/**************************************************************************** * drivers/mtd/m25px.c * * SPDX-License-Identifier: Apache-2.0 * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* Driver for SPI-based M25P1 (128Kbit), M25P64 (32Mbit), M25P64 (64Mbit), * and M25P128 (128Mbit) FLASH (and compatible). */ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ /* Per the data sheet, M25P10 parts can be driven with either SPI mode 0 * (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). But I have heard that * other devices can operated in mode 0 or 1. * So you may need to specify CONFIG_M25P_SPIMODE to * select the best mode for your device. * If CONFIG_M25P_SPIMODE is not defined, mode 0 will be used. */ #ifndef CONFIG_M25P_SPIMODE # define CONFIG_M25P_SPIMODE SPIDEV_MODE0 #endif #ifndef CONFIG_M25P_SPIFREQUENCY # define CONFIG_M25P_SPIFREQUENCY 20000000 #endif /* Various manufacturers may have produced the parts. * 0x20 is the manufacturer ID for the STMicro MP25x serial FLASH. * If, for example, you are using the a Macronix International MX25 * serial FLASH, the correct manufacturer ID would be 0xc2. */ #ifndef CONFIG_M25P_MANUFACTURER # define CONFIG_M25P_MANUFACTURER 0x20 #endif #ifndef CONFIG_M25P_MEMORY_TYPE # define CONFIG_M25P_MEMORY_TYPE 0x20 #endif #ifndef CONFIG_MT25Q_MEMORY_TYPE # define CONFIG_MT25Q_MEMORY_TYPE 0xBA #endif #ifndef CONFIG_MT25QU_MEMORY_TYPE # define CONFIG_MT25QU_MEMORY_TYPE 0xBB #endif /* M25P Registers ***********************************************************/ /* Identification register values */ #define M25P_MANUFACTURER CONFIG_M25P_MANUFACTURER #define M25P_MEMORY_TYPE CONFIG_M25P_MEMORY_TYPE #define MT25Q_MEMORY_TYPE CONFIG_MT25Q_MEMORY_TYPE #define MT25QU_MEMORY_TYPE CONFIG_MT25QU_MEMORY_TYPE #define M25P_RES_ID 0x13 #define M25P_M25P1_CAPACITY 0x11 /* 1 M-bit */ #define M25P_EN25F80_CAPACITY 0x14 /* 8 M-bit */ #define M25P_M25P16_CAPACITY 0x15 /* 16 M-bit */ #define M25P_M25P32_CAPACITY 0x16 /* 32 M-bit */ #define M25P_M25P64_CAPACITY 0x17 /* 64 M-bit */ #define M25P_M25P128_CAPACITY 0x18 /* 128 M-bit */ #define M25P_MT25Q128_CAPACITY 0x18 /* 128 M-bit */ #define M25P_MT25Q256_CAPACITY 0x19 /* 256 M-bit */ #define M25P_MT25Q1G_CAPACITY 0x21 /* 1 G-bit */ /* M25P1 capacity is 131,072 bytes: * (4 sectors) * (32,768 bytes per sector) * (512 pages) * (256 bytes per page) */ #define M25P_M25P1_SECTOR_SHIFT 15 /* Sector size 1 << 15 = 65,536 */ #define M25P_M25P1_NSECTORS 4 #define M25P_M25P1_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_M25P1_NPAGES 512 /* EN25F80 capacity is 1,048,576 bytes: * (16 sectors) * (65,536 bytes per sector) * (512 pages) * (256 bytes per page) */ #define M25P_EN25F80_SECTOR_SHIFT 16 /* Sector size 1 << 15 = 65,536 */ #define M25P_EN25F80_NSECTORS 16 #define M25P_EN25F80_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_EN25F80_NPAGES 4096 #define M25P_EN25F80_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */ #define M25P_EN25F80_NSUBSECTORS 256 /* M25P16 capacity is 2,097,152 bytes: * (32 sectors) * (65,536 bytes per sector) * (8192 pages) * (256 bytes per page) */ #define M25P_M25P16_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ #define M25P_M25P16_NSECTORS 32 #define M25P_M25P16_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_M25P16_NPAGES 8192 #define M25P_M25PX16_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */ /* M25P32 capacity is 4,194,304 bytes: * (64 sectors) * (65,536 bytes per sector) * (16384 pages) * (256 bytes per page) */ #define M25P_M25P32_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ #define M25P_M25P32_NSECTORS 64 #define M25P_M25P32_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_M25P32_NPAGES 16384 #define M25P_M25PX32_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */ /* M25P64 capacity is 8,338,608 bytes: * (128 sectors) * (65,536 bytes per sector) * (32768 pages) * (256 bytes per page) */ #define M25P_M25P64_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ #define M25P_M25P64_NSECTORS 128 #define M25P_M25P64_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_M25P64_NPAGES 32768 /* M25P128 capacity is 16,777,216 bytes: * (64 sectors) * (262,144 bytes per sector) * (65536 pages) * (256 bytes per page) */ #define M25P_M25P128_SECTOR_SHIFT 18 /* Sector size 1 << 18 = 262,144 */ #define M25P_M25P128_NSECTORS 64 #define M25P_M25P128_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_M25P128_NPAGES 65536 /* MT25Q128 capacity is 16,777,216 bytes: * (256 sectors) * (65,536 bytes per sector) * (65536 pages) * (256 bytes per page) */ #define M25P_MT25Q128_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ #define M25P_MT25Q128_NSECTORS 256 #define M25P_MT25Q128_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_MT25Q128_NPAGES 65536 #define M25P_MT25Q128_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */ /* MT25Q256 capacity is 33,554,432 bytes: * (512 sectors) * (65,536 bytes per sector) * (131072 pages) * (256 bytes per page) */ #define M25P_MT25Q256_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ #define M25P_MT25Q256_NSECTORS 512 #define M25P_MT25Q256_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_MT25Q256_NPAGES 131072 #define M25P_MT25Q256_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */ /* MT25Q1G capacity is 134,217,728 bytes: * (2048 sectors) * (65,536 bytes per sector) * (524288 pages) * (256 bytes per page) */ #define M25P_MT25Q1G_SECTOR_SHIFT 16 /* Sector size 1 << 16 = 65,536 */ #define M25P_MT25Q1G_NSECTORS 2048 #define M25P_MT25Q1G_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define M25P_MT25Q1G_NPAGES 524288 #define M25P_MT25Q1G_SUBSECT_SHIFT 12 /* Sub-Sector size 1 << 12 = 4,096 */ /* Instructions */ /* Command Value N Description Addr Dummy Data */ #define M25P_WREN 0x06 /* 1 Write Enable 0 0 0 */ #define M25P_WRDI 0x04 /* 1 Write Disable 0 0 0 */ #define M25P_RDID 0x9f /* 1 Read Identification 0 0 1-3 */ #define M25P_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */ #define M25P_WRSR 0x01 /* 1 Write Status Register 0 0 1 */ #define M25P_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */ #define M25P_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */ #define M25P_PP 0x02 /* 1 Page Program 3 0 1-256 */ #define M25P_SE 0xd8 /* 1 Sector Erase 3 0 0 */ #define M25P_BE 0xc7 /* 1 Bulk Erase 0 0 0 */ #define M25P_DP 0xb9 /* 2 Deep power down 0 0 0 */ #define M25P_RES 0xab /* 2 Read Electronic Signature 0 3 >=1 */ #define M25P_SSE 0x20 /* 3 Sub-Sector Erase 0 0 0 */ /* NOTE 1: All parts. * NOTE 2: M25P632/M25P64 * NOTE 3: EN25F80. In EN25F80 terminology, 0xd8 is a block erase and 0x20 * is a sector erase. */ /* Status register bit definitions */ #define M25P_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */ #define M25P_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ #define M25P_SR_BP_SHIFT (2) /* Bits 2-4: Block protect bits */ #define M25P_SR_BP_MASK (7 << M25P_SR_BP_SHIFT) # define M25P_SR_BP_NONE (0 << M25P_SR_BP_SHIFT) /* Unprotected */ # define M25P_SR_BP_UPPER64th (1 << M25P_SR_BP_SHIFT) /* Upper 64th */ # define M25P_SR_BP_UPPER32nd (2 << M25P_SR_BP_SHIFT) /* Upper 32nd */ # define M25P_SR_BP_UPPER16th (3 << M25P_SR_BP_SHIFT) /* Upper 16th */ # define M25P_SR_BP_UPPER8th (4 << M25P_SR_BP_SHIFT) /* Upper 8th */ # define M25P_SR_BP_UPPERQTR (5 << M25P_SR_BP_SHIFT) /* Upper quarter */ # define M25P_SR_BP_UPPERHALF (6 << M25P_SR_BP_SHIFT) /* Upper half */ # define M25P_SR_BP_ALL (7 << M25P_SR_BP_SHIFT) /* All sectors */ /* Bits 5-6: Unused, read zero */ #define M25P_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */ #define M25P_DUMMY 0xa5 /**************************************************************************** * Private Types ****************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct m25p_dev_s. */ struct m25p_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ uint8_t sectorshift; /* 16 or 18 */ uint8_t pageshift; /* 8 */ uint16_t nsectors; /* 128 or 64 */ uint32_t npages; /* 32,768 or 65,536 */ #ifdef CONFIG_M25P_SUBSECTOR_ERASE uint8_t subsectorshift; /* 0, 12 or 13 (4K or 8K) */ #endif }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Helpers */ static void m25p_lock(FAR struct spi_dev_s *dev); static inline void m25p_unlock(FAR struct spi_dev_s *dev); static inline int m25p_readid(struct m25p_dev_s *priv); static void m25p_waitwritecomplete(struct m25p_dev_s *priv); static void m25p_writeenable(struct m25p_dev_s *priv); static inline void m25p_sectorerase(struct m25p_dev_s *priv, off_t offset, uint8_t type); static inline int m25p_bulkerase(struct m25p_dev_s *priv); static inline void m25p_pagewrite(struct m25p_dev_s *priv, FAR const uint8_t *buffer, off_t offset); /* MTD driver methods */ static int m25p_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static ssize_t m25p_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buf); static ssize_t m25p_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t m25p_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t m25p_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer); #endif static int m25p_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); /**************************************************************************** * Private Data ****************************************************************************/ /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: m25p_lock ****************************************************************************/ static void m25p_lock(FAR struct spi_dev_s *dev) { /* On SPI buses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the buses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusive * access to the SPI bus. We will retain that exclusive access until the * bus is unlocked. */ SPI_LOCK(dev, true); /* After locking the SPI bus, the we also need call the setfrequency, * setbits, and setmode methods to make sure that the SPI is properly * configured for the device. * If the SPI bus is being shared, then it may have been left in an * incompatible state. */ SPI_SETMODE(dev, CONFIG_M25P_SPIMODE); SPI_SETBITS(dev, 8); SPI_HWFEATURES(dev, 0); SPI_SETFREQUENCY(dev, CONFIG_M25P_SPIFREQUENCY); } /**************************************************************************** * Name: m25p_unlock ****************************************************************************/ static inline void m25p_unlock(FAR struct spi_dev_s *dev) { SPI_LOCK(dev, false); } /**************************************************************************** * Name: m25p_readid ****************************************************************************/ static inline int m25p_readid(struct m25p_dev_s *priv) { uint16_t manufacturer; uint16_t memory; uint16_t capacity; finfo("priv: %p\n", priv); /* Lock the SPI bus, configure the bus, and select this FLASH part. */ m25p_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Read ID (RDID)" command and read the first three ID bytes */ SPI_SEND(priv->dev, M25P_RDID); manufacturer = SPI_SEND(priv->dev, M25P_DUMMY); memory = SPI_SEND(priv->dev, M25P_DUMMY); capacity = SPI_SEND(priv->dev, M25P_DUMMY); /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); m25p_unlock(priv->dev); finfo("manufacturer: %02x memory: %02x capacity: %02x\n", manufacturer, memory, capacity); /* Check for a valid manufacturer and memory type */ if (manufacturer == M25P_MANUFACTURER && memory == M25P_MEMORY_TYPE) { /* Okay.. is it a FLASH capacity that we understand? */ #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = 0; #endif if (capacity == M25P_M25P1_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_M25P1_SECTOR_SHIFT; priv->nsectors = M25P_M25P1_NSECTORS; priv->pageshift = M25P_M25P1_PAGE_SHIFT; priv->npages = M25P_M25P1_NPAGES; return OK; } else if (capacity == M25P_EN25F80_CAPACITY) { /* Save the FLASH geometry */ priv->pageshift = M25P_EN25F80_PAGE_SHIFT; priv->npages = M25P_EN25F80_NPAGES; priv->sectorshift = M25P_EN25F80_SECTOR_SHIFT; priv->nsectors = M25P_EN25F80_NSECTORS; #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = M25P_EN25F80_SUBSECT_SHIFT; #endif return OK; } else if (capacity == M25P_M25P16_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_M25P16_SECTOR_SHIFT; priv->nsectors = M25P_M25P16_NSECTORS; priv->pageshift = M25P_M25P16_PAGE_SHIFT; priv->npages = M25P_M25P16_NPAGES; #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = M25P_M25PX16_SUBSECT_SHIFT; #endif return OK; } else if (capacity == M25P_M25P32_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_M25P32_SECTOR_SHIFT; priv->nsectors = M25P_M25P32_NSECTORS; priv->pageshift = M25P_M25P32_PAGE_SHIFT; priv->npages = M25P_M25P32_NPAGES; #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = M25P_M25PX32_SUBSECT_SHIFT; #endif return OK; } else if (capacity == M25P_M25P64_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_M25P64_SECTOR_SHIFT; priv->nsectors = M25P_M25P64_NSECTORS; priv->pageshift = M25P_M25P64_PAGE_SHIFT; priv->npages = M25P_M25P64_NPAGES; return OK; } else if (capacity == M25P_M25P128_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_M25P128_SECTOR_SHIFT; priv->nsectors = M25P_M25P128_NSECTORS; priv->pageshift = M25P_M25P128_PAGE_SHIFT; priv->npages = M25P_M25P128_NPAGES; return OK; } } else if (manufacturer == M25P_MANUFACTURER && (memory == MT25Q_MEMORY_TYPE || memory == MT25QU_MEMORY_TYPE)) { /* Also okay.. is it a FLASH capacity that we understand? */ #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = 0; #endif if (capacity == M25P_MT25Q128_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_MT25Q128_SECTOR_SHIFT; priv->nsectors = M25P_MT25Q128_NSECTORS; priv->pageshift = M25P_MT25Q128_PAGE_SHIFT; priv->npages = M25P_MT25Q128_NPAGES; #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = M25P_MT25Q128_SUBSECT_SHIFT; #endif return OK; } else if (capacity == M25P_MT25Q256_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_MT25Q256_SECTOR_SHIFT; priv->nsectors = M25P_MT25Q256_NSECTORS; priv->pageshift = M25P_MT25Q256_PAGE_SHIFT; priv->npages = M25P_MT25Q256_NPAGES; #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = M25P_MT25Q256_SUBSECT_SHIFT; #endif return OK; } else if (capacity == M25P_MT25Q1G_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = M25P_MT25Q1G_SECTOR_SHIFT; priv->nsectors = M25P_MT25Q1G_NSECTORS; priv->pageshift = M25P_MT25Q1G_PAGE_SHIFT; priv->npages = M25P_MT25Q1G_NPAGES; #ifdef CONFIG_M25P_SUBSECTOR_ERASE priv->subsectorshift = M25P_MT25Q1G_SUBSECT_SHIFT; #endif return OK; } } return -ENODEV; } /**************************************************************************** * Name: m25p_waitwritecomplete ****************************************************************************/ static void m25p_waitwritecomplete(struct m25p_dev_s *priv) { uint8_t status; /* Loop as long as the memory is busy with a write cycle */ do { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read Status Register (RDSR)" command */ SPI_SEND(priv->dev, M25P_RDSR); /* Send a dummy byte to generate the clock needed to shift out the * status */ status = SPI_SEND(priv->dev, M25P_DUMMY); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); /* Given that writing could take up to few tens of milliseconds, and * erasing could take more. * The following short delay in the "busy" case will allow other * peripherals to access the SPI bus. */ if ((status & M25P_SR_WIP) != 0) { m25p_unlock(priv->dev); nxsig_usleep(1000); m25p_lock(priv->dev); } } while ((status & M25P_SR_WIP) != 0); finfo("Complete\n"); } /**************************************************************************** * Name: m25p_writeenable ****************************************************************************/ static void m25p_writeenable(struct m25p_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Write Enable (WREN)" command */ SPI_SEND(priv->dev, M25P_WREN); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Enabled\n"); } /**************************************************************************** * Name: m25p_sectorerase ****************************************************************************/ static void m25p_sectorerase(struct m25p_dev_s *priv, off_t sector, uint8_t type) { off_t offset; #ifdef CONFIG_M25P_SUBSECTOR_ERASE if (priv->subsectorshift > 0) { offset = sector << priv->subsectorshift; } else #endif { offset = sector << priv->sectorshift; } finfo("sector: %08lx\n", (long)sector); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ m25p_waitwritecomplete(priv); /* Send write enable instruction */ m25p_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction * that was passed in as the erase type. */ SPI_SEND(priv->dev, type); /* Send the sector offset high byte first. For all of the supported * parts, the sector number is completely contained in the first byte * and the values used in the following two bytes don't really matter. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Erased\n"); } /**************************************************************************** * Name: m25p_bulkerase ****************************************************************************/ static inline int m25p_bulkerase(struct m25p_dev_s *priv) { finfo("priv: %p\n", priv); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ m25p_waitwritecomplete(priv); /* Send write enable instruction */ m25p_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Bulk Erase (BE)" instruction */ SPI_SEND(priv->dev, M25P_BE); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Return: OK\n"); return OK; } /**************************************************************************** * Name: m25p_pagewrite ****************************************************************************/ static inline void m25p_pagewrite(struct m25p_dev_s *priv, FAR const uint8_t *buffer, off_t page) { off_t offset = page << priv->pageshift; finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ m25p_waitwritecomplete(priv); /* Enable the write access to the FLASH */ m25p_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->dev, M25P_PP); /* Send the page offset high byte first. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift); /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Written\n"); } /**************************************************************************** * Name: m25p_bytewrite ****************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static inline void m25p_bytewrite(struct m25p_dev_s *priv, FAR const uint8_t *buffer, off_t offset, uint16_t count) { finfo("offset: %08lx count:%d\n", (long)offset, count); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ m25p_waitwritecomplete(priv); /* Enable the write access to the FLASH */ m25p_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->dev, M25P_PP); /* Send the page offset high byte first. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, count); /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Written\n"); } #endif /**************************************************************************** * Name: m25p_erase ****************************************************************************/ static int m25p_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; size_t blocksleft = nblocks; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ m25p_lock(priv->dev); while (blocksleft > 0) { #ifdef CONFIG_M25P_SUBSECTOR_ERASE size_t sectorboundry; size_t blkper; /* If we have a smaller erase size, then we will find as many full * sector erase blocks as possible to speed up the process instead of * erasing everything in smaller chunks. */ if (priv->subsectorshift > 0) { blkper = 1 << (priv->sectorshift - priv->subsectorshift); sectorboundry = (startblock + blkper - 1) / blkper; sectorboundry *= blkper; /* If we are on a sector boundary and have at least a full sector * of blocks left to erase, then we can do a full sector erase. */ if (startblock == sectorboundry && blocksleft >= blkper) { /* Do a full sector erase */ m25p_sectorerase(priv, startblock, M25P_SE); startblock += blkper; blocksleft -= blkper; continue; } else { /* Just do a sub-sector erase */ m25p_sectorerase(priv, startblock, M25P_SSE); startblock++; blocksleft--; continue; } } #endif /* Not using sub-sector erase. Erase each full sector */ m25p_sectorerase(priv, startblock, M25P_SE); startblock++; blocksleft--; } m25p_unlock(priv->dev); return (int)nblocks; } /**************************************************************************** * Name: m25p_bread ****************************************************************************/ static ssize_t m25p_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; ssize_t nbytes; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* On this device, we can handle the block read just like the byte-oriented * read */ nbytes = m25p_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { return nbytes >> priv->pageshift; } return (int)nbytes; } /**************************************************************************** * Name: m25p_bwrite ****************************************************************************/ static ssize_t m25p_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; size_t blocksleft = nblocks; size_t pagesize = 1 << priv->pageshift; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock the SPI bus and write each page to FLASH */ m25p_lock(priv->dev); while (blocksleft-- > 0) { m25p_pagewrite(priv, buffer, startblock); buffer += pagesize; startblock++; } m25p_unlock(priv->dev); return nblocks; } /**************************************************************************** * Name: m25p_read ****************************************************************************/ static ssize_t m25p_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus NOW because the following call must be executed with * the bus locked. */ m25p_lock(priv->dev); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ m25p_waitwritecomplete(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read from Memory" instruction */ SPI_SEND(priv->dev, M25P_READ); /* Send the page offset high byte first. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->dev, buffer, nbytes); /* Deselect the FLASH and unlock the SPI bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); m25p_unlock(priv->dev); finfo("return nbytes: %d\n", (int)nbytes); return nbytes; } /**************************************************************************** * Name: m25p_write ****************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t m25p_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer) { FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; int startpage; int endpage; int count; int index; int pagesize; int bytestowrite; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* We must test if the offset + count crosses one or more pages * and perform individual writes. The devices can only write in * page increments. */ startpage = offset / (1 << priv->pageshift); endpage = (offset + nbytes) / (1 << priv->pageshift); m25p_lock(priv->dev); if (startpage == endpage) { /* All bytes within one programmable page. Just do the write. */ m25p_bytewrite(priv, buffer, offset, nbytes); } else { /* Write the 1st partial-page */ count = nbytes; pagesize = (1 << priv->pageshift); bytestowrite = pagesize - (offset & (pagesize - 1)); m25p_bytewrite(priv, buffer, offset, bytestowrite); /* Update offset and count */ offset += bytestowrite; count -= bytestowrite; index = bytestowrite; /* Write full pages */ while (count >= pagesize) { m25p_bytewrite(priv, &buffer[index], offset, pagesize); /* Update offset and count */ offset += pagesize; count -= pagesize; index += pagesize; } /* Now write any partial page at the end */ if (count > 0) { m25p_bytewrite(priv, &buffer[index], offset, count); } } m25p_unlock(priv->dev); return nbytes; } #endif /* CONFIG_MTD_BYTE_WRITE */ /**************************************************************************** * Name: m25p_ioctl ****************************************************************************/ static int m25p_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct m25p_dev_s *priv = (FAR struct m25p_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ finfo("cmd: %d\n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *) ((uintptr_t)arg); if (geo) { memset(geo, 0, sizeof(*geo)); /* Populate the geometry structure with information need to * know the capacity and how to access the device. * * NOTE: * that the device is treated as though it where just an array * of fixed size blocks. * That is most likely not true, but the client will expect the * device logic to do whatever is necessary to make it appear * so. */ geo->blocksize = (1 << priv->pageshift); #ifdef CONFIG_M25P_SUBSECTOR_ERASE if (priv->subsectorshift > 0) { geo->erasesize = (1 << priv->subsectorshift); geo->neraseblocks = priv->nsectors * (1 << (priv->sectorshift - priv->subsectorshift)); } else #endif { geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; } ret = OK; finfo("blocksize: %" PRId32 " erasesize: %" PRId32 " neraseblocks: %" PRId32 "\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case BIOC_PARTINFO: { FAR struct partition_info_s *info = (FAR struct partition_info_s *)arg; if (info != NULL) { info->numsectors = priv->nsectors << (priv->sectorshift - priv->pageshift); info->sectorsize = 1 << priv->pageshift; info->startsector = 0; info->parent[0] = '\0'; ret = OK; } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ m25p_lock(priv->dev); ret = m25p_bulkerase(priv); m25p_unlock(priv->dev); } break; default: ret = -ENOTTY; /* Bad command */ break; } finfo("return %d\n", ret); return ret; } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: m25p_initialize * * Description: * Create an initialize MTD device instance. * MTD devices are not registered in the file system, but are created as * instances that can be bound to other functions (such as a block or * character driver front end). * ****************************************************************************/ FAR struct mtd_dev_s *m25p_initialize(FAR struct spi_dev_s *dev) { FAR struct m25p_dev_s *priv; int ret; finfo("dev: %p\n", dev); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH(0) definition) and so would * have to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = kmm_zalloc(sizeof(struct m25p_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = m25p_erase; priv->mtd.bread = m25p_bread; priv->mtd.bwrite = m25p_bwrite; priv->mtd.read = m25p_read; #ifdef CONFIG_MTD_BYTE_WRITE priv->mtd.write = m25p_write; #endif priv->mtd.ioctl = m25p_ioctl; priv->mtd.name = "m25px"; priv->dev = dev; /* Deselect the FLASH */ SPI_SELECT(dev, SPIDEV_FLASH(0), false); /* Identify the FLASH chip and get its capacity */ ret = m25p_readid(priv); if (ret != OK) { /* Unrecognized! * Discard all of that work we just did and return NULL */ ferr("ERROR: Unrecognized\n"); kmm_free(priv); return NULL; } } /* Return the implementation-specific state structure as the MTD device */ finfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }