_PLL0);
/* Set PLL0 options */
regval = getreg32(SAM_PM_PLL0);
regval &= ~PM_PLL_PLLOPT_MASK
#if SAM_PLL0_FREQ < 160000000
regval |= PM_PLL_PLLOPT_VCO;
#endif
#if SAM_PLL0_DIV2 != 0
regval |= PM_PLL_PLLOPT_XTRADIV;
#endif
#if SAM_PLL0_WBWM != 0
regval |= PM_PLL_PLLOPT_WBWDIS;
#endif
putreg32(regval, SAM_PM_PLL0)
/* Enable PLL0 */
regval = getreg32(SAM_PM_PLL0);
regval |= PM_PLL_PLLEN;
putreg32(regval, SAM_PM_PLL0)
/* Wait for PLL0 locked. */
while ((getreg32(SAM_PM_POSCSR) & PM_POSCSR_LOCK0) == 0);
}
#endif
/****************************************************************************
* Name: up_enablepll1
*
* Description:
* Initialiaze PLL1 settings per the definitions in the board.h file.
*
****************************************************************************/
#ifdef SAM_CLOCK_PLL1
static inline void up_enablepll1(void)
{
/* Setup PLL1 */
regval = (SAM_PLL1_DIV << PM_PLL_PLLDIV_SHIFT) | (SAM_PLL1_MUL << PM_PLL_PLLMUL_SHIFT) | (16 << PM_PLL_PLLCOUNT_SHIFT)
/* Select PLL0/1 oscillator */
#if SAM_CLOCK_PLL_OSC1
regval |= PM_PLL_PLLOSC;
#endif
putreg32(regval, SAM_PM_PLL1);
/* Set PLL1 options */
regval = getreg32(SAM_PM_PLL1);
regval &= ~PM_PLL_PLLOPT_MASK
#if SAM_PLL1_FREQ < 160000000
regval |= PM_PLL_PLLOPT_VCO;
#endif
#if SAM_PLL1_DIV2 != 0
regval |= PM_PLL_PLLOPT_XTRADIV;
#endif
#if SAM_PLL1_WBWM != 0
regval |= PM_PLL_PLLOPT_WBWDIS;
#endif
putreg32(regval, SAM_PM_PLL1)
/* Enable PLL1 */
regval = getreg32(SAM_PM_PLL1);
regval |= PM_PLL_PLLEN;
putreg32(regval, SAM_PM_PLL1)
/* Wait for PLL1 locked. */
while ((getreg32(SAM_PM_POSCSR) & PM_POSCSR_LOCK1) == 0);
}
#endif
/****************************************************************************
* Name: up_clksel
*
* Description:
* Configure derived clocks.
*
****************************************************************************/
static inline void up_clksel(void)
{
uint32_t regval = 0;
#if SAM_CKSEL_CPUDIV != 0
regval |= PM_CKSEL_CPUDIV;
regval |= (SAM_CKSEL_CPUDIV << PM_CKSEL_CPUSEL_SHIFT)
#endif
#if SAM_CKSEL_HSBDIV != 0
regval |= PM_CKSEL_HSBDIV;
regval |= (SAM_CKSEL_HSBDIV << PM_CKSEL_HSBSEL_SHIFT)
#endif
#if SAM_CKSEL_PBADIV != 0
regval |= PM_CKSEL_PBADIV;
regval |= (SAM_CKSEL_PBADIV << PM_CKSEL_PBASEL_SHIFT)
#endif
#if SAM_CKSEL_PBBDIV != 0
regval |= PM_CKSEL_PBBDIV;
regval |= (SAM_CKSEL_PBBDIV << PM_CKSEL_PBBSEL_SHIFT)
#endif
putreg32(regval, SAM_PM_CKSEL);
/* Wait for CLKRDY */
while ((getreg32(SAM_PM_POSCSR) & PM_POSCSR_CKRDY) == 0);
}
/****************************************************************************
* Name: up_fws
*
* Description:
* Setup FLASH wait states.
*
****************************************************************************/
static void up_fws(uint32_t cpuclock)
{
uint32_t regval;
regval = getreg32(SAM_FLASHCALW_FCR);
if (cpuclock > SAM_FLASHCALW_FWS0_MAXFREQ)
{
regval |= FLASHCALW_FCR_FWS;
}
else
{
regval &= ~FLASHCALW_FCR_FWS;
}
putreg32(regval, SAM_FLASHCALW_FCR);
}
/****************************************************************************
* Name: up_mainclk
*
* Description:
* Select the main clock.
*
****************************************************************************/
static inline void up_mainclk(uint32_t mcsel)
{
uint32_t regval;
regval = getreg32(SAM_PM_MCCTRL);
regval &= ~PM_MCCTRL_MCSEL_MASK;
regval |= mcsel;
putreg32(regval, SAM_PM_MCCTRL);
}
/****************************************************************************
* Name: up_usbclock
*
* Description:
* Setup the USBB GCLK.
*
****************************************************************************/
#ifdef CONFIG_USBDEV
static inline void up_usbclock(void)
{
uint32_t regval = 0;
#if defined(SAM_CLOCK_USB_PLL0) || defined(SAM_CLOCK_USB_PLL1)
regval |= PM_GCCTRL_PLLSEL;
#endif
#if defined(SAM_CLOCK_USB_OSC1) || defined(SAM_CLOCK_USB_PLL1)
regval |= PM_GCCTRL_OSCSEL;
#endif
#if SAM_CLOCK_USB_DIV > 0
u_avr32_pm_gcctrl.GCCTRL.diven = diven;
u_avr32_pm_gcctrl.GCCTRL.div = div;
#endif
putreg32(regval, SAM_PM_GCCTRL(SAM_PM_GCLK_USBB))
/* Enable USB GCLK */
regval = getreg32(SAM_PM_GCCTRL(SAM_PM_GCLK_USBB))
regval |= PM_GCCTRL_CEN;
putreg32(regval, SAM_PM_GCCTRL(SAM_PM_GCLK_USBB))
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: sam_clockconfig
*
* Description:
* Called to initialize the SAM3/4. This does whatever setup is needed to
* put the SoC in a usable state. This includes the initialization of
* clocking using the settings in board.h.
*
****************************************************************************/
void sam_clockconfig(void)
{
#ifdef SAM_CLOCK_OSC32
/* Enable the 32KHz oscillator (need by the RTC module) */
up_enableosc32();
#endif
#ifdef NEED_OSC0
/* Enable OSC0 using the settings in board.h */
up_enableosc0();
/* Set up FLASH wait states */
up_fws(SAM_FOSC0);
/* Then switch the main clock to OSC0 */
up_mainclk(PM_MCCTRL_MCSEL_OSC0);
#endif
#ifdef NEED_OSC1
/* Enable OSC1 using the settings in board.h */
up_enableosc1();
#endif
#ifdef SAM_CLOCK_PLL0
/* Enable PLL0 using the settings in board.h */
up_enablepll0();
/* Set up FLASH wait states */
up_fws(SAM_CPU_CLOCK);
/* Then switch the main clock to PLL0 */
up_mainclk(PM_MCCTRL_MCSEL_PLL0);
#endif
#ifdef SAM_CLOCK_PLL1
/* Enable PLL1 using the settings in board.h */
up_enablepll1();
#endif
/* Configure derived clocks */
up_clksel();
/* Set up the USBB GCLK */
#ifdef CONFIG_USBDEV
void up_usbclock();
#endif
}

View file

@ -79,10 +79,7 @@ extern "C"
* Description:
* Called to initialize the SAM3/4. This does whatever setup is needed to put the
* SoC in a usable state. This includes the initialization of clocking using the
* settings in board.h. (After power-on reset, the sam3u is initially running on
* a 4MHz internal RC clock). This function also performs other low-level chip
* initialization of the chip including EFC, master clock, IRQ and watchdog
* configuration.
* settings in board.h.
*
************************************************************************************/

View file

@ -3,78 +3,110 @@ mm/README.txt
This directory contains the NuttX memory management logic. This include:
1) The standard memory management functions as prototyped in stdlib.h as
specified in the Base definitions volume of IEEE Std 1003.1-2001. This
include the files:
1) Standard Memory Management Functions:
o Standard Interfaces: mm_malloc.c, mm_calloc.c, mm_realloc.c,
The standard memory management functions as prototyped in stdlib.h as
specified in the Base definitions volume of IEEE Std 1003.1-2001. This
include the files:
o Standard Interfaces: mm_malloc.c, mm_calloc.c, mm_realloc.c,
mm_memalign.c, mm_free.c
o Less-Standard Interfaces: mm_zalloc.c, mm_mallinfo.c
o Internal Implementation: mm_initialize.c mm_sem.c mm_addfreechunk.c
o Less-Standard Interfaces: mm_zalloc.c, mm_mallinfo.c
o Internal Implementation: mm_initialize.c mm_sem.c mm_addfreechunk.c
mm_size2ndx.c mm_shrinkchunk.c, mm_internal.h
o Build and Configuration files: Kconfig, Makefile
o Build and Configuration files: Kconfig, Makefile
Memory Models:
o Small Memory Model. If the MCU supports only 16-bit data addressing
then the small memory model is automatically used. The maximum size
of the heap is then 64K. The small memory model can also be forced
MCUs with wider addressing by defining CONFIG_SMALL_MEMORY in the
NuttX configuration file.
o Large Memory Model. Otherwise, the allocator uses a model that
supports a heap of up to 4G.
o Small Memory Model. If the MCU supports only 16-bit data addressing
then the small memory model is automatically used. The maximum size
of the heap is then 64K. The small memory model can also be forced
MCUs with wider addressing by defining CONFIG_SMALL_MEMORY in the
NuttX configuration file.
o Large Memory Model. Otherwise, the allocator uses a model that
supports a heap of up to 4G.
This implementation uses a variable length allocator with the following
properties:
This implementation uses a variable length allocator with the following
properties:
o Overhead: Either 8- or 4-bytes per allocation for large and small
models, respectively.
o Alignment: All allocations are aligned to 8- or 4-bytes for large
and small models, respectively.
o Overhead: Either 8- or 4-bytes per allocation for large and small
models, respectively.
o Alignment: All allocations are aligned to 8- or 4-bytes for large
and small models, respectively.
2) Granule Allocator. A non-standard granule allocator is also available
in this directory The granule allocator allocates memory in units
of a fixed sized block ("granule"). Allocations may be aligned to a user-
provided address boundary.
Multiple Heaps:
The granule allocator interfaces are defined in nuttx/include/nuttx/gran.h.
The granule allocator consists of these files in this directory:
This allocator can be used to manage multiple heaps (albeit with some
non-standard interfaces). A heap is represented by struct mm_heap_s
as defined in the file include/nuttx/mm.h. To create another heap
instance, you would allocate a heap structure, most likely statically
in memory:
mm_gran.h, mm_granalloc.c, mm_grancritical.c, mm_granfree.c
mm_graninit.c
include <nuttx/mm.h>
static struct mm_heap_s g_myheap;
The granule allocator is not used anywhere within the base NuttX code
as of this writing. The intent of the granule allocator is to provide
a tool to support platform-specific management of aligned DMA memory.
Then initialize the heap using:
NOTE: Because each granule may be aligned and each allocation is in
units of the granule size, selection of the granule size is important:
Larger granules will give better performance and less overhead but more
losses of memory due to quantization waste. Additional memory waste
can occur from alignment; Of course, heap alignment should no be
used unless (a) you are using the granule allocator to manage DMA memory
and (b) your hardware has specific memory alignment requirements.
mm_initialize(&g_myheap, myheap_start, myheap_size);
The current implementation also restricts the maximum allocation size
to 32 granules. That restriction could be eliminated with some
additional coding effort, but currently requires larger granule
sizes for larger allocations.
Where mm_initialize() and all related interfaces are prototyped in the
header file include/nuttx/mm.h.
Geneneral Usage Example. This is an example using the GCC section
attribute to position a DMA heap in memory (logic in the linker script
would assign the section .dmaheap to the DMA memory.
FAR uint32_t g_dmaheap[DMAHEAP_SIZE] __attribute__((section(.dmaheap)));
The heap is created by calling gran_initialize. Here the granual size
is set to 64 bytes and the alignment to 16 bytes:
GRAN_HANDLE handle = gran_initialize(g_dmaheap, DMAHEAP_SIZE, 6, 4);
Then the GRAN_HANDLE can be used to allocate memory (There is no
GRAN_HANDLE if CONFIG_GRAN_SINGLE=y):
FAR uint8_t *dma_memory = (FAR uint8_t *)gran_alloc(handle, 47);
The actual memory allocates will be 64 byte (wasting 17 bytes) and
will be aligned at least to (1 << log2align).
After the new heap instance has been initialized, it can then be used
with these almost familiar interfaces: mm_malloc(), mm_realloc(), mm_free(),
etc. These are 'almost familiar' because they are analogous of the
standard malloc(), realloc(), free(), etc. except that they expect a
reference to the initialized heap structure as the first parameter.
In fact, the standard malloc(), realloc(), free() use this same mechanism,
but with a global heap structure called g_mmheap.
2) Granule Allocator.
A non-standard granule allocator is also available in this directory The
granule allocator allocates memory in units of a fixed sized block ("granule").
Allocations may be aligned to a user-provided address boundary.
The granule allocator interfaces are defined in nuttx/include/nuttx/gran.h.
The granule allocator consists of these files in this directory:
mm_gran.h, mm_granalloc.c, mm_grancritical.c, mm_granfree.c
mm_graninit.c
The granule allocator is not used anywhere within the base NuttX code
as of this writing. The intent of the granule allocator is to provide
a tool to support platform-specific management of aligned DMA memory.
NOTE: Because each granule may be aligned and each allocation is in
units of the granule size, selection of the granule size is important:
Larger granules will give better performance and less overhead but more
losses of memory due to quantization waste. Additional memory waste
can occur from alignment; Of course, heap alignment should no be
used unless (a) you are using the granule allocator to manage DMA memory
and (b) your hardware has specific memory alignment requirements.
The current implementation also restricts the maximum allocation size
to 32 granules. That restriction could be eliminated with some
additional coding effort, but currently requires larger granule
sizes for larger allocations.
General Usage Example.
This is an example using the GCC section attribute to position a DMA
heap in memory (logic in the linker script would assign the section
.dmaheap to the DMA memory.
FAR uint32_t g_dmaheap[DMAHEAP_SIZE] __attribute__((section(.dmaheap)));
The heap is created by calling gran_initialize. Here the granule size
is set to 64 bytes and the alignment to 16 bytes:
GRAN_HANDLE handle = gran_initialize(g_dmaheap, DMAHEAP_SIZE, 6, 4);
Then the GRAN_HANDLE can be used to allocate memory (There is no
GRAN_HANDLE if CONFIG_GRAN_SINGLE=y):
FAR uint8_t *dma_memory = (FAR uint8_t *)gran_alloc(handle, 47);
The actual memory allocates will be 64 byte (wasting 17 bytes) and
will be aligned at least to (1 << log2align).