/**************************************************************************** * fs/romfs/fs_romfsutil.c * * SPDX-License-Identifier: Apache-2.0 * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /* References: Linux/Documentation/filesystems/romfs.txt */ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "fs_romfs.h" #include "fs_heap.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #define LINK_NOT_FOLLOWED 0 #define LINK_FOLLOWED 1 #define NODEINFO_NINCR 4 /**************************************************************************** * Private Types ****************************************************************************/ struct romfs_entryname_s { FAR const char *re_name; size_t re_len; }; /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: romfs_devread32 * * Description: * Read the big-endian 32-bit value from the mount device buffer * * Assumption: * All values are aligned to 32-bit boundaries * ****************************************************************************/ static uint32_t romfs_devread32(FAR struct romfs_mountpt_s *rm, int ndx) { /* This should not read past the end of the sector since the directory * entries are aligned at 16-byte boundaries. */ return ((((uint32_t)rm->rm_buffer[ndx] & 0xff) << 24) | (((uint32_t)rm->rm_buffer[ndx + 1] & 0xff) << 16) | (((uint32_t)rm->rm_buffer[ndx + 2] & 0xff) << 8) | ((uint32_t)rm->rm_buffer[ndx + 3] & 0xff)); } /**************************************************************************** * Name: romfs_checkentry * * Description: * Check if the entry at offset is a directory or file path segment * ****************************************************************************/ #ifndef CONFIG_FS_ROMFS_CACHE_NODE static inline int romfs_checkentry(FAR struct romfs_mountpt_s *rm, uint32_t offset, FAR const char *entryname, int entrylen, FAR struct romfs_nodeinfo_s *nodeinfo) { char name[NAME_MAX + 1]; uint32_t linkoffset; uint32_t next; uint32_t info; uint32_t size; int ret; /* Parse the directory entry at this offset (which may be re-directed * to some other entry if HARLINKED). */ ret = romfs_parsedirentry(rm, offset, &linkoffset, &next, &info, &size); if (ret < 0) { return ret; } /* Get the name of the directory entry. */ ret = romfs_parsefilename(rm, offset, name); if (ret < 0) { return ret; } /* Then check if this the name segment we are looking for. The * string comparison is awkward because there is no terminator * on entryname (there is a terminator on name, however) */ if (strlen(name) == entrylen && memcmp(entryname, name, entrylen) == 0) { /* Found it -- save the component info and return success */ if (IS_DIRECTORY(next)) { nodeinfo->rn_offset = info; nodeinfo->rn_size = 0; } else { nodeinfo->rn_offset = linkoffset; nodeinfo->rn_size = size; } nodeinfo->rn_next = next; return 0; } /* The entry is not a directory or it does not have the matching name */ return -ENOENT; } #endif /**************************************************************************** * Name: romfs_devcacheread * * Description: * Read the specified sector for specified offset into the sector cache. * Return the index into the sector corresponding to the offset * ****************************************************************************/ static int16_t romfs_devcacheread(FAR struct romfs_mountpt_s *rm, uint32_t offset) { uint32_t sector; int ret; /* rm->rm_cachesector holds the current sector that is buffer in or * referenced by rm->rm_buffer. If the requested sector is the same as this * this then we do nothing. */ sector = SEC_NSECTORS(rm, offset); if (rm->rm_cachesector != sector) { /* Check the access mode */ if (rm->rm_xipbase) { /* In XIP mode, rf_buffer is just an offset pointer into the device * address space. */ rm->rm_buffer = rm->rm_xipbase + SEC_ALIGN(rm, offset); } else { /* In non-XIP mode, we will have to read the new sector. */ ret = romfs_hwread(rm, rm->rm_buffer, sector, 1); if (ret < 0) { return (int16_t)ret; } } /* Update the cached sector number */ rm->rm_cachesector = sector; } /* Return the offset */ return offset & SEC_NDXMASK(rm); } /**************************************************************************** * Name: romfs_followhardlinks * * Description: * Given the offset to a file header, check if the file is a hardlink. * If so, traverse the hard links until the terminal, non-linked header * so found and return that offset. * * Return value: * < 0 : An error occurred * 0 : No link followed * 1 : Link followed, poffset is the new volume offset * ****************************************************************************/ static int romfs_followhardlinks(FAR struct romfs_mountpt_s *rm, uint32_t offset, FAR uint32_t *poffset) { uint32_t next; int16_t ndx; int i; int ret = LINK_NOT_FOLLOWED; /* Loop while we are redirected by hardlinks */ for (i = 0; i < ROMF_MAX_LINKS; i++) { /* Read the sector containing the offset into memory */ ndx = romfs_devcacheread(rm, offset); if (ndx < 0) { return ndx; } /* Check if this is a hard link */ next = romfs_devread32(rm, ndx + ROMFS_FHDR_NEXT); if (!IS_HARDLINK(next)) { *poffset = offset; return ret; } /* Follow the hard-link. Set return to indicate that we followed a * link and that poffset was set to the link offset is valid. */ offset = romfs_devread32(rm, ndx + ROMFS_FHDR_INFO); ret = LINK_FOLLOWED; } return -ELOOP; } /**************************************************************************** * Name: romfs_nodeinfo_search/romfs_nodeinfo_compare * * Description: * Compare two names * ****************************************************************************/ #ifdef CONFIG_FS_ROMFS_CACHE_NODE static int romfs_nodeinfo_search(FAR const void *a, FAR const void *b) { FAR struct romfs_nodeinfo_s *nodeinfo = *(FAR struct romfs_nodeinfo_s **)b; FAR const struct romfs_entryname_s *entry = a; FAR const char *name = nodeinfo->rn_name; size_t len = nodeinfo->rn_namesize; int ret; if (len > entry->re_len) { len = entry->re_len; } ret = memcmp(entry->re_name, name, len); if (ret == 0) { if (entry->re_name[len] == '/' || entry->re_name[len] == '\0') { return name[len] == '\0' ? 0 : -1; } else { return 1; } } return ret; } static int romfs_nodeinfo_compare(FAR const void *a, FAR const void *b) { FAR struct romfs_nodeinfo_s *nodeinfo = *(FAR struct romfs_nodeinfo_s **)a; struct romfs_entryname_s entry; entry.re_name = nodeinfo->rn_name; entry.re_len = nodeinfo->rn_namesize; return romfs_nodeinfo_search(&entry, b); } #endif /**************************************************************************** * Name: romfs_searchdir * * Description: * This is part of the romfs_finddirentry. Search the directory * beginning at nodeinfo->rn_offset for entryname. * ****************************************************************************/ static inline int romfs_searchdir(FAR struct romfs_mountpt_s *rm, FAR const char *entryname, int entrylen, FAR struct romfs_nodeinfo_s *nodeinfo) { #ifdef CONFIG_FS_ROMFS_CACHE_NODE FAR struct romfs_nodeinfo_s **cnodeinfo; struct romfs_entryname_s entry; entry.re_name = entryname; entry.re_len = entrylen; cnodeinfo = bsearch(&entry, nodeinfo->rn_child, nodeinfo->rn_count, sizeof(*nodeinfo->rn_child), romfs_nodeinfo_search); if (cnodeinfo) { memcpy(nodeinfo, *cnodeinfo, sizeof(*nodeinfo)); return 0; } #else uint32_t offset; uint32_t next; int16_t ndx; int ret; /* Then loop through the current directory until the directory * with the matching name is found. Or until all of the entries * the directory have been examined. */ offset = nodeinfo->rn_offset; do { /* Read the sector into memory (do this before calling * romfs_checkentry() so we won't have to read the sector * twice in the event that the offset refers to a hardlink). */ ndx = romfs_devcacheread(rm, offset); if (ndx < 0) { return ndx; } /* Because everything is chunked and aligned to 16-bit boundaries, * we know that most the basic node info fits into the sector. */ next = romfs_devread32(rm, ndx + ROMFS_FHDR_NEXT) & RFNEXT_OFFSETMASK; /* Check if the name this entry is a directory with the matching * name */ ret = romfs_checkentry(rm, offset, entryname, entrylen, nodeinfo); if (ret >= 0) { /* Its a match! Return success */ return ret; } /* No match... select the offset to the next entry */ offset = next; } while (next != 0); #endif /* There is nothing in this directory with that name */ return -ENOENT; } #ifdef CONFIG_FS_ROMFS_WRITEABLE /**************************************************************************** * Name: romfs_alloc_sparenode * * Description: * Allocate the spare node * ****************************************************************************/ static FAR struct romfs_sparenode_s * romfs_alloc_sparenode(uint32_t start, uint32_t end) { FAR struct romfs_sparenode_s *node; node = fs_heap_malloc(sizeof(struct romfs_sparenode_s)); if (node == NULL) { ferr("romfs_alloc_sparenode: no memory\n"); return NULL; } node->start = start; node->end = end; return node; } /**************************************************************************** * Name: romfs_init_sparelist * * Description: * Init the sparelist * ****************************************************************************/ static int romfs_init_sparelist(FAR struct romfs_mountpt_s *rm, bool rw) { FAR struct romfs_sparenode_s *node; list_initialize(&rm->rm_sparelist); if (!rw) { return 0; } node = romfs_alloc_sparenode(0, rm->rm_hwsectorsize * rm->rm_hwnsectors); if (node == NULL) { return -ENOMEM; } list_add_head(&rm->rm_sparelist, &node->node); rm->rm_volsize = 0; return 0; } /**************************************************************************** * Name: romfs_alloc_spareregion * * Description: * Allocate the spare region * ****************************************************************************/ static int romfs_alloc_spareregion(FAR struct list_node *list, uint32_t start, uint32_t end) { FAR struct romfs_sparenode_s *node; list_for_every_entry(list, node, struct romfs_sparenode_s, node) { /* Find the node that start ~ end * is in node->start ~ node->end */ if (start == node->start && end == node->end) { /* Delete the node */ list_delete(&node->node); fs_heap_free(node); return 0; } else if (start == node->start) { /* Update the node */ node->start = end; return 0; } else if (end == node->end) { /* Update the node */ node->end = start; return 0; } else if (start > node->start && end < node->end) { /* Split the node */ FAR struct romfs_sparenode_s *new; new = romfs_alloc_sparenode(end, node->end); if (new == NULL) { return -ENOMEM; } node->end = start; list_add_after(&node->node, &new->node); return 0; } } /* Not found */ ferr("No space for start %" PRIu32 ", end %" PRIu32 "\n", start, end); return -ENOENT; } /**************************************************************************** * Name: romfs_devmemcpy ****************************************************************************/ static void romfs_devmemcpy(FAR struct romfs_mountpt_s *rm, int ndx, FAR const void *buf, size_t len) { memcpy(rm->rm_devbuffer + ndx, buf, len); } /**************************************************************************** * Name: romfs_devstrcpy ****************************************************************************/ static void romfs_devstrcpy(FAR struct romfs_mountpt_s *rm, int ndx, FAR const char *buf) { strcpy((FAR char *)rm->rm_devbuffer + ndx, buf); } /**************************************************************************** * Name: romfs_devwrite32 * * Description: * Write the big-endian 32-bit value to the mount device buffer * ****************************************************************************/ static void romfs_devwrite32(FAR struct romfs_mountpt_s *rm, int ndx, uint32_t value) { /* Write the 32-bit value to the specified index in the buffer */ rm->rm_devbuffer[ndx] = (uint8_t)(value >> 24) & 0xff; rm->rm_devbuffer[ndx + 1] = (uint8_t)(value >> 16) & 0xff; rm->rm_devbuffer[ndx + 2] = (uint8_t)(value >> 8) & 0xff; rm->rm_devbuffer[ndx + 3] = (uint8_t)(value & 0xff); } /**************************************************************************** * Name: romfs_hwwrite * * Description: * Write the specified number of sectors to the block device * ****************************************************************************/ static int romfs_hwwrite(FAR struct romfs_mountpt_s *rm, FAR uint8_t *buffer, uint32_t sector, unsigned int nsectors) { FAR struct inode *inode = rm->rm_blkdriver; ssize_t ret = -ENODEV; if (inode->u.i_bops->write) { ret = inode->u.i_bops->write(inode, buffer, sector, nsectors); } if (ret == (ssize_t)nsectors) { ret = 0; } return ret; } /**************************************************************************** * Name: romfs_devcachewrite * * Description: * Write the specified sector for specified offset into the sector cache. * ****************************************************************************/ static int romfs_devcachewrite(FAR struct romfs_mountpt_s *rm, uint32_t sector) { int ret; ret = romfs_hwwrite(rm, rm->rm_devbuffer, sector, 1); if (ret >= 0) { rm->rm_cachesector = sector; } else { rm->rm_cachesector = (uint32_t)-1; } return ret; } #endif /**************************************************************************** * Name: romfs_cachenode * * Description: * Alloc all entry node at once when filesystem is mounted * ****************************************************************************/ #ifdef CONFIG_FS_ROMFS_CACHE_NODE static int romfs_cachenode(FAR struct romfs_mountpt_s *rm, uint32_t origoffset, uint32_t offset, uint32_t next, uint32_t size, FAR const char *name, FAR struct romfs_nodeinfo_s **pnodeinfo) { FAR struct romfs_nodeinfo_s **child; FAR struct romfs_nodeinfo_s *nodeinfo; char childname[NAME_MAX + 1]; uint16_t count = 0; uint32_t info; size_t nsize; int ret; nsize = strlen(name); nodeinfo = fs_heap_zalloc(sizeof(struct romfs_nodeinfo_s) + nsize); if (nodeinfo == NULL) { return -ENOMEM; } *pnodeinfo = nodeinfo; nodeinfo->rn_offset = offset; nodeinfo->rn_origoffset = origoffset; nodeinfo->rn_next = next; nodeinfo->rn_namesize = nsize; memcpy(nodeinfo->rn_name, name, nsize + 1); #ifdef CONFIG_FS_ROMFS_WRITEABLE if (!list_is_empty(&rm->rm_sparelist)) { uint32_t totalsize = ROMFS_ALIGNUP(ROMFS_FHDR_NAME + nsize + 1); if (offset == origoffset) { totalsize += ROMFS_ALIGNUP(size); } rm->rm_volsize += totalsize; ret = romfs_alloc_spareregion(&rm->rm_sparelist, origoffset, origoffset + totalsize); if (ret < 0) { return ret; } } #endif if (!IS_DIRECTORY(next) || (strcmp(name, ".") == 0) || (strcmp(name, "..") == 0)) { nodeinfo->rn_size = size; return 0; } origoffset = offset; child = nodeinfo->rn_child; do { /* Fetch the directory entry at this offset */ ret = romfs_parsedirentry(rm, origoffset, &offset, &next, &info, &size); if (ret < 0) { return ret; } ret = romfs_parsefilename(rm, origoffset, childname); if (ret < 0) { return ret; } if (child == NULL || nodeinfo->rn_count == count - 1) { FAR void *tmp; tmp = fs_heap_realloc(nodeinfo->rn_child, (count + NODEINFO_NINCR) * sizeof(*nodeinfo->rn_child)); if (tmp == NULL) { return -ENOMEM; } nodeinfo->rn_child = tmp; memset(nodeinfo->rn_child + count, 0, NODEINFO_NINCR * sizeof(*nodeinfo->rn_child)); count += NODEINFO_NINCR; } child = &nodeinfo->rn_child[nodeinfo->rn_count++]; if (IS_DIRECTORY(next)) { offset = info; } ret = romfs_cachenode(rm, origoffset, offset, next, size, childname, child); if (ret < 0) { nodeinfo->rn_count--; return ret; } next &= RFNEXT_OFFSETMASK; origoffset = next; } while (next != 0); if (nodeinfo->rn_count > 1) { qsort(nodeinfo->rn_child, nodeinfo->rn_count, sizeof(*nodeinfo->rn_child), romfs_nodeinfo_compare); } return 0; } #endif /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: romfs_hwread * * Description: Read the specified sector into the sector buffer * ****************************************************************************/ int romfs_hwread(FAR struct romfs_mountpt_s *rm, FAR uint8_t *buffer, uint32_t sector, unsigned int nsectors) { int ret = 0; /* Check the access mode */ if (rm->rm_xipbase) { /* In XIP mode, we just copy the requested data */ memcpy(buffer, rm->rm_xipbase + sector * rm->rm_hwsectorsize, nsectors * rm->rm_hwsectorsize); } else { /* In non-XIP mode, we have to read the data from the device */ FAR struct inode *inode = rm->rm_blkdriver; ssize_t nsectorsread = inode->u.i_bops->read(inode, buffer, sector, nsectors); if (nsectorsread < 0) { ret = nsectorsread; } else if (nsectorsread != (ssize_t)nsectors) { ret = -EINVAL; } } return ret; } /**************************************************************************** * Name: romfs_filecacheread * * Description: * Read the specified sector into the sector cache * ****************************************************************************/ int romfs_filecacheread(FAR struct romfs_mountpt_s *rm, FAR struct romfs_file_s *rf, uint32_t sector) { int ret; finfo("sector: %" PRId32 " cached: %" PRId32 " ncached: %" PRId32 "" " sectorsize: %d XIP base: %p buffer: %p\n", sector, rf->rf_cachesector, rf->rf_ncachesector, rm->rm_hwsectorsize, rm->rm_xipbase, rf->rf_buffer); /* rf->rf_cachesector holds the current sector that is buffer in or * referenced by rf->rf_buffer. If the requested sector is the same as this * sector then we do nothing. */ if (rf->rf_cachesector > sector || rf->rf_cachesector + rf->rf_ncachesector <= sector) { /* Check the access mode */ if (rm->rm_xipbase) { /* In XIP mode, rf_buffer is just an offset pointer into the device * address space. */ rf->rf_buffer = rm->rm_xipbase + sector * rm->rm_hwsectorsize; finfo("XIP buffer: %p\n", rf->rf_buffer); } else { if (sector + rf->rf_ncachesector - 1 > rf->rf_endsector) { sector = rf->rf_endsector + 1 - rf->rf_ncachesector; } /* In non-XIP mode, we will have to read the new sector. */ finfo("Calling romfs_hwread\n"); ret = romfs_hwread(rm, rf->rf_buffer, sector, rf->rf_ncachesector); if (ret < 0) { ferr("ERROR: romfs_hwread failed: %d\n", ret); return ret; } } /* Update the cached sector number */ rf->rf_cachesector = sector; } return 0; } /**************************************************************************** * Name: romfs_hwconfigure * * Description: * This function is called as part of the ROMFS mount operation. * It configures the ROMFS filestem for use on this block driver. This * include the accounting for the geometry of the device, setting up any * XIP modes of operation, and/or allocating any cache buffers. * ****************************************************************************/ int romfs_hwconfigure(FAR struct romfs_mountpt_s *rm) { FAR struct inode *inode = rm->rm_blkdriver; struct geometry geo; int ret; /* Get the underlying device geometry */ #ifdef CONFIG_DEBUG_FEATURES if (inode == NULL) { return -ENODEV; } #endif ret = inode->u.i_bops->geometry(inode, &geo); if (ret < 0) { return ret; } if (!geo.geo_available) { return -EBUSY; } /* Save that information in the mount structure */ rm->rm_hwsectorsize = geo.geo_sectorsize; rm->rm_hwnsectors = geo.geo_nsectors; rm->rm_cachesector = (uint32_t)-1; /* Allocate the device cache buffer for normal sector accesses */ rm->rm_devbuffer = fs_heap_malloc(rm->rm_hwsectorsize); if (!rm->rm_devbuffer) { return -ENOMEM; } /* Determine if block driver supports the XIP mode of operation */ if (inode->u.i_bops->ioctl) { ret = inode->u.i_bops->ioctl(inode, BIOC_XIPBASE, (unsigned long)&rm->rm_xipbase); if (ret >= 0 && rm->rm_xipbase) { /* Yes.. Then we will directly access the media (vs. * copying into an allocated sector buffer. */ rm->rm_buffer = rm->rm_xipbase; rm->rm_cachesector = 0; return 0; } } /* The device cache buffer for normal sector accesses */ rm->rm_buffer = rm->rm_devbuffer; return 0; } /**************************************************************************** * Name: romfs_free_sparelist * * Description: * Free the sparelist * ****************************************************************************/ #ifdef CONFIG_FS_ROMFS_WRITEABLE void romfs_free_sparelist(FAR struct list_node *list) { FAR struct romfs_sparenode_s *node; FAR struct romfs_sparenode_s *tmp; list_for_every_entry_safe(list, node, tmp, struct romfs_sparenode_s, node) { list_delete(&node->node); fs_heap_free(node); } } #endif /**************************************************************************** * Name: romfs_fsconfigure * * Description: * This function is called as part of the ROMFS mount operation It * sets up the mount structure to include configuration information * contained in the ROMFS header. This is the place where we actually * determine if the media contains a ROMFS filesystem. * ****************************************************************************/ int romfs_fsconfigure(FAR struct romfs_mountpt_s *rm, FAR const void *data) { FAR const char *name; int ret; uint32_t rootoffset; /* Then get information about the ROMFS filesystem on the devices managed * by this block driver. Read sector zero which contains the volume header. */ ret = romfs_devcacheread(rm, 0); if (ret < 0) { return ret; } /* Verify the magic number at that identifies this as a ROMFS filesystem */ if (memcmp(rm->rm_buffer, ROMFS_VHDR_MAGIC, ROMFS_VHDR_SIZE) != 0) { return -EINVAL; } /* Then extract the values we need from the header and return success */ rm->rm_volsize = romfs_devread32(rm, ROMFS_VHDR_SIZE); /* The root directory entry begins right after the header */ name = (FAR const char *)&rm->rm_buffer[ROMFS_VHDR_VOLNAME]; rootoffset = ROMFS_ALIGNUP(ROMFS_VHDR_VOLNAME + strlen(name) + 1); #ifdef CONFIG_FS_ROMFS_WRITEABLE ret = romfs_init_sparelist(rm, data && strstr(data, "rw")); if (ret < 0) { return ret; } #endif #ifdef CONFIG_FS_ROMFS_CACHE_NODE ret = romfs_cachenode(rm, 0, rootoffset, RFNEXT_DIRECTORY, 0, "", &rm->rm_root); if (ret < 0) { # ifdef CONFIG_FS_ROMFS_WRITEABLE romfs_free_sparelist(&rm->rm_sparelist); # endif romfs_freenode(rm->rm_root); return ret; } #else rm->rm_rootoffset = rootoffset; #endif /* and return success */ rm->rm_mounted = true; return 0; } /**************************************************************************** * Name: romfs_fileconfigure * * Description: * This function is called as part of the ROMFS file open operation It * sets up the file structure to handle buffer appropriately, depending * upon XIP mode or not. * ****************************************************************************/ int romfs_fileconfigure(FAR struct romfs_mountpt_s *rm, FAR struct romfs_file_s *rf) { /* Check if XIP access mode is supported. If so, then we do not need * to allocate anything. */ if (rm->rm_xipbase) { /* We'll put a valid address in rf_buffer just in case. */ rf->rf_cachesector = 0; rf->rf_buffer = rm->rm_xipbase; rf->rf_ncachesector = 1; } else { uint32_t startsector; uint32_t endoffset; uint32_t nsectors; endoffset = rf->rf_startoffset + rf->rf_size; if (rf->rf_size) { endoffset--; } rf->rf_endsector = SEC_NSECTORS(rm, endoffset); startsector = SEC_NSECTORS(rm, rf->rf_startoffset); nsectors = rf->rf_endsector - startsector + 1; if (nsectors > CONFIG_FS_ROMFS_CACHE_FILE_NSECTORS) { nsectors = CONFIG_FS_ROMFS_CACHE_FILE_NSECTORS; } /* Nothing in the cache buffer */ rf->rf_cachesector = (uint32_t)-1; rf->rf_ncachesector = nsectors; /* Create a file buffer to support partial sector accesses */ rf->rf_buffer = fs_heap_malloc(rm->rm_hwsectorsize * rf->rf_ncachesector); if (!rf->rf_buffer) { return -ENOMEM; } } return 0; } /**************************************************************************** * Name: romfs_checkmount * * Description: Check if the mountpoint is still valid. * * The caller should hold the mountpoint semaphore * ****************************************************************************/ int romfs_checkmount(FAR struct romfs_mountpt_s *rm) { FAR struct inode *inode; struct geometry geo; int ret; /* If the rm_mounted flag is false, then we have already handled the loss * of the mount. */ DEBUGASSERT(rm && rm->rm_blkdriver); if (rm->rm_mounted) { /* We still think the mount is healthy. Check an see if this is * still the case */ inode = rm->rm_blkdriver; if (inode->u.i_bops->geometry) { ret = inode->u.i_bops->geometry(inode, &geo); if (ret >= 0 && geo.geo_available && !geo.geo_mediachanged) { return 0; } } /* If we get here, the mount is NOT healthy */ rm->rm_mounted = false; } return -ENODEV; } /**************************************************************************** * Name: romfs_freenode * * Description: * free all entry node at once when filesystem is unmounted * ****************************************************************************/ #ifdef CONFIG_FS_ROMFS_CACHE_NODE void romfs_freenode(FAR struct romfs_nodeinfo_s *nodeinfo) { int i; if (IS_DIRECTORY(nodeinfo->rn_next)) { for (i = 0; i < nodeinfo->rn_count; i++) { romfs_freenode(nodeinfo->rn_child[i]); } fs_heap_free(nodeinfo->rn_child); } fs_heap_free(nodeinfo); } #endif /**************************************************************************** * Name: romfs_finddirentry * * Description: * Given a path to something that may or may not be in the file system, * return the directory entry of the item. * ****************************************************************************/ int romfs_finddirentry(FAR struct romfs_mountpt_s *rm, FAR struct romfs_nodeinfo_s *nodeinfo, FAR const char *path) { FAR const char *entryname; FAR const char *terminator; int entrylen; int ret; /* Start with the first element after the root directory */ #ifdef CONFIG_FS_ROMFS_CACHE_NODE memcpy(nodeinfo, rm->rm_root, sizeof(*nodeinfo)); #else nodeinfo->rn_offset = rm->rm_rootoffset; nodeinfo->rn_next = RFNEXT_DIRECTORY; nodeinfo->rn_size = 0; #endif /* The root directory is a special case */ if (!path || path[0] == '\0') { return 0; } /* Then loop for each directory/file component in the full path */ entryname = path; terminator = NULL; for (; ; ) { /* Find the start of the next path component */ while (*entryname == '/') entryname++; /* Find the end of the next path component */ terminator = strchr(entryname, '/'); if (!terminator) { entrylen = strlen(entryname); } else { entrylen = terminator - entryname; } if (entrylen == 0) { return 0; } /* Long path segment names will be truncated to NAME_MAX */ if (entrylen > NAME_MAX) { entrylen = NAME_MAX; } /* Then find the entry in the current directory with the * matching name. */ ret = romfs_searchdir(rm, entryname, entrylen, nodeinfo); if (ret < 0) { return ret; } /* Was that the last path component? */ if (!terminator) { /* Yes.. return success */ return 0; } /* No... If that was not the last path component, then it had * better have been a directory */ if (!IS_DIRECTORY(nodeinfo->rn_next)) { return -ENOTDIR; } /* Setup to search the next directory for the next component * of the path */ entryname = terminator; } return -EINVAL; /* Won't get here */ } /**************************************************************************** * Name: romfs_parsedirentry * * Description: * Return the directory entry at this offset. If rf is NULL, then the * mount device resources are used. Otherwise, file resources are used. * ****************************************************************************/ int romfs_parsedirentry(FAR struct romfs_mountpt_s *rm, uint32_t offset, FAR uint32_t *poffset, uint32_t *pnext, FAR uint32_t *pinfo, FAR uint32_t *psize) { uint32_t save; uint32_t next; int16_t ndx; int ret; /* Read the sector into memory */ ndx = romfs_devcacheread(rm, offset); if (ndx < 0) { return ndx; } /* Yes.. Save the first 'next' value. That has the offset needed to * traverse the parent directory. But we may need to change the type * after we follow the hard links. */ save = romfs_devread32(rm, ndx + ROMFS_FHDR_NEXT); /* Traverse hardlinks as necessary to get to the real file header */ ret = romfs_followhardlinks(rm, offset, poffset); if (ret < 0) { return ret; } else if (ret > 0) { /* The link was followed */ ndx = romfs_devcacheread(rm, *poffset); if (ndx < 0) { return ndx; } } /* Because everything is chunked and aligned to 16-bit boundaries, * we know that most the basic node info fits into the sector. The * associated name may not, however. * * NOTE: Since ROMFS directory entries are aligned to 16-byte boundaries, * we are assured that ndx + ROMFS_FHDR_INFO/SIZE will lie wholly within * the sector buffer. */ next = romfs_devread32(rm, ndx + ROMFS_FHDR_NEXT); *pnext = (save & RFNEXT_OFFSETMASK) | (next & RFNEXT_ALLMODEMASK); *pinfo = romfs_devread32(rm, ndx + ROMFS_FHDR_INFO); *psize = romfs_devread32(rm, ndx + ROMFS_FHDR_SIZE); return 0; } /**************************************************************************** * Name: romfs_parsefilename * * Description: * Return the filename from directory entry at this offset * ****************************************************************************/ int romfs_parsefilename(FAR struct romfs_mountpt_s *rm, uint32_t offset, FAR char *pname) { int16_t ndx; uint16_t namelen = 0; uint16_t chunklen; bool done = false; /* Loop until the whole name is obtained or until NAME_MAX characters * of the name have been parsed. */ offset += ROMFS_FHDR_NAME; while (namelen < NAME_MAX && !done) { /* Read the sector into memory */ ndx = romfs_devcacheread(rm, offset + namelen); if (ndx < 0) { return ndx; } /* Is the name terminated in this 16-byte block */ if (rm->rm_buffer[ndx + 15] == '\0') { /* Yes.. then this chunk is less than 16 */ chunklen = strlen((FAR char *)&rm->rm_buffer[ndx]); done = true; } else { /* No.. then this chunk is 16 bytes in length */ chunklen = 16; } /* Check if we would exceed the NAME_MAX */ if (namelen + chunklen > NAME_MAX) { chunklen = NAME_MAX - namelen; done = true; } /* Copy the chunk */ memcpy(&pname[namelen], &rm->rm_buffer[ndx], chunklen); namelen += chunklen; } /* Terminate the name (NAME_MAX+1 chars total) and return success */ pname[namelen] = '\0'; return 0; } /**************************************************************************** * Name: romfs_datastart * * Description: * Given the offset to a file header, return the offset to the start of * the file data * ****************************************************************************/ int romfs_datastart(FAR struct romfs_mountpt_s *rm, FAR struct romfs_nodeinfo_s *nodeinfo, FAR uint32_t *start) { #ifdef CONFIG_FS_ROMFS_CACHE_NODE *start = ROMFS_ALIGNUP(nodeinfo->rn_offset + ROMFS_FHDR_NAME + nodeinfo->rn_namesize + 1); return 0; #else uint32_t offset = nodeinfo->rn_offset; int16_t ndx; /* Loop until the header size is obtained. */ offset += ROMFS_FHDR_NAME; for (; ; ) { /* Read the sector into memory */ ndx = romfs_devcacheread(rm, offset); if (ndx < 0) { return ndx; } /* Get the offset to the next chunk */ offset += 16; if (offset > rm->rm_volsize) { return -EIO; } /* Is the name terminated in this 16-byte block */ if (rm->rm_buffer[ndx + 15] == '\0') { /* Yes.. then the data starts at the next chunk */ *start = offset; return 0; } } return -EINVAL; /* Won't get here */ #endif } #ifdef CONFIG_FS_ROMFS_WRITEABLE /**************************************************************************** * Name: romfs_mkfs * * Description: * Format the romfs filesystem * ****************************************************************************/ int romfs_mkfs(FAR struct romfs_mountpt_s *rm) { /* Write the magic number at that identifies this as a ROMFS filesystem */ romfs_devmemcpy(rm, ROMFS_VHDR_ROM1FS, ROMFS_VHDR_MAGIC, ROMFS_VHDR_SIZE); /* Init the ROMFS volume size */ romfs_devwrite32(rm, ROMFS_VHDR_SIZE, 0x60); /* Write the volume name */ romfs_devstrcpy(rm, ROMFS_VHDR_VOLNAME, "romfs"); /* Write the root node . */ romfs_devwrite32(rm, 0x20 + ROMFS_FHDR_NEXT, 0x40 | RFNEXT_DIRECTORY); romfs_devwrite32(rm, 0x20 + ROMFS_FHDR_INFO, 0x20); romfs_devwrite32(rm, 0x20 + ROMFS_FHDR_SIZE, 0); romfs_devwrite32(rm, 0x20 + ROMFS_FHDR_CHKSUM, 0); romfs_devstrcpy(rm, 0x20 + ROMFS_FHDR_NAME, "."); /* Write the root node .. */ romfs_devwrite32(rm, 0x40 + ROMFS_FHDR_NEXT, RFNEXT_HARDLINK); romfs_devwrite32(rm, 0x40 + ROMFS_FHDR_INFO, 0x20); romfs_devwrite32(rm, 0x40 + ROMFS_FHDR_SIZE, 0); romfs_devwrite32(rm, 0x40 + ROMFS_FHDR_CHKSUM, 0); romfs_devstrcpy(rm, 0x40 + ROMFS_FHDR_NAME, ".."); /* Write the buffer to sector zero */ return romfs_devcachewrite(rm, 0); } #endif