f2db470415
Most tools used for compliance and SBOM generation use SPDX identifiers This change brings us a step closer to an easy SBOM generation. Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
204 lines
5.3 KiB
C
204 lines
5.3 KiB
C
/****************************************************************************
|
|
* crypto/gmac.c
|
|
*
|
|
* SPDX-License-Identifier: ISC
|
|
* SPDX-FileCopyrightText: Copyright (c) 2010 Mike Belopuhov
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
*
|
|
* This code implements the Message Authentication part of the
|
|
* Galois/Counter Mode (as being described in the RFC 4543) using
|
|
* the AES cipher. FIPS SP 800-38D describes the algorithm details.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <endian.h>
|
|
#include <strings.h>
|
|
#include <sys/param.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/gmac.h>
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
void ghash_gfmul(FAR uint32_t *, FAR uint32_t *, FAR uint32_t *);
|
|
void ghash_update_mi(FAR GHASH_CTX *, FAR uint8_t *, size_t);
|
|
|
|
/* Allow overriding with optimized MD function */
|
|
|
|
CODE void (*ghash_update)(FAR GHASH_CTX *,
|
|
FAR uint8_t *,
|
|
size_t) = ghash_update_mi;
|
|
|
|
/* Computes a block multiplication in the GF(2^128) */
|
|
|
|
void ghash_gfmul(FAR uint32_t *X, FAR uint32_t *Y, FAR uint32_t *product)
|
|
{
|
|
uint32_t v[4];
|
|
uint32_t z[4] =
|
|
{
|
|
0, 0, 0, 0
|
|
};
|
|
|
|
FAR uint8_t *x = (FAR uint8_t *)X;
|
|
uint32_t mask;
|
|
int i;
|
|
|
|
v[0] = betoh32(Y[0]);
|
|
v[1] = betoh32(Y[1]);
|
|
v[2] = betoh32(Y[2]);
|
|
v[3] = betoh32(Y[3]);
|
|
|
|
for (i = 0; i < GMAC_BLOCK_LEN * 8; i++)
|
|
{
|
|
/* update Z */
|
|
|
|
mask = !!(x[i >> 3] & (1 << (~i & 7)));
|
|
mask = ~(mask - 1);
|
|
z[0] ^= v[0] & mask;
|
|
z[1] ^= v[1] & mask;
|
|
z[2] ^= v[2] & mask;
|
|
z[3] ^= v[3] & mask;
|
|
|
|
/* update V */
|
|
|
|
mask = ~((v[3] & 1) - 1);
|
|
v[3] = (v[2] << 31) | (v[3] >> 1);
|
|
v[2] = (v[1] << 31) | (v[2] >> 1);
|
|
v[1] = (v[0] << 31) | (v[1] >> 1);
|
|
v[0] = (v[0] >> 1) ^ (0xe1000000 & mask);
|
|
}
|
|
|
|
product[0] = htobe32(z[0]);
|
|
product[1] = htobe32(z[1]);
|
|
product[2] = htobe32(z[2]);
|
|
product[3] = htobe32(z[3]);
|
|
}
|
|
|
|
void ghash_update_mi(FAR GHASH_CTX *ctx, FAR uint8_t *X, size_t len)
|
|
{
|
|
FAR uint32_t *x = (FAR uint32_t *)X;
|
|
FAR uint32_t *s = (FAR uint32_t *)ctx->S;
|
|
FAR uint32_t *y = (FAR uint32_t *)ctx->Z;
|
|
int i;
|
|
|
|
for (i = 0; i < len / GMAC_BLOCK_LEN; i++)
|
|
{
|
|
s[0] = y[0] ^ x[0];
|
|
s[1] = y[1] ^ x[1];
|
|
s[2] = y[2] ^ x[2];
|
|
s[3] = y[3] ^ x[3];
|
|
|
|
ghash_gfmul((FAR uint32_t *)ctx->S, (FAR uint32_t *)ctx->H,
|
|
(FAR uint32_t *)ctx->S);
|
|
|
|
y = s;
|
|
x += 4;
|
|
}
|
|
|
|
bcopy(ctx->S, ctx->Z, GMAC_BLOCK_LEN);
|
|
}
|
|
|
|
#define AESCTR_NONCESIZE 4
|
|
|
|
void aes_gmac_init(FAR void *xctx)
|
|
{
|
|
FAR AES_GMAC_CTX *ctx = xctx;
|
|
|
|
bzero(ctx->ghash.H, GMAC_BLOCK_LEN);
|
|
bzero(ctx->ghash.S, GMAC_BLOCK_LEN);
|
|
bzero(ctx->ghash.Z, GMAC_BLOCK_LEN);
|
|
bzero(ctx->J, GMAC_BLOCK_LEN);
|
|
}
|
|
|
|
void aes_gmac_setkey(FAR void *xctx, FAR const uint8_t *key, uint16_t klen)
|
|
{
|
|
FAR AES_GMAC_CTX *ctx = xctx;
|
|
|
|
aes_setkey(&ctx->K, key, klen - AESCTR_NONCESIZE);
|
|
|
|
/* copy out salt to the counter block */
|
|
|
|
bcopy(key + klen - AESCTR_NONCESIZE, ctx->J, AESCTR_NONCESIZE);
|
|
|
|
/* prepare a hash subkey */
|
|
|
|
aes_encrypt(&ctx->K, ctx->ghash.H, ctx->ghash.H);
|
|
}
|
|
|
|
void aes_gmac_reinit(FAR void *xctx, FAR const uint8_t *iv, uint16_t ivlen)
|
|
{
|
|
FAR AES_GMAC_CTX *ctx = xctx;
|
|
|
|
/* copy out IV to the counter block */
|
|
|
|
bcopy(iv, ctx->J + AESCTR_NONCESIZE, ivlen);
|
|
}
|
|
|
|
int aes_gmac_update(FAR void *xctx, FAR const uint8_t *data, size_t len)
|
|
{
|
|
FAR AES_GMAC_CTX *ctx = xctx;
|
|
uint32_t blk[4] =
|
|
{
|
|
0, 0, 0, 0
|
|
};
|
|
|
|
int plen;
|
|
|
|
if (len > 0)
|
|
{
|
|
plen = len % GMAC_BLOCK_LEN;
|
|
if (len >= GMAC_BLOCK_LEN)
|
|
{
|
|
(*ghash_update)(&ctx->ghash, (FAR uint8_t *)data,
|
|
len - plen);
|
|
}
|
|
|
|
if (plen)
|
|
{
|
|
memcpy((FAR uint8_t *)blk, (FAR uint8_t *)data + (len - plen),
|
|
plen);
|
|
(*ghash_update)(&ctx->ghash, (FAR uint8_t *)blk,
|
|
GMAC_BLOCK_LEN);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void aes_gmac_final(FAR uint8_t *digest, FAR void *xctx)
|
|
{
|
|
FAR AES_GMAC_CTX *ctx = xctx;
|
|
uint8_t keystream[GMAC_BLOCK_LEN];
|
|
int i;
|
|
|
|
/* do one round of GCTR */
|
|
|
|
ctx->J[GMAC_BLOCK_LEN - 1] = 1;
|
|
aes_encrypt(&ctx->K, ctx->J, keystream);
|
|
for (i = 0; i < GMAC_DIGEST_LEN; i++)
|
|
{
|
|
digest[i] = ctx->ghash.S[i] ^ keystream[i];
|
|
}
|
|
|
|
explicit_bzero(keystream, sizeof(keystream));
|
|
}
|