nuttx-update/drivers/mmcsd/mmcsd_sdio.c
Alin Jerpelea 286d37026c drivers: migrate to SPDX identifier
Most tools used for compliance and SBOM generation use SPDX identifiers
This change brings us a step closer to an easy SBOM generation.

Signed-off-by: Alin Jerpelea <alin.jerpelea@sony.com>
2024-11-06 18:02:25 +08:00

4651 lines
136 KiB
C

/****************************************************************************
* drivers/mmcsd/mmcsd_sdio.c
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#if defined (CONFIG_MMCSD) && defined (CONFIG_MMCSD_SDIO)
#include <nuttx/compiler.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <debug.h>
#include <errno.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/fs.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/clock.h>
#include <nuttx/arch.h>
#include <nuttx/sdio.h>
#include <nuttx/mmcsd.h>
#include <nuttx/mutex.h>
#include "mmcsd.h"
#include "mmcsd_sdio.h"
#include "mmcsd_csd.h"
#include "mmcsd_extcsd.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#define MCSD_SZ_512 0x00000200UL
#define MCSD_SZ_128K 0x00020000UL
#define MCSD_SZ_512K 0x00080000UL
/* The maximum number of references on the driver (because a uint8_t is used.
* Use a larger type if more references are needed.
*/
#define MAX_CREFS 0xff
/* Timing (all in units of microseconds) */
#define MMCSD_POWERUP_DELAY ((useconds_t)250) /* 74 clock cycles @ 400KHz = 185uS */
#define MMCSD_IDLE_DELAY ((useconds_t)100000) /* Short delay to allow change to IDLE state */
#define MMCSD_DSR_DELAY ((useconds_t)100000) /* Time to wait after setting DSR */
#define MMCSD_CLK_DELAY ((useconds_t)5000) /* Delay after changing clock speeds */
/* Data delays (all in units of milliseconds).
*
* For MMC & SD V1.x, these should be based on Nac = TAAC + NSAC; The
* maximum value of TAAC is 80MS and the maximum value of NSAC is 25.5K
* clock cycle. For SD V2.x, a fixed delay of 100MS is recommend which is
* pretty close to the worst case SD V1.x Nac. Here we just use 100MS
* delay for all data transfers.
*/
#define MMCSD_SCR_DATADELAY (100) /* Wait up to 100MS to get SCR */
#define MMCSD_BLOCK_RDATADELAY (100) /* Wait up to 100MS to get one data block */
/* Wait timeout to write one data block */
#define MMCSD_BLOCK_WDATADELAY CONFIG_MMCSD_BLOCK_WDATADELAY
#define IS_EMPTY(priv) (priv->type == MMCSD_CARDTYPE_UNKNOWN)
#if CONFIG_MMCSD_MULTIBLOCK_LIMIT == 0
# define MMCSD_MULTIBLOCK_LIMIT SSIZE_MAX
#else
# define MMCSD_MULTIBLOCK_LIMIT CONFIG_MMCSD_MULTIBLOCK_LIMIT
#endif
#define MMCSD_CAPACITY(b, s) ((s) >= 10 ? (b) << ((s) - 10) : (b) >> (10 - (s)))
#ifdef CONFIG_BOARD_COREDUMP_BLKDEV
# define MMCSD_USLEEP(usec) \
do \
{ \
if (up_interrupt_context()) \
{ \
up_udelay(usec); \
} \
else \
{ \
nxsig_usleep(usec); \
} \
} while (0)
#else
# define MMCSD_USLEEP(usec) nxsig_usleep(usec)
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Misc Helpers *************************************************************/
static int mmcsd_lock(FAR struct mmcsd_state_s *priv);
static void mmcsd_unlock(FAR struct mmcsd_state_s *priv);
/* Command/response helpers *************************************************/
static int mmcsd_sendcmdpoll(FAR struct mmcsd_state_s *priv,
uint32_t cmd, uint32_t arg);
static int mmcsd_recv_r1(FAR struct mmcsd_state_s *priv, uint32_t cmd);
static int mmcsd_recv_r6(FAR struct mmcsd_state_s *priv, uint32_t cmd);
static int mmcsd_get_scr(FAR struct mmcsd_state_s *priv,
uint32_t scr[2]);
static void mmcsd_decode_csd(FAR struct mmcsd_state_s *priv,
uint32_t csd[4]);
#ifdef CONFIG_DEBUG_FS_INFO
static void mmcsd_decode_cid(FAR struct mmcsd_state_s *priv,
uint32_t cid[4]);
#else
# define mmcsd_decode_cid(priv,cid)
#endif
static void mmcsd_decode_scr(FAR struct mmcsd_state_s *priv,
uint32_t scr[2]);
static int mmcsd_get_r1(FAR struct mmcsd_state_s *priv,
FAR uint32_t *r1);
static int mmcsd_verifystate(FAR struct mmcsd_state_s *priv,
uint32_t status);
static int mmcsd_switch(FAR struct mmcsd_state_s *priv, uint32_t arg);
/* Transfer helpers *********************************************************/
static bool mmcsd_wrprotected(FAR struct mmcsd_state_s *priv);
static int mmcsd_eventwait(FAR struct mmcsd_state_s *priv,
sdio_eventset_t failevents);
static int mmcsd_transferready(FAR struct mmcsd_state_s *priv);
#if MMCSD_MULTIBLOCK_LIMIT != 1
static int mmcsd_stoptransmission(FAR struct mmcsd_state_s *priv);
#endif
static int mmcsd_setblocklen(FAR struct mmcsd_state_s *priv,
uint32_t blocklen);
#if MMCSD_MULTIBLOCK_LIMIT != 1
static int mmcsd_setblockcount(FAR struct mmcsd_state_s *priv,
uint32_t nblocks);
#endif
static ssize_t mmcsd_readsingle(FAR struct mmcsd_part_s *part,
FAR uint8_t *buffer, off_t startblock);
#if MMCSD_MULTIBLOCK_LIMIT != 1
static ssize_t mmcsd_readmultiple(FAR struct mmcsd_part_s *part,
FAR uint8_t *buffer, off_t startblock,
size_t nblocks);
#endif
static ssize_t mmcsd_writesingle(FAR struct mmcsd_part_s *part,
FAR const uint8_t *buffer,
off_t startblock);
#if MMCSD_MULTIBLOCK_LIMIT != 1
static ssize_t mmcsd_writemultiple(FAR struct mmcsd_part_s *part,
FAR const uint8_t *buffer,
off_t startblock,
size_t nblocks);
#endif
/* Block driver methods *****************************************************/
static int mmcsd_open(FAR struct inode *inode);
static int mmcsd_close(FAR struct inode *inode);
static ssize_t mmcsd_read(FAR struct inode *inode, FAR unsigned char *buffer,
blkcnt_t startsector, unsigned int nsectors);
static ssize_t mmcsd_write(FAR struct inode *inode,
FAR const unsigned char *buffer,
blkcnt_t startsector,
unsigned int nsectors);
static int mmcsd_geometry(FAR struct inode *inode,
FAR struct geometry *geometry);
static int mmcsd_ioctl(FAR struct inode *inode, int cmd,
unsigned long arg);
/* Initialization/uninitialization/reset ************************************/
static void mmcsd_mediachange(FAR void *arg);
static int mmcsd_widebus(FAR struct mmcsd_state_s *priv);
#ifdef CONFIG_MMCSD_MMCSUPPORT
static int mmcsd_mmcinitialize(FAR struct mmcsd_state_s *priv);
static int mmcsd_read_extcsd(FAR struct mmcsd_state_s *priv,
FAR uint8_t *extcsd);
static void mmcsd_decode_extcsd(FAR struct mmcsd_state_s *priv,
FAR const uint8_t *extcsd);
#endif
static int mmcsd_sdinitialize(FAR struct mmcsd_state_s *priv);
static int mmcsd_cardidentify(FAR struct mmcsd_state_s *priv);
static int mmcsd_probe(FAR struct mmcsd_state_s *priv);
static int mmcsd_removed(FAR struct mmcsd_state_s *priv);
static int mmcsd_hwinitialize(FAR struct mmcsd_state_s *priv);
#ifdef CONFIG_MMCSD_IOCSUPPORT
static int mmcsd_iocmd(FAR struct mmcsd_part_s *part,
FAR struct mmc_ioc_cmd *ic_ptr);
static int mmcsd_multi_iocmd(FAR struct mmcsd_part_s *part,
FAR struct mmc_ioc_multi_cmd *imc_ptr);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
static const struct block_operations g_bops =
{
mmcsd_open, /* open */
mmcsd_close, /* close */
mmcsd_read, /* read */
mmcsd_write, /* write */
mmcsd_geometry, /* geometry */
mmcsd_ioctl /* ioctl */
};
static FAR const char *g_partname[MMCSD_PART_COUNT] =
{
"",
"boot0",
"boot1",
"rpmb",
"gp1",
"gp2",
"gp3",
"gp4"
};
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Misc Helpers
****************************************************************************/
static int mmcsd_lock(FAR struct mmcsd_state_s *priv)
{
int ret;
/* Take the lock, giving exclusive access to the driver (perhaps
* waiting)
*/
if (!up_interrupt_context() && !sched_idletask())
{
ret = nxmutex_lock(&priv->lock);
if (ret < 0)
{
return ret;
}
/* Lock the bus if mutually exclusive access to the
* SDIO bus is required on this platform.
*/
#ifdef CONFIG_SDIO_MUXBUS
SDIO_LOCK(priv->dev, TRUE);
#endif
}
else
{
ret = OK;
}
return ret;
}
static void mmcsd_unlock(FAR struct mmcsd_state_s *priv)
{
if (!up_interrupt_context() && !sched_idletask())
{
/* Release the SDIO bus lock, then the MMC/SD driver mutex in the
* opposite order that they were taken to assure that no deadlock
* conditions will arise.
*/
#ifdef CONFIG_SDIO_MUXBUS
SDIO_LOCK(priv->dev, FALSE);
#endif
nxmutex_unlock(&priv->lock);
}
}
/****************************************************************************
* Command/Response Helpers
****************************************************************************/
/****************************************************************************
* Name: mmcsd_sendcmdpoll
*
* Description:
* Send a command and poll-wait for the response.
*
****************************************************************************/
static int mmcsd_sendcmdpoll(FAR struct mmcsd_state_s *priv, uint32_t cmd,
uint32_t arg)
{
int ret;
/* Send the command */
ret = SDIO_SENDCMD(priv->dev, cmd, arg);
if (ret == OK)
{
/* Then poll-wait until the response is available */
ret = SDIO_WAITRESPONSE(priv->dev, cmd);
if (ret != OK)
{
ferr("ERROR: Wait for response to cmd: %08" PRIx32
" failed: %d\n",
cmd, ret);
}
}
return ret;
}
/****************************************************************************
* Name: mmcsd_sendcmd4
*
* Description:
* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been
* provided and (2) the card supports a DSR register. If no DSR value
* the card default value (0x0404) will be used.
*
****************************************************************************/
static inline int mmcsd_sendcmd4(FAR struct mmcsd_state_s *priv)
{
int ret = OK;
#ifdef CONFIG_MMCSD_DSR
/* The dsr_imp bit from the CSD will tell us if the card supports setting
* the DSR via CMD4 or not.
*/
if (priv->dsrimp != false)
{
finfo("Card supports DSR - send DSR.\n");
/* CMD4 = SET_DSR will set the cards DSR register. The DSR and CMD4
* support are optional. However, since this is a broadcast command
* with no response (like CMD0), we will never know if the DSR was
* set correctly or not
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD4, CONFIG_MMCSD_DSR << 16);
MMCSD_USLEEP(MMCSD_DSR_DELAY);
/* Send it again to have more confidence */
mmcsd_sendcmdpoll(priv, MMCSD_CMD4, CONFIG_MMCSD_DSR << 16);
MMCSD_USLEEP(MMCSD_DSR_DELAY);
}
else
{
finfo("Card does not support DSR.\n");
}
#endif
return ret;
}
/****************************************************************************
* Name: mmcsd_recv_r1
*
* Description:
* Receive R1 response and check for errors.
*
****************************************************************************/
static int mmcsd_recv_r1(FAR struct mmcsd_state_s *priv, uint32_t cmd)
{
uint32_t r1;
int ret;
/* Get the R1 response from the hardware */
ret = SDIO_RECVR1(priv->dev, cmd, &r1);
if (ret == OK)
{
/* Check if R1 reports an error */
if ((r1 & MMCSD_R1_ERRORMASK) != 0)
{
/* Card locked is considered an error. Save the card locked
* indication for later use.
*/
ferr("ERROR: R1=%08" PRIx32 "\n", r1);
priv->locked = ((r1 & MMCSD_R1_CARDISLOCKED) != 0);
ret = -EIO;
}
}
return ret;
}
/****************************************************************************
* Name: mmcsd_recv_r6
*
* Description:
* Receive R6 response and check for errors. On success, priv->rca is set
* to the received RCA
*
****************************************************************************/
static int mmcsd_recv_r6(FAR struct mmcsd_state_s *priv, uint32_t cmd)
{
uint32_t r6 = 0;
int ret;
/* R6 Published RCA Response (48-bit, SD card only)
* 47 0 Start bit
* 46 0 Transmission bit (0=from card)
* 45:40 bit5 - bit0 Command index (0-63)
* 39:8 bit31 - bit0 32-bit Argument Field, consisting of:
* [31:16] New published RCA of card
* [15:0] Card status bits {23,22,19,12:0}
* 7:1 bit6 - bit0 CRC7
* 0 1 End bit
*
* Get the R6 response from the hardware
*/
ret = SDIO_RECVR6(priv->dev, cmd, &r6);
if (ret == OK)
{
/* Check if R6 reports an error */
if ((r6 & MMCSD_R6_ERRORMASK) == 0)
{
/* No, save the RCA and return success */
priv->rca = (uint16_t)(r6 >> 16);
return OK;
}
/* Otherwise, return an I/O failure */
ret = -EIO;
}
ferr("ERROR: Failed to get RCA. R6=%08" PRIx32 ": %d\n", r6, ret);
return ret;
}
/****************************************************************************
* Name: mmcsd_get_scr
*
* Description:
* Obtain the SD card's Configuration Register (SCR)
*
* Returned Value:
* OK on success; a negated errno on failure.
*
****************************************************************************/
static int mmcsd_get_scr(FAR struct mmcsd_state_s *priv, uint32_t scr[2])
{
int ret;
/* Set Block Size To 8 Bytes */
ret = mmcsd_setblocklen(priv, 8);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Setup up to receive data with interrupt mode */
SDIO_BLOCKSETUP(priv->dev, 8, 1);
SDIO_RECVSETUP(priv->dev, (FAR uint8_t *)scr, 8);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
MMCSD_SCR_DATADELAY);
/* Send CMD55 APP_CMD with argument as card's RCA */
mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16);
ret = mmcsd_recv_r1(priv, SD_CMD55);
if (ret != OK)
{
ferr("ERROR: RECVR1 for CMD55 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Send ACMD51 SD_APP_SEND_SCR with argument as 0 to start data receipt */
mmcsd_sendcmdpoll(priv, SD_ACMD51, 0);
ret = mmcsd_recv_r1(priv, SD_ACMD51);
if (ret != OK)
{
ferr("ERROR: RECVR1 for ACMD51 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Wait for data to be transferred */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: mmcsd_eventwait for READ DATA failed: %d\n", ret);
}
return ret;
}
/****************************************************************************
* Name: mmcsd_decode_csd
*
* Description:
* Decode and extract necessary information from the CSD. If debug is
* enabled, then decode and show the full contents of the CSD.
*
* Returned Value:
* OK on success; a negated ernno on failure. On success, the following
* values will be set in the driver state structure:
*
* priv->dsrimp true: card supports CMD4/DSR setting (from CSD)
* priv->wrprotect true: card is write protected (from CSD)
* priv->blocksize Read block length (== block size)
* priv->nblocks Number of blocks
*
****************************************************************************/
static void mmcsd_decode_csd(FAR struct mmcsd_state_s *priv, uint32_t csd[4])
{
#ifdef CONFIG_DEBUG_FS_INFO
struct mmcsd_csd_s decoded;
#endif
unsigned int readbllen;
bool permwriteprotect;
bool tmpwriteprotect;
/* Word 1: Bits 127-96:
*
* CSD_STRUCTURE 127:126 CSD structure
* SPEC_VERS 125:122 (MMC) Spec version
* TAAC 119:112 Data read access-time-1
* TIME_VALUE 6:3 Time mantissa
* TIME_UNIT 2:0 Time exponent
* NSAC 111:104 Data read access-time-2 in CLK
* cycle(NSAC*100)
* TRAN_SPEED 103:96 Max. data transfer rate
* TIME_VALUE 6:3 Rate exponent
* TRANSFER_RATE_UNIT 2:0 Rate mantissa
*/
#ifdef CONFIG_DEBUG_FS_INFO
memset(&decoded, 0, sizeof(struct mmcsd_csd_s));
decoded.csdstructure = csd[0] >> 30;
decoded.mmcspecvers = (csd[0] >> 26) & 0x0f;
decoded.taac.timevalue = (csd[0] >> 19) & 0x0f;
decoded.taac.timeunit = (csd[0] >> 16) & 7;
decoded.nsac = (csd[0] >> 8) & 0xff;
decoded.transpeed.timevalue = (csd[0] >> 3) & 0x0f;
decoded.transpeed.transferrateunit = csd[0] & 7;
#endif
/* Word 2: Bits 64:95
* CCC 95:84 Card command classes
* READ_BL_LEN 83:80 Max. read data block length
* READ_BL_PARTIAL 79:79 Partial blocks for read allowed
* WRITE_BLK_MISALIGN 78:78 Write block misalignment
* READ_BLK_MISALIGN 77:77 Read block misalignment
* DSR_IMP 76:76 DSR implemented
* Byte addressed SD and MMC:
* C_SIZE 73:62 Device size
* Block addressed SD:
* 75:70 (reserved)
* C_SIZE 48:69 Device size
*/
priv->dsrimp = (csd[1] >> 12) & 1;
readbllen = (csd[1] >> 16) & 0x0f;
#ifdef CONFIG_DEBUG_FS_INFO
decoded.ccc = (csd[1] >> 20) & 0x0fff;
decoded.readbllen = (csd[1] >> 16) & 0x0f;
decoded.readblpartial = (csd[1] >> 15) & 1;
decoded.writeblkmisalign = (csd[1] >> 14) & 1;
decoded.readblkmisalign = (csd[1] >> 13) & 1;
decoded.dsrimp = priv->dsrimp;
#endif
/* Word 3: Bits 32-63
*
* Byte addressed SD:
* C_SIZE 73:62 Device size
* VDD_R_CURR_MIN 61:59 Max. read current at Vcc min
* VDD_R_CURR_MAX 58:56 Max. read current at Vcc max
* VDD_W_CURR_MIN 55:53 Max. write current at Vcc min
* VDD_W_CURR_MAX 52:50 Max. write current at Vcc max
* C_SIZE_MULT 49:47 Device size multiplier
* SD_ER_BLK_EN 46:46 Erase single block enable (SD only)
* SD_SECTOR_SIZE 45:39 Erase sector size
* SD_WP_GRP_SIZE 38:32 Write protect group size
* Block addressed SD:
* 75:70 (reserved)
* C_SIZE 48:69 Device size
* 47:47 (reserved)
* SD_ER_BLK_EN 46:46 Erase single block enable (SD only)
* SD_SECTOR_SIZE 45:39 Erase sector size
* SD_WP_GRP_SIZE 38:32 Write protect group size
* MMC:
* C_SIZE 73:62 Device size
* VDD_R_CURR_MIN 61:59 Max. read current at Vcc min
* VDD_R_CURR_MAX 58:56 Max. read current at Vcc max
* VDD_W_CURR_MIN 55:53 Max. write current at Vcc min
* VDD_W_CURR_MAX 52:50 Max. write current at Vcc max
* C_SIZE_MULT 49:47 Device size multiplier
* MMC_SECTOR_SIZE 46:42 Erase sector size
* MMC_ER_GRP_SIZE 41:37 Erase group size (MMC)
* MMC_WP_GRP_SIZE 36:32 Write protect group size
*/
if (IS_BLOCK(priv->type))
{
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (IS_MMC(priv->type))
{
/* Block addressed MMC:
*
* C_SIZE: 73:64 from Word 2 and 63:62 from Word 3
*/
/* If the card is MMC and it has Block addressing, then C_SIZE
* parameter is used to compute the device capacity for devices up
* to 2 GB of density only, while SEC_COUNT is used to calculate
* densities greater than 2 GB. When the device density is greater
* than 2GB, 0xFFF should be set to C_SIZE bitfield (See 7.3.12)
*/
uint16_t csize = ((csd[1] & 0x03ff) << 2) |
((csd[2] >> 30) & 3);
uint8_t csizemult = (csd[2] >> 15) & 7;
priv->blockshift = readbllen;
priv->blocksize = (1 << readbllen);
/* For emmc densities up to 2 GB */
if (csize != MMCSD_CSD_CSIZE_THRESHOLD)
{
priv->part[0].nblocks = ((uint32_t)csize + 1) *
(1 << (csizemult + 2));
}
if (priv->blocksize > 512)
{
if (csize != MMCSD_CSD_CSIZE_THRESHOLD)
{
priv->part[0].nblocks <<= (priv->blockshift - 9);
}
priv->blocksize = 512;
priv->blockshift = 9;
}
#ifdef CONFIG_DEBUG_FS_INFO
decoded.u.mmc.csize = csize;
decoded.u.mmc.vddrcurrmin = (csd[2] >> 27) & 7;
decoded.u.mmc.vddrcurrmax = (csd[2] >> 24) & 7;
decoded.u.mmc.vddwcurrmin = (csd[2] >> 21) & 7;
decoded.u.mmc.vddwcurrmax = (csd[2] >> 18) & 7;
decoded.u.mmc.csizemult = csizemult;
decoded.u.mmc.er.mmc22.sectorsize = (csd[2] >> 10) & 0x1f;
decoded.u.mmc.er.mmc22.ergrpsize = (csd[2] >> 5) & 0x1f;
decoded.u.mmc.mmcwpgrpsize = csd[2] & 0x1f;
#endif
}
else
#endif
{
/* Block addressed SD:
*
* C_SIZE: 69:64 from Word 2 and 63:48 from Word 3
*
* 512 = (1 << 9)
* 1024 = (1 << 10)
* 512*1024 = (1 << 19)
*/
uint32_t csize = ((csd[1] & 0x3f) << 16) | (csd[2] >> 16);
priv->blockshift = 9;
priv->blocksize = 1 << 9;
priv->part[0].nblocks = (csize + 1) << (19 - priv->blockshift);
#ifdef CONFIG_DEBUG_FS_INFO
decoded.u.sdblock.csize = csize;
decoded.u.sdblock.sderblen = (csd[2] >> 14) & 1;
decoded.u.sdblock.sdsectorsize = (csd[2] >> 7) & 0x7f;
decoded.u.sdblock.sdwpgrpsize = csd[2] & 0x7f;
#endif
}
}
else
{
/* Byte addressed SD:
*
* C_SIZE: 73:64 from Word 2 and 63:62 from Word 3
*/
uint16_t csize = ((csd[1] & 0x03ff) << 2) |
((csd[2] >> 30) & 3);
uint8_t csizemult = (csd[2] >> 15) & 7;
priv->part[0].nblocks = ((uint32_t)csize + 1) *
(1 << (csizemult + 2));
priv->blockshift = readbllen;
priv->blocksize = (1 << readbllen);
/* Some devices, such as 2Gb devices, report blocksizes larger than
* 512 bytes but still expect to be accessed with a 512 byte blocksize.
*
* NOTE: A minor optimization would be to eliminated priv->blocksize
* and priv->blockshift: Those values will be 512 and 9 in all cases
* anyway.
*/
if (priv->blocksize > 512)
{
priv->part[0].nblocks <<= (priv->blockshift - 9);
priv->blocksize = 512;
priv->blockshift = 9;
}
#ifdef CONFIG_DEBUG_FS_INFO
if (IS_SD(priv->type))
{
decoded.u.sdbyte.csize = csize;
decoded.u.sdbyte.vddrcurrmin = (csd[2] >> 27) & 7;
decoded.u.sdbyte.vddrcurrmax = (csd[2] >> 24) & 7;
decoded.u.sdbyte.vddwcurrmin = (csd[2] >> 21) & 7;
decoded.u.sdbyte.vddwcurrmax = (csd[2] >> 18) & 7;
decoded.u.sdbyte.csizemult = csizemult;
decoded.u.sdbyte.sderblen = (csd[2] >> 14) & 1;
decoded.u.sdbyte.sdsectorsize = (csd[2] >> 7) & 0x7f;
decoded.u.sdbyte.sdwpgrpsize = csd[2] & 0x7f;
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
else if (IS_MMC(priv->type))
{
decoded.u.mmc.csize = csize;
decoded.u.mmc.vddrcurrmin = (csd[2] >> 27) & 7;
decoded.u.mmc.vddrcurrmax = (csd[2] >> 24) & 7;
decoded.u.mmc.vddwcurrmin = (csd[2] >> 21) & 7;
decoded.u.mmc.vddwcurrmax = (csd[2] >> 18) & 7;
decoded.u.mmc.csizemult = csizemult;
decoded.u.mmc.er.mmc22.sectorsize = (csd[2] >> 10) & 0x1f;
decoded.u.mmc.er.mmc22.ergrpsize = (csd[2] >> 5) & 0x1f;
decoded.u.mmc.mmcwpgrpsize = csd[2] & 0x1f;
}
#endif
#endif
}
/* Word 4: Bits 0-31
* WP_GRP_EN 31:31 Write protect group enable
* MMC DFLT_ECC 30:29 Manufacturer default ECC (MMC only)
* R2W_FACTOR 28:26 Write speed factor
* WRITE_BL_LEN 25:22 Max. write data block length
* WRITE_BL_PARTIAL 21:21 Partial blocks for write allowed
* FILE_FORMAT_GROUP 15:15 File format group
* COPY 14:14 Copy flag (OTP)
* PERM_WRITE_PROTECT 13:13 Permanent write protection
* TMP_WRITE_PROTECT 12:12 Temporary write protection
* FILE_FORMAT 10:11 File format
* ECC 9:8 ECC (MMC only)
* CRC 7:1 CRC
* Not used 0:0
*/
permwriteprotect = (csd[3] >> 13) & 1;
tmpwriteprotect = (csd[3] >> 12) & 1;
priv->wrprotect = (permwriteprotect || tmpwriteprotect);
#ifdef CONFIG_DEBUG_FS_INFO
decoded.wpgrpen = csd[3] >> 31;
decoded.mmcdfltecc = (csd[3] >> 29) & 3;
decoded.r2wfactor = (csd[3] >> 26) & 7;
decoded.writebllen = (csd[3] >> 22) & 0x0f;
decoded.writeblpartial = (csd[3] >> 21) & 1;
decoded.fileformatgrp = (csd[3] >> 15) & 1;
decoded.copy = (csd[3] >> 14) & 1;
decoded.permwriteprotect = permwriteprotect;
decoded.tmpwriteprotect = tmpwriteprotect;
decoded.fileformat = (csd[3] >> 10) & 3;
decoded.mmcecc = (csd[3] >> 8) & 3;
decoded.crc = (csd[3] >> 1) & 0x7f;
finfo("CSD:\n");
finfo(" CSD_STRUCTURE: %d SPEC_VERS: %d (MMC)\n",
decoded.csdstructure, decoded.mmcspecvers);
finfo(" TAAC {TIME_UNIT: %d TIME_VALUE: %d} NSAC: %d\n",
decoded.taac.timeunit, decoded.taac.timevalue, decoded.nsac);
finfo(" TRAN_SPEED {TRANSFER_RATE_UNIT: %d TIME_VALUE: %d}\n",
decoded.transpeed.transferrateunit, decoded.transpeed.timevalue);
finfo(" CCC: %d\n", decoded.ccc);
finfo(" READ_BL_LEN: %d READ_BL_PARTIAL: %d\n",
decoded.readbllen, decoded.readblpartial);
finfo(" WRITE_BLK_MISALIGN: %d READ_BLK_MISALIGN: %d\n",
decoded.writeblkmisalign, decoded.readblkmisalign);
finfo(" DSR_IMP: %d\n",
decoded.dsrimp);
if (IS_BLOCK(priv->type))
{
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (IS_MMC(priv->type))
{
finfo(" MMC Block Addressing:\n");
finfo(" C_SIZE: %d C_SIZE_MULT: %d\n",
decoded.u.mmc.csize, decoded.u.mmc.csizemult);
finfo(" VDD_R_CURR_MIN: %d VDD_R_CURR_MAX: %d\n",
decoded.u.mmc.vddrcurrmin, decoded.u.mmc.vddrcurrmax);
finfo(" VDD_W_CURR_MIN: %d VDD_W_CURR_MAX: %d\n",
decoded.u.mmc.vddwcurrmin, decoded.u.mmc.vddwcurrmax);
finfo(" MMC_SECTOR_SIZE: %d MMC_ER_GRP_SIZE: %d "
"MMC_WP_GRP_SIZE: %d\n",
decoded.u.mmc.er.mmc22.sectorsize,
decoded.u.mmc.er.mmc22.ergrpsize,
decoded.u.mmc.mmcwpgrpsize);
}
else
#endif
{
finfo(" SD Block Addressing:\n");
finfo(" C_SIZE: %d SD_ER_BLK_EN: %d\n",
decoded.u.sdblock.csize, decoded.u.sdblock.sderblen);
finfo(" SD_SECTOR_SIZE: %d SD_WP_GRP_SIZE: %d\n",
decoded.u.sdblock.sdsectorsize,
decoded.u.sdblock.sdwpgrpsize);
}
}
else if (IS_SD(priv->type))
{
finfo(" SD Byte Addressing:\n");
finfo(" C_SIZE: %d C_SIZE_MULT: %d\n",
decoded.u.sdbyte.csize, decoded.u.sdbyte.csizemult);
finfo(" VDD_R_CURR_MIN: %d VDD_R_CURR_MAX: %d\n",
decoded.u.sdbyte.vddrcurrmin, decoded.u.sdbyte.vddrcurrmax);
finfo(" VDD_W_CURR_MIN: %d VDD_W_CURR_MAX: %d\n",
decoded.u.sdbyte.vddwcurrmin, decoded.u.sdbyte.vddwcurrmax);
finfo(" SD_ER_BLK_EN: %d SD_SECTOR_SIZE: %d (SD) "
"SD_WP_GRP_SIZE: %d\n",
decoded.u.sdbyte.sderblen, decoded.u.sdbyte.sdsectorsize,
decoded.u.sdbyte.sdwpgrpsize);
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
else if (IS_MMC(priv->type))
{
finfo(" MMC:\n");
finfo(" C_SIZE: %d C_SIZE_MULT: %d\n",
decoded.u.mmc.csize, decoded.u.mmc.csizemult);
finfo(" VDD_R_CURR_MIN: %d VDD_R_CURR_MAX: %d\n",
decoded.u.mmc.vddrcurrmin, decoded.u.mmc.vddrcurrmax);
finfo(" VDD_W_CURR_MIN: %d VDD_W_CURR_MAX: %d\n",
decoded.u.mmc.vddwcurrmin, decoded.u.mmc.vddwcurrmax);
finfo(" MMC_SECTOR_SIZE: %d MMC_ER_GRP_SIZE: %d "
"MMC_WP_GRP_SIZE: %d\n",
decoded.u.mmc.er.mmc22.sectorsize,
decoded.u.mmc.er.mmc22.ergrpsize,
decoded.u.mmc.mmcwpgrpsize);
}
#endif
finfo(" WP_GRP_EN: %d MMC DFLT_ECC: %d (MMC) R2W_FACTOR: %d\n",
decoded.wpgrpen, decoded.mmcdfltecc, decoded.r2wfactor);
finfo(" WRITE_BL_LEN: %d WRITE_BL_PARTIAL: %d\n",
decoded.writebllen, decoded.writeblpartial);
finfo(" FILE_FORMAT_GROUP: %d COPY: %d\n",
decoded.fileformatgrp, decoded.copy);
finfo(" PERM_WRITE_PROTECT: %d TMP_WRITE_PROTECT: %d\n",
decoded.permwriteprotect, decoded.tmpwriteprotect);
finfo(" FILE_FORMAT: %d ECC: %d (MMC) CRC: %d\n",
decoded.fileformat, decoded.mmcecc, decoded.crc);
finfo("Capacity: %luKb, Block size: %db, nblocks: %d wrprotect: %d\n",
(unsigned long)MMCSD_CAPACITY(priv->part[0].nblocks,
priv->blockshift),
priv->blocksize, priv->part[0].nblocks, priv->wrprotect);
#endif
}
/****************************************************************************
* Name: mmcsd_decode_cid
*
* Description:
* Show the contents of the Card Identification Data (CID) (for debug
* purposes only)
*
****************************************************************************/
#ifdef CONFIG_DEBUG_FS_INFO
static void mmcsd_decode_cid(FAR struct mmcsd_state_s *priv, uint32_t cid[4])
{
struct mmcsd_cid_s decoded;
/* Word 1: Bits 127-96:
* mid - 127-120 8-bit Manufacturer ID
* cbx - 113-112 2-bit Device/BGA
* oid - 111-104 8-bit OEM/Application ID (ascii)
* pnm - 103-56 48-bit Product Name (ascii) + null terminator
* pnm[0] 103:96
*/
decoded.mid = cid[0] >> 24;
decoded.cbx = (cid[0] >> 16) & 0x3;
decoded.oid = (cid[0] >> 8) & 0xff;
decoded.pnm[0] = cid[0] & 0xff;
/* Word 2: Bits 64:95
* pnm - 103-56 48-bit Product Name (ascii) + null terminator
* pnm[1] 95:88
* pnm[2] 87:80
* pnm[3] 79:72
* pnm[4] 71:64
*/
decoded.pnm[1] = cid[1] >> 24;
decoded.pnm[2] = (cid[1] >> 16) & 0xff;
decoded.pnm[3] = (cid[1] >> 8) & 0xff;
decoded.pnm[4] = cid[1] & 0xff;
/* Word 3: Bits 32-63
* pnm[5] 63-56
* prv - 55-48 8-bit Product revision
* psn - 47-16 32-bit Product serial number
* psn 47-32
*/
decoded.pnm[5] = cid[2] >> 24;
decoded.pnm[6] = '\0';
decoded.prv = (cid[2] >> 16) & 0xff;
decoded.psn = cid[2] << 16;
/* Word 4: Bits 0-31
* psn 31-16
* mdt - 15:8 8-bit Manufacturing date
* crc - 7:1 7-bit CRC7
*/
decoded.psn |= cid[3] >> 16;
decoded.mdt = (cid[3] >> 8) & 0xff;
decoded.crc = (cid[3] >> 1) & 0x7f;
finfo("mid: %02x cbx: %01x oid: %01x pnm: %s prv: %d psn: %08x mdt: %02x\
crc: %02x\n", decoded.mid, decoded.cbx, decoded.oid, decoded.pnm,
decoded.prv, (unsigned long)decoded.psn, decoded.mdt, decoded.crc);
}
#endif
/****************************************************************************
* Name: mmcsd_decode_scr
*
* Description:
* Show the contents of the SD Configuration Register (SCR). The only
* value retained is: priv->buswidth;
*
****************************************************************************/
static void mmcsd_decode_scr(FAR struct mmcsd_state_s *priv, uint32_t scr[2])
{
#ifdef CONFIG_DEBUG_FS_INFO
struct mmcsd_scr_s decoded;
#endif
/* Word 1, bits 63:32
* SCR_STRUCTURE 63:60 4-bit SCR structure version
* SD_VERSION 59:56 4-bit SD memory spec. version
* DATA_STATE_AFTER_ERASE 55:55 1-bit erase status
* SD_SECURITY 54:52 3-bit SD security support level
* SD_BUS_WIDTHS 51:48 4-bit bus width indicator
* Reserved 47:34 14-bit SD reserved space
* CMD_SUPPORT 33:32 2-bit command supported (bit33 for cmd23)
*/
#ifdef CONFIG_ENDIAN_BIG /* Card transfers SCR in big-endian order */
priv->buswidth = (scr[0] >> 16) & 15;
priv->cmd23support = (scr[0] >> 1) & 1;
#else
priv->buswidth = (scr[0] >> 8) & 15;
priv->cmd23support = (scr[0] >> 25) & 1;
#endif
#ifdef CONFIG_DEBUG_FS_INFO
#ifdef CONFIG_ENDIAN_BIG
/* Card SCR is big-endian order / CPU also big-endian
* 60 56 52 48 44 40 36 32
* VVVV SSSS ESSS BBBB RRRR RRRR RRRR RRRR
*/
decoded.scrversion = scr[0] >> 28;
decoded.sdversion = (scr[0] >> 24) & 15;
decoded.erasestate = (scr[0] >> 23) & 1;
decoded.security = (scr[0] >> 20) & 7;
#else
/* Card SCR is big-endian order / CPU is little-endian
* 36 32 44 40 52 48 60 56
* RRRR RRRR RRRR RRRR ESSS BBBB VVVV SSSS
*/
decoded.scrversion = (scr[0] >> 4) & 15;
decoded.sdversion = scr[0] & 15;
decoded.erasestate = (scr[0] >> 15) & 1;
decoded.security = (scr[0] >> 12) & 7;
#endif
decoded.buswidth = priv->buswidth;
#endif
/* Word 1, bits 63:32
* Reserved 31:0 32-bits reserved for manufacturing usage.
*/
#ifdef CONFIG_DEBUG_FS_INFO
decoded.mfgdata = scr[1]; /* Might be byte reversed! */
finfo("SCR:\n");
finfo(" SCR_STRUCTURE: %d SD_VERSION: %d\n",
decoded.scrversion, decoded.sdversion);
finfo(" DATA_STATE_AFTER_ERASE: %d SD_SECURITY: %d SD_BUS_WIDTHS: %x\n",
decoded.erasestate, decoded.security, decoded.buswidth);
finfo(" Manufacturing data: %08x\n",
decoded.mfgdata);
#endif
}
/****************************************************************************
* Name: mmcsd_switch
*
* Description:
* Execute CMD6 to switch the mode of operation of the selected device or
* modify the EXT_CSD registers.
*
****************************************************************************/
static int mmcsd_switch(FAR struct mmcsd_state_s *priv, uint32_t arg)
{
/* After putting a slave into transfer state, master sends
* CMD6(SWITCH) to set the PARTITION_ACCESS bits in the EXT_CSD
* register, byte[179].After that, master can use the Multiple Block
* read and write commands (CMD23, CMD18 and CMD25) to access the
* specified partition.
* PARTITION_CONFIG[179](see 7.4.69)
* Bit[2:0] : PARTITION_ACCESS (before BOOT_PARTITION_ACCESS)
* User selects partitions to access:
* 0x0 : No access to boot partition (default)
* 0x1 : R/W boot partition 1
* 0x2 : R/W boot partition 2
* 0x3 : R/W Replay Protected Memory Block (RPMB)
* 0x4 : Access to General Purpose partition 1
* 0x5 : Access to General Purpose partition 2
* 0x6 : Access to General Purpose partition 3
* 0x7 : Access to General Purpose partition 4
*
* CMD6 Argument(see 6.10.4)
* [31:26] Set to 0
* [25:24] Access Bits
* 00 Command Set
* 01 Set Bits
* 10 Clear Bits
* 11 Write Byte
* [23:16] Index
* [15:8] Value
* [7:3] Set to 0
* [2:0] Cmd Set
*/
int ret;
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
mmcsd_sendcmdpoll(priv, MMCSD_CMD6, arg);
priv->wrbusy = true;
return mmcsd_recv_r1(priv, MMCSD_CMD6);
}
/****************************************************************************
* Name: mmcsd_get_r1
*
* Description:
* Get the R1 status of the card using CMD13
*
****************************************************************************/
static int mmcsd_get_r1(FAR struct mmcsd_state_s *priv, FAR uint32_t *r1)
{
uint32_t local_r1;
int ret;
DEBUGASSERT(priv != NULL && r1 != NULL);
/* Send CMD13, SEND_STATUS. The addressed card responds by sending its
* R1 card status register.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD13, (uint32_t)priv->rca << 16);
ret = SDIO_RECVR1(priv->dev, MMCSD_CMD13, &local_r1);
if (ret == OK)
{
/* Check if R1 reports an error */
if ((local_r1 & MMCSD_R1_ERRORMASK) != 0)
{
/* Card locked is considered an error. Save the card locked
* indication for later use.
*/
priv->locked = ((local_r1 & MMCSD_R1_CARDISLOCKED) != 0);
/* We must tell someone which error bits were set. */
fwarn("WARNING: mmcsd_get_r1 returned errors: R1=%08" PRIx32 "\n",
local_r1);
ret = -EIO;
}
else
{
/* No errors, return R1 */
*r1 = local_r1;
}
}
return ret;
}
/****************************************************************************
* Name: mmcsd_verifystate
*
* Description:
* Verify that the card is in STANDBY state
*
****************************************************************************/
static int mmcsd_verifystate(FAR struct mmcsd_state_s *priv, uint32_t state)
{
uint32_t r1;
int ret;
/* Get the current R1 status from the card */
ret = mmcsd_get_r1(priv, &r1);
if (ret != OK)
{
ferr("ERROR: mmcsd_get_r1 failed: %d\n", ret);
return ret;
}
/* Now check if the card is in the expected state. */
if (IS_STATE(r1, state))
{
/* Yes.. return Success */
priv->wrbusy = false;
return OK;
}
return -EINVAL;
}
/****************************************************************************
* Transfer Helpers
****************************************************************************/
/****************************************************************************
* Name: mmcsd_wrprotected
*
* Description:
* Return true if the card is nlocked or write protected.
*
****************************************************************************/
static bool mmcsd_wrprotected(FAR struct mmcsd_state_s *priv)
{
/* Check if the card is locked (priv->locked) or write protected either (1)
* via software as reported via the CSD and retained in priv->wrprotect or
* (2) via the mechanical write protect on the card (which we get from the
* SDIO driver via SDIO_WRPROTECTED)
*/
return (priv->wrprotect || priv->locked || SDIO_WRPROTECTED(priv->dev));
}
/****************************************************************************
* Name: mmcsd_eventwait
*
* Description:
* Wait for the specified events to occur. Check for wakeup on error
* events.
*
****************************************************************************/
static int mmcsd_eventwait(FAR struct mmcsd_state_s *priv,
sdio_eventset_t failevents)
{
sdio_eventset_t wkupevent;
/* Wait for the set of events enabled by SDIO_EVENTENABLE. */
wkupevent = SDIO_EVENTWAIT(priv->dev);
/* SDIO_EVENTWAIT returns the event set containing the event(s) that ended
* the wait. It should always be non-zero, but may contain failure as
* well as success events. Check if it contains any failure events.
*/
if ((wkupevent & failevents) != 0)
{
/* Yes.. the failure event is probably SDIOWAIT_TIMEOUT */
ferr("ERROR: Awakened with %02x\n", wkupevent);
return wkupevent & SDIOWAIT_TIMEOUT ? -ETIMEDOUT : -EIO;
}
/* Since there are no failure events, we must have been awakened by one
* (or more) success events.
*/
return OK;
}
/****************************************************************************
* Name: mmcsd_transferready
*
* Description:
* Check if the MMC/SD card is ready for the next read or write transfer.
* Ready means: (1) card still in the slot, and (2) if the last transfer
* was a write transfer, the card is no longer busy from that transfer.
*
****************************************************************************/
static int mmcsd_transferready(FAR struct mmcsd_state_s *priv)
{
clock_t starttime;
clock_t elapsed;
uint32_t r1;
int ret;
/* First, check if the card has been removed. */
if (IS_EMPTY(priv) || !SDIO_PRESENT(priv->dev))
{
ferr("ERROR: Card has been removed\n");
return -ENODEV;
}
/* If the last data transfer was not a write, then we do not have to check
* the card status.
*/
else if (!priv->wrbusy)
{
return OK;
}
/* The card is still present and the last transfer was a write transfer.
* Loop, querying the card state. Return when (1) the card is in the
* TRANSFER state, (2) the card stays in the PROGRAMMING state too long,
* or (3) the card is in any other state.
*
* The PROGRAMMING state occurs normally after a WRITE operation. During
* this time, the card may be busy completing the WRITE and is not
* available for other operations. The card will transition from the
* PROGRAMMING state to the TRANSFER state when the card completes the
* WRITE operation.
*/
#if defined(CONFIG_MMCSD_SDIOWAIT_WRCOMPLETE)
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: mmcsd_eventwait for transfer ready failed: %d\n", ret);
}
#endif
starttime = clock_systime_ticks();
do
{
/* Get the current R1 status from the card */
ret = mmcsd_get_r1(priv, &r1);
if (ret != OK)
{
ferr("ERROR: mmcsd_get_r1 failed: %d\n", ret);
return ret;
}
/* Now check if the card is in the expected transfer state. */
if (IS_STATE(r1, MMCSD_R1_STATE_TRAN))
{
/* Yes.. return Success */
priv->wrbusy = false;
return OK;
}
/* Check for the programming state. This is not an error. It means
* that the card is still busy from the last (write) transfer. The
* card can also still be receiving data, for example, if hardware
* receive FIFOs are not yet empty.
*/
else if (!IS_STATE(r1, MMCSD_R1_STATE_PRG) &&
!IS_STATE(r1, MMCSD_R1_STATE_RCV))
{
/* Any other state would be an error in this context. There is
* a possibility that the card is not selected. In this case,
* it could be in STANDBY or DISCONNECTED state and the fix
* might be to send CMD7 to re-select the card. Consider this
* if this error occurs.
*/
ferr("ERROR: Unexpected R1 state: %08" PRIx32 "\n", r1);
return -EINVAL;
}
/* Do not hog the CPU */
#ifdef CONFIG_MMCSD_CHECK_READY_STATUS_WITHOUT_SLEEP
/* Use sched_yield when tick is big to avoid low writing speed */
sched_yield();
#else
MMCSD_USLEEP(1000);
#endif
/* We are still in the programming state. Calculate the elapsed
* time... we can't stay in this loop forever!
*/
elapsed = clock_systime_ticks() - starttime;
}
while (elapsed < TICK_PER_SEC);
return -ETIMEDOUT;
}
/****************************************************************************
* Name: mmcsd_stoptransmission
*
* Description:
* Send STOP_TRANSMISSION
*
****************************************************************************/
#if MMCSD_MULTIBLOCK_LIMIT != 1
static int mmcsd_stoptransmission(FAR struct mmcsd_state_s *priv)
{
int ret;
/* Send CMD12, STOP_TRANSMISSION, and verify good R1 return status */
mmcsd_sendcmdpoll(priv, MMCSD_CMD12, 0);
ret = mmcsd_recv_r1(priv, MMCSD_CMD12);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD12 failed: %d\n", ret);
}
return ret;
}
#endif
/****************************************************************************
* Name: mmcsd_setblocklen
*
* Description:
* Set the block length.
*
****************************************************************************/
static int mmcsd_setblocklen(FAR struct mmcsd_state_s *priv,
uint32_t blocklen)
{
int ret = OK;
/* Is the block length already selected in the card? */
if (priv->selblocklen != blocklen)
{
/* Send CMD16 = SET_BLOCKLEN. This command sets the block length (in
* bytes) for all following block commands (read and write). Default
* block length is specified in the CSD.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD16, blocklen);
ret = mmcsd_recv_r1(priv, MMCSD_CMD16);
if (ret == OK)
{
priv->selblocklen = blocklen;
}
else
{
ferr("ERROR: mmcsd_recv_r1 for CMD16 failed: %d\n", ret);
}
}
return ret;
}
#if MMCSD_MULTIBLOCK_LIMIT != 1
/****************************************************************************
* Name: mmcsd_setblockcount
*
* Description:
* Set the block counts.
*
****************************************************************************/
static int mmcsd_setblockcount(FAR struct mmcsd_state_s *priv,
uint32_t nblocks)
{
int ret;
mmcsd_sendcmdpoll(priv, MMCSD_CMD23, nblocks);
ret = mmcsd_recv_r1(priv, MMCSD_CMD23);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD23 failed: %d\n", ret);
}
return ret;
}
#endif
/****************************************************************************
* Name: mmcsd_readsingle
*
* Description:
* Read a single block of data.
*
****************************************************************************/
static ssize_t mmcsd_readsingle(FAR struct mmcsd_part_s *part,
FAR uint8_t *buffer, off_t startblock)
{
FAR struct mmcsd_state_s *priv = part->priv;
uint32_t partnum = part - priv->part;
off_t offset;
int ret;
finfo("startblock=%jd\n", (intmax_t)startblock);
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked */
if (priv->locked)
{
ferr("ERROR: Card is locked\n");
return -EPERM;
}
if (priv->partnum != partnum)
{
ret = mmcsd_switch(priv, MMC_CMD6_MODE(MMC_CMD6_MODE_WRITE_BYTE) |
MMC_CMD6_INDEX(EXT_CSD_PART_CONF) |
MMC_CMD6_VALUE(partnum));
if (ret != OK)
{
ferr("ERROR: mmcsd_switch failed: %d\n", ret);
return ret;
}
priv->partnum = partnum;
}
#if defined(CONFIG_SDIO_DMA) && defined(CONFIG_ARCH_HAVE_SDIO_PREFLIGHT)
/* If we think we are going to perform a DMA transfer, make sure that we
* will be able to before we commit the card to the operation.
*/
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMAPREFLIGHT(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
return ret;
}
}
#endif
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert sector start sector
* number to a byte offset
*/
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
finfo("offset=%jd\n", (intmax_t)offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the read transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
MMCSD_BLOCK_RDATADELAY);
#ifdef CONFIG_SDIO_DMA
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMARECVSETUP(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
finfo("SDIO_DMARECVSETUP: error %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
else
#endif
{
SDIO_RECVSETUP(priv->dev, buffer, priv->blocksize);
}
/* Send CMD17, READ_SINGLE_BLOCK: Read a block of the size selected
* by the mmcsd_setblocklen() and verify that good R1 status is
* returned. The card state should change from Transfer to Sending-Data
* state.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD17, offset);
ret = mmcsd_recv_r1(priv, MMCSD_CMD17);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD17 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Then wait for the data transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: CMD17 transfer failed: %d\n", ret);
return ret;
}
/* Return value: One sector read */
return 1;
}
/****************************************************************************
* Name: mmcsd_readmultiple
*
* Description:
* Read multiple, contiguous blocks of data from the physical device.
*
****************************************************************************/
#if MMCSD_MULTIBLOCK_LIMIT != 1
static ssize_t mmcsd_readmultiple(FAR struct mmcsd_part_s *part,
FAR uint8_t *buffer, off_t startblock,
size_t nblocks)
{
FAR struct mmcsd_state_s *priv = part->priv;
size_t nbytes = nblocks << priv->blockshift;
uint32_t partnum = part - priv->part;
off_t offset;
int ret;
finfo("startblock=%jd nblocks=%zu\n", (intmax_t)startblock, nblocks);
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked */
if (priv->locked)
{
ferr("ERROR: Card is locked\n");
return -EPERM;
}
if (priv->partnum != partnum)
{
ret = mmcsd_switch(priv, MMC_CMD6_MODE(MMC_CMD6_MODE_WRITE_BYTE) |
MMC_CMD6_INDEX(EXT_CSD_PART_CONF) |
MMC_CMD6_VALUE(partnum));
if (ret != OK)
{
ferr("ERROR: mmcsd_switch failed: %d\n", ret);
return ret;
}
priv->partnum = partnum;
}
#if defined(CONFIG_SDIO_DMA) && defined(CONFIG_ARCH_HAVE_SDIO_PREFLIGHT)
/* If we think we are going to perform a DMA transfer, make sure that we
* will be able to before we commit the card to the operation.
*/
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMAPREFLIGHT(priv->dev, buffer, nbytes);
if (ret != OK)
{
return ret;
}
}
#endif
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert both the total
* transfer size to bytes and the sector start sector number to a byte
* offset
*/
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
finfo("nbytes=%zu byte offset=%jd\n", nbytes, (intmax_t)offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the read transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, nblocks);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
nblocks * MMCSD_BLOCK_RDATADELAY);
#ifdef CONFIG_SDIO_DMA
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMARECVSETUP(priv->dev, buffer, nbytes);
if (ret != OK)
{
finfo("SDIO_DMARECVSETUP: error %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
else
#endif
{
SDIO_RECVSETUP(priv->dev, buffer, nbytes);
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (IS_MMC(priv->type) || (IS_SD(priv->type) && priv->cmd23support))
#else
if (IS_SD(priv->type) && priv->cmd23support)
#endif
{
ret = mmcsd_setblockcount(priv, nblocks);
if (ret != OK)
{
return ret;
}
}
/* Send CMD18, READ_MULT_BLOCK: Read a block of the size selected by
* the mmcsd_setblocklen() and verify that good R1 status is returned
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD18, offset);
ret = mmcsd_recv_r1(priv, MMCSD_CMD18);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD18 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Wait for the transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: CMD18 transfer failed: %d\n", ret);
return ret;
}
if (IS_SD(priv->type) && !priv->cmd23support)
{
/* Send STOP_TRANSMISSION */
ret = mmcsd_stoptransmission(priv);
if (ret != OK)
{
ferr("ERROR: mmcsd_stoptransmission failed: %d\n", ret);
}
}
/* On success, return the number of blocks read */
return nblocks;
}
#endif
/****************************************************************************
* Name: mmcsd_writesingle
*
* Description:
* Write a single block of data to the physical device.
*
****************************************************************************/
static ssize_t mmcsd_writesingle(FAR struct mmcsd_part_s *part,
FAR const uint8_t *buffer, off_t startblock)
{
FAR struct mmcsd_state_s *priv = part->priv;
uint32_t partnum = part - priv->part;
off_t offset;
int ret;
finfo("startblock=%jd\n", (intmax_t)startblock);
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked or write protected (either via software or
* via the mechanical write protect on the card)
*/
if (mmcsd_wrprotected(priv))
{
ferr("ERROR: Card is locked or write protected\n");
return -EPERM;
}
if (priv->partnum != partnum)
{
ret = mmcsd_switch(priv, MMC_CMD6_MODE(MMC_CMD6_MODE_WRITE_BYTE) |
MMC_CMD6_INDEX(EXT_CSD_PART_CONF) |
MMC_CMD6_VALUE(partnum));
if (ret != OK)
{
ferr("ERROR: mmcsd_switch failed: %d\n", ret);
return ret;
}
priv->partnum = partnum;
}
#if defined(CONFIG_SDIO_DMA) && defined(CONFIG_ARCH_HAVE_SDIO_PREFLIGHT)
/* If we think we are going to perform a DMA transfer, make sure that we
* will be able to before we commit the card to the operation.
*/
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMAPREFLIGHT(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
return ret;
}
}
#endif
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert sector start sector
* number to a byte offset
*/
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
finfo("offset=%jd\n", (intmax_t)offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* If Controller does not need DMA setup before the write then send CMD24
* now.
*/
if ((priv->caps & SDIO_CAPS_DMABEFOREWRITE) == 0)
{
/* Send CMD24, WRITE_BLOCK, and verify good R1 status is returned */
mmcsd_sendcmdpoll(priv, MMCSD_CMD24, offset);
ret = mmcsd_recv_r1(priv, MMCSD_CMD24);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD24 failed: %d\n", ret);
return ret;
}
}
/* Configure SDIO controller hardware for the write transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
MMCSD_BLOCK_WDATADELAY);
#ifdef CONFIG_SDIO_DMA
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMASENDSETUP(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
finfo("SDIO_DMASENDSETUP: error %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
else
#endif
{
SDIO_SENDSETUP(priv->dev, buffer, priv->blocksize);
}
/* If Controller needs DMA setup before write then only send CMD24 now. */
if ((priv->caps & SDIO_CAPS_DMABEFOREWRITE) != 0)
{
/* Send CMD24, WRITE_BLOCK, and verify good R1 status is returned */
mmcsd_sendcmdpoll(priv, MMCSD_CMD24, offset);
ret = mmcsd_recv_r1(priv, MMCSD_CMD24);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD24 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
/* Wait for the transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: CMD24 transfer failed: %d\n", ret);
return ret;
}
/* Flag that a write transfer is pending that we will have to check for
* write complete at the beginning of the next transfer.
*/
priv->wrbusy = true;
#if defined(CONFIG_MMCSD_SDIOWAIT_WRCOMPLETE)
/* Arm the write complete detection with timeout */
SDIO_WAITENABLE(priv->dev, SDIOWAIT_WRCOMPLETE | SDIOWAIT_TIMEOUT,
MMCSD_BLOCK_WDATADELAY);
#endif
/* On success, return the number of blocks written */
return 1;
}
/****************************************************************************
* Name: mmcsd_writemultiple
*
* Description:
* Write multiple, contiguous blocks of data to the physical device.
* This function expects that the data to be written is contained in
* one large buffer that is pointed to by buffer.
*
****************************************************************************/
#if MMCSD_MULTIBLOCK_LIMIT != 1
static ssize_t mmcsd_writemultiple(FAR struct mmcsd_part_s *part,
FAR const uint8_t *buffer,
off_t startblock, size_t nblocks)
{
FAR struct mmcsd_state_s *priv = part->priv;
size_t nbytes = nblocks << priv->blockshift;
uint32_t partnum = part - priv->part;
off_t offset;
int ret;
int evret = OK;
finfo("startblock=%jd nblocks=%zu\n", (intmax_t)startblock, nblocks);
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked or write protected (either via software or
* via the mechanical write protect on the card)
*/
if (mmcsd_wrprotected(priv))
{
ferr("ERROR: Card is locked or write protected\n");
return -EPERM;
}
if (priv->partnum != partnum)
{
ret = mmcsd_switch(priv, MMC_CMD6_MODE(MMC_CMD6_MODE_WRITE_BYTE) |
MMC_CMD6_INDEX(EXT_CSD_PART_CONF) |
MMC_CMD6_VALUE(partnum));
if (ret != OK)
{
ferr("ERROR: mmcsd_switch failed: %d\n", ret);
return ret;
}
priv->partnum = partnum;
}
#if defined(CONFIG_SDIO_DMA) && defined(CONFIG_ARCH_HAVE_SDIO_PREFLIGHT)
/* If we think we are going to perform a DMA transfer, make sure that we
* will be able to before we commit the card to the operation.
*/
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMAPREFLIGHT(priv->dev, buffer, nbytes);
if (ret != OK)
{
return ret;
}
}
#endif
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* If this is a byte addressed SD card, then convert both the total
* transfer size to bytes and the sector start sector number to a byte
* offset
*/
if (IS_BLOCK(priv->type))
{
offset = startblock;
}
else
{
offset = startblock << priv->blockshift;
}
finfo("nbytes=%zu byte offset=%jd\n", nbytes, (intmax_t)offset);
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* If this is an SD card, then send ACMD23 (SET_WR_BLK_ERASE_COUNT) just
* before sending CMD25 (WRITE_MULTIPLE_BLOCK). This sets the number of
* write blocks to be pre-erased and might make the following multiple
* block write command faster.
*/
if (IS_SD(priv->type))
{
/* Send CMD55, APP_CMD, a verify that good R1 status is returned */
mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16);
ret = mmcsd_recv_r1(priv, SD_CMD55);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD55 (ACMD23) failed: %d\n", ret);
return ret;
}
/* Send CMD23, SET_WR_BLK_ERASE_COUNT, and verify that good R1 status
* is returned.
*/
mmcsd_sendcmdpoll(priv, SD_ACMD23, nblocks);
ret = mmcsd_recv_r1(priv, SD_ACMD23);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for ACMD23 failed: %d\n", ret);
return ret;
}
}
/* Data to the RPMB is programmed with the WRITE_MULTIPLE_BLOCK(CMD25),
* in prior to the command CMD25 the block count is set by CMD23,
* with argument bit [31] set as 1 to indicate Reliable Write type of
* programming access.
*/
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (IS_MMC(priv->type))
{
ret = mmcsd_setblockcount(priv, priv->partnum == MMCSD_PART_RPMB ?
((1 << 31) | nblocks) : nblocks);
if (ret != OK)
{
return ret;
}
}
else
#endif
if (IS_SD(priv->type) && priv->cmd23support)
{
ret = mmcsd_setblockcount(priv, nblocks);
if (ret != OK)
{
return ret;
}
}
/* If Controller does not need DMA setup before the write then send CMD25
* now.
*/
if ((priv->caps & SDIO_CAPS_DMABEFOREWRITE) == 0)
{
/* Send CMD25, WRITE_MULTIPLE_BLOCK, and verify that good R1 status
* is returned
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD25, offset);
ret = mmcsd_recv_r1(priv, MMCSD_CMD25);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD25 failed: %d\n", ret);
return ret;
}
}
/* Configure SDIO controller hardware for the write transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, nblocks);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
nblocks * MMCSD_BLOCK_WDATADELAY);
#ifdef CONFIG_SDIO_DMA
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMASENDSETUP(priv->dev, buffer, nbytes);
if (ret != OK)
{
ferr("SDIO_DMASENDSETUP: error %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
else
#endif
{
SDIO_SENDSETUP(priv->dev, buffer, nbytes);
}
/* If Controller needs DMA setup before write then only send CMD25 now. */
if ((priv->caps & SDIO_CAPS_DMABEFOREWRITE) != 0)
{
/* Send CMD25, WRITE_MULTIPLE_BLOCK, and verify that good R1 status
* is returned
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD25, offset);
ret = mmcsd_recv_r1(priv, MMCSD_CMD25);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD25 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
/* Wait for the transfer to complete */
evret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (evret != OK)
{
ferr("ERROR: CMD25 transfer failed: %d\n", evret);
/* If we return from here, we probably leave the sd-card in
* Receive-data State. Instead, we will remember that
* an error occurred and try to execute the STOP_TRANSMISSION
* to put the sd-card back into Transfer State.
*/
}
if (IS_SD(priv->type) && !priv->cmd23support)
{
/* Send STOP_TRANSMISSION */
ret = mmcsd_stoptransmission(priv);
if (evret != OK)
{
return evret;
}
if (ret != OK)
{
ferr("ERROR: mmcsd_stoptransmission failed: %d\n", ret);
return ret;
}
}
else
{
if (evret != OK)
{
return evret;
}
}
/* Flag that a write transfer is pending that we will have to check for
* write complete at the beginning of the next transfer.
*/
priv->wrbusy = true;
#if defined(CONFIG_MMCSD_SDIOWAIT_WRCOMPLETE)
/* Arm the write complete detection with timeout */
SDIO_WAITENABLE(priv->dev, SDIOWAIT_WRCOMPLETE | SDIOWAIT_TIMEOUT,
nblocks * MMCSD_BLOCK_WDATADELAY);
#endif
/* On success, return the number of blocks written */
return nblocks;
}
#endif
/****************************************************************************
* Name: mmcsd_open
*
* Description: Open the block device
*
****************************************************************************/
static int mmcsd_open(FAR struct inode *inode)
{
FAR struct mmcsd_state_s *priv;
FAR struct mmcsd_part_s *part;
int ret;
finfo("Entry\n");
DEBUGASSERT(inode->i_private);
part = inode->i_private;
priv = part->priv;
/* Just increment the reference count on the driver */
DEBUGASSERT(priv->crefs < MAX_CREFS);
ret = mmcsd_lock(priv);
if (ret < 0)
{
return ret;
}
priv->crefs++;
mmcsd_unlock(priv);
return OK;
}
/****************************************************************************
* Name: mmcsd_close
*
* Description: close the block device
*
****************************************************************************/
static int mmcsd_close(FAR struct inode *inode)
{
FAR struct mmcsd_state_s *priv;
FAR struct mmcsd_part_s *part;
int ret;
finfo("Entry\n");
DEBUGASSERT(inode->i_private);
part = inode->i_private;
priv = part->priv;
/* Decrement the reference count on the block driver */
DEBUGASSERT(priv->crefs > 0);
ret = mmcsd_lock(priv);
if (ret < 0)
{
return ret;
}
priv->crefs--;
mmcsd_unlock(priv);
return OK;
}
/****************************************************************************
* Name: mmcsd_read
*
* Description:
* Read the specified number of sectors from the read-ahead buffer or from
* the physical device.
*
****************************************************************************/
static ssize_t mmcsd_read(FAR struct inode *inode, unsigned char *buffer,
blkcnt_t startsector, unsigned int nsectors)
{
FAR struct mmcsd_state_s *priv;
FAR struct mmcsd_part_s *part;
size_t sector;
size_t endsector;
ssize_t nread;
ssize_t ret = nsectors;
DEBUGASSERT(inode->i_private);
part = inode->i_private;
priv = part->priv;
finfo("startsector: %" PRIuOFF " nsectors: %u sectorsize: %d\n",
startsector, nsectors, priv->blocksize);
if (nsectors > 0)
{
ret = mmcsd_lock(priv);
if (ret < 0)
{
return ret;
}
ret = nsectors;
endsector = startsector + nsectors;
for (sector = startsector; sector < endsector; sector += nread)
{
/* Read this sector into the user buffer */
#if MMCSD_MULTIBLOCK_LIMIT == 1
/* Read each block using only the single block transfer method */
nread = mmcsd_readsingle(part, buffer, sector);
#else
nread = endsector - sector;
if (nread > MMCSD_MULTIBLOCK_LIMIT)
{
nread = MMCSD_MULTIBLOCK_LIMIT;
}
if (nread == 1)
{
nread = mmcsd_readsingle(part, buffer, sector);
}
else
{
nread = mmcsd_readmultiple(part, buffer, sector, nread);
}
#endif
if (nread < 0)
{
ret = nread;
break;
}
/* Increment the buffer pointer by the sector size */
buffer += nread * priv->blocksize;
}
mmcsd_unlock(priv);
}
/* On success, return the number of blocks read */
return ret;
}
/****************************************************************************
* Name: mmcsd_write
*
* Description:
* Write the specified number of sectors to the write buffer or to the
* physical device.
*
****************************************************************************/
static ssize_t mmcsd_write(FAR struct inode *inode,
FAR const unsigned char *buffer,
blkcnt_t startsector, unsigned int nsectors)
{
FAR struct mmcsd_state_s *priv;
FAR struct mmcsd_part_s *part;
size_t sector;
size_t endsector;
ssize_t nwrite;
ssize_t ret = nsectors;
DEBUGASSERT(inode->i_private);
part = inode->i_private;
priv = part->priv;
finfo("startsector: %" PRIuOFF " nsectors: %u sectorsize: %d\n",
startsector, nsectors, priv->blocksize);
if (nsectors > 0)
{
ret = mmcsd_lock(priv);
if (ret < 0)
{
return ret;
}
ret = nsectors;
endsector = startsector + nsectors;
for (sector = startsector; sector < endsector; sector += nwrite)
{
/* Write this sector into the user buffer */
#if MMCSD_MULTIBLOCK_LIMIT == 1
/* Write each block using only the single block transfer method */
nwrite = mmcsd_writesingle(part, buffer, sector);
#else
nwrite = endsector - sector;
if (nwrite > MMCSD_MULTIBLOCK_LIMIT)
{
nwrite = MMCSD_MULTIBLOCK_LIMIT;
}
if (nwrite == 1)
{
nwrite = mmcsd_writesingle(part, buffer, sector);
}
else
{
nwrite = mmcsd_writemultiple(part, buffer, sector, nwrite);
}
#endif
if (nwrite < 0)
{
ret = nwrite;
break;
}
/* Increment the buffer pointer by the sector size */
buffer += nwrite * priv->blocksize;
}
mmcsd_unlock(priv);
}
/* On success, return the number of blocks written */
return ret;
}
/****************************************************************************
* Name: mmcsd_geometry
*
* Description: Return device geometry
*
****************************************************************************/
static int mmcsd_geometry(FAR struct inode *inode, struct geometry *geometry)
{
FAR struct mmcsd_state_s *priv;
FAR struct mmcsd_part_s *part;
int ret = -EINVAL;
finfo("Entry\n");
DEBUGASSERT(inode->i_private);
if (geometry)
{
memset(geometry, 0, sizeof(*geometry));
/* Is there a (supported) card inserted in the slot? */
part = inode->i_private;
priv = part->priv;
ret = mmcsd_lock(priv);
if (ret < 0)
{
return ret;
}
if (IS_EMPTY(priv))
{
/* No.. return ENODEV */
finfo("IS_EMPTY\n");
ret = -ENODEV;
}
else
{
/* Yes.. return the geometry of the card */
geometry->geo_available = true;
geometry->geo_mediachanged = priv->mediachanged;
geometry->geo_writeenabled = !mmcsd_wrprotected(priv);
geometry->geo_nsectors = part->nblocks;
geometry->geo_sectorsize = priv->blocksize;
finfo("available: true mediachanged: %s writeenabled: %s\n",
geometry->geo_mediachanged ? "true" : "false",
geometry->geo_writeenabled ? "true" : "false");
finfo("nsectors: %" PRIuOFF " sectorsize: %" PRIi16 "\n",
geometry->geo_nsectors,
geometry->geo_sectorsize);
priv->mediachanged = false;
ret = OK;
}
mmcsd_unlock(priv);
}
return ret;
}
/****************************************************************************
* Name: mmcsd_ioctl
*
* Description: Return device geometry
*
****************************************************************************/
static int mmcsd_ioctl(FAR struct inode *inode, int cmd, unsigned long arg)
{
FAR struct mmcsd_state_s *priv;
FAR struct mmcsd_part_s *part;
int ret;
finfo("Entry\n");
DEBUGASSERT(inode->i_private);
part = inode->i_private;
priv = part->priv;
/* Process the IOCTL by command */
ret = mmcsd_lock(priv);
if (ret < 0)
{
return ret;
}
switch (cmd)
{
case BIOC_PROBE: /* Check for media in the slot */
{
finfo("BIOC_PROBE\n");
/* Probe the MMC/SD slot for media */
ret = mmcsd_probe(priv);
if (ret != OK)
{
ferr("ERROR: mmcsd_probe failed: %d\n", ret);
}
}
break;
case BIOC_EJECT: /* Media has been removed from the slot */
{
finfo("BIOC_EJECT\n");
/* Process the removal of the card */
ret = mmcsd_removed(priv);
if (ret != OK)
{
ferr("ERROR: mmcsd_removed failed: %d\n", ret);
}
/* Enable logic to detect if a card is re-inserted */
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
}
break;
#ifdef CONFIG_MMCSD_IOCSUPPORT
case MMC_IOC_CMD: /* MMCSD device ioctl commands */
{
finfo("MMC_IOC_CMD\n");
ret = mmcsd_iocmd(part, (FAR struct mmc_ioc_cmd *)arg);
if (ret != OK)
{
ferr("ERROR: mmcsd_iocmd failed: %d\n", ret);
}
}
break;
case MMC_IOC_MULTI_CMD: /* MMCSD device ioctl muti commands */
{
finfo("MMC_IOC_MULTI_CMD\n");
ret = mmcsd_multi_iocmd(part, (FAR struct mmc_ioc_multi_cmd *)arg);
if (ret != OK)
{
ferr("ERROR: mmcsd_iocmd failed: %d\n", ret);
}
}
break;
#endif
default:
ret = -ENOTTY;
break;
}
mmcsd_unlock(priv);
return ret;
}
/****************************************************************************
* Initialization/uninitialization/reset
****************************************************************************/
/****************************************************************************
* Name: mmcsd_mediachange
*
* Description:
* This is a callback function from the SDIO driver that indicates that
* there has been a change in the slot... either a card has been inserted
* or a card has been removed.
*
* Assumptions:
* This callback is NOT supposd to run in the context of an interrupt
* handler; it is probably running in the context of work thread.
*
****************************************************************************/
static void mmcsd_mediachange(FAR void *arg)
{
FAR struct mmcsd_state_s *priv = (FAR struct mmcsd_state_s *)arg;
int ret;
finfo("arg: %p\n", arg);
DEBUGASSERT(priv);
/* Is there a card present in the slot? */
ret = mmcsd_lock(priv);
if (ret < 0)
{
return;
}
if (SDIO_PRESENT(priv->dev))
{
/* Yes... process the card insertion. This could cause chaos if we
* think that a card is already present and there are mounted file
* systems! NOTE that mmcsd_probe() will always re-enable callbacks
* appropriately.
*/
mmcsd_probe(priv);
}
else
{
/* No... process the card removal. This could have very bad
* implications for any mounted file systems! NOTE that
* mmcsd_removed() does NOT re-enable callbacks so we will need to
* do that here.
*/
mmcsd_removed(priv);
/* Enable logic to detect if a card is re-inserted */
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
}
mmcsd_unlock(priv);
}
/****************************************************************************
* Name: mmcsd_widebus
*
* Description:
* An SD card has been inserted and its SCR has been obtained. Select wide
* (4-bit) bus operation if the card supports it.
*
* Assumptions:
* This function is called only once per card insertion as part of the SD
* card initialization sequence. It is not necessary to reselect the card
* there is not need to check if wide bus operation has already been
* selected.
*
****************************************************************************/
static int mmcsd_widebus(FAR struct mmcsd_state_s *priv)
{
int ret;
/* Check if the SD card supports wide bus operation (as reported in the
* SCR or in the SDIO driver capabililities)
*/
if (IS_SD(priv->type) &&
(priv->buswidth & MMCSD_SCR_BUSWIDTH_4BIT) != 0 &&
(priv->caps & SDIO_CAPS_1BIT_ONLY) == 0)
{
/* SD card supports 4-bit BUS and host settings is not 1-bit only. */
finfo("Setting SD BUS width to 4-bit. Card type: %d\n", priv->type);
/* Disconnect any CD/DAT3 pull up using ACMD42. ACMD42 is optional and
* need not be supported by all SD calls.
*
* First end CMD55 APP_CMD with argument as card's RCA.
*/
mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16);
ret = mmcsd_recv_r1(priv, SD_CMD55);
if (ret != OK)
{
ferr("ERROR: RECVR1 for CMD55 of ACMD42: %d\n", ret);
return ret;
}
/* Then send ACMD42 with the argument to disconnect the CD/DAT3
* pull-up
*
* TODO: May want to disable, then re-enable around data transfers
* to support card detection"
*/
mmcsd_sendcmdpoll(priv, SD_ACMD42, MMCSD_ACMD42_CD_DISCONNECT);
ret = mmcsd_recv_r1(priv, SD_ACMD42);
if (ret != OK)
{
fwarn("WARNING: SD card does not support ACMD42: %d\n", ret);
return ret;
}
/* Now send ACMD6 to select bus width operation, beginning
* with CMD55, APP_CMD:
*/
mmcsd_sendcmdpoll(priv, SD_CMD55, (uint32_t)priv->rca << 16);
ret = mmcsd_recv_r1(priv, SD_CMD55);
if (ret != OK)
{
ferr("ERROR: RECVR1 for CMD55 of ACMD6: %d\n", ret);
return ret;
}
/* Then send ACMD6 */
mmcsd_sendcmdpoll(priv, SD_ACMD6, MMCSD_ACMD6_BUSWIDTH_4);
ret = mmcsd_recv_r1(priv, SD_ACMD6);
if (ret != OK)
{
return ret;
}
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
else if (IS_MMC(priv->type) &&
((priv->buswidth & MMCSD_SCR_BUSWIDTH_4BIT) != 0 &&
(priv->caps & SDIO_CAPS_1BIT_ONLY) == 0))
{
/* SD card supports 4-bit BUS and host settings is not 1-bit only.
* Configuring MMC - Use MMC_SWITCH access modes.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD6,
MMC_CMD6_BUSWIDTH(EXT_CSD_BUS_WIDTH_4));
ret = mmcsd_recv_r1(priv, MMCSD_CMD6);
if (ret != OK)
{
ferr("ERROR: (MMCSD_CMD6) Setting MMC BUS width: %d\n", ret);
return ret;
}
}
#endif /* #ifdef CONFIG_MMCSD_MMCSUPPORT */
else if (!IS_SD(priv->type) && !IS_MMC(priv->type))
{
/* Take this path when no MMC / SD is yet detected */
fwarn("No card inserted.\n");
SDIO_WIDEBUS(priv->dev, false);
priv->widebus = false;
SDIO_CLOCK(priv->dev, CLOCK_SDIO_DISABLED);
MMCSD_USLEEP(MMCSD_CLK_DELAY);
return OK;
}
/* Configure the SDIO peripheral */
if ((priv->caps & SDIO_CAPS_1BIT_ONLY) == 0 &&
(IS_MMC(priv->type) ||
(priv->buswidth & MMCSD_SCR_BUSWIDTH_4BIT) != 0))
{
/* JEDEC specs: A.8.3 Changing the data bus width: 'Bus testing
* procedure' shows how mmc bus width may be detected. This driver
* doesn't do it, so let the low level driver decide how to go with
* the widebus selection. It may well be 1, 4 or 8 bits.
*
* For SD cards the priv->buswidth is set.
*/
finfo("Wide bus operation selected\n");
SDIO_WIDEBUS(priv->dev, true);
priv->widebus = true;
}
else
{
finfo("Narrow bus operation selected\n");
SDIO_WIDEBUS(priv->dev, false);
priv->widebus = false;
}
if (IS_SD(priv->type))
{
if ((priv->buswidth & MMCSD_SCR_BUSWIDTH_4BIT) != 0)
{
SDIO_CLOCK(priv->dev, CLOCK_SD_TRANSFER_4BIT);
}
else
{
SDIO_CLOCK(priv->dev, CLOCK_SD_TRANSFER_1BIT);
}
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
else
{
if (priv->caps & SDIO_CAPS_MMC_HS_MODE)
{
mmcsd_sendcmdpoll(priv, MMCSD_CMD6,
MMC_CMD6_HS_TIMING(EXT_CSD_HS_TIMING_HS));
ret = mmcsd_recv_r1(priv, MMCSD_CMD6);
if (ret != OK)
{
ferr("ERROR: (MMCSD_CMD6) Setting MMC speed mode: %d\n", ret);
return ret;
}
priv->mode = EXT_CSD_HS_TIMING_HS;
}
SDIO_CLOCK(priv->dev, CLOCK_MMC_TRANSFER);
}
#endif /* #ifdef CONFIG_MMCSD_MMCSUPPORT */
MMCSD_USLEEP(MMCSD_CLK_DELAY);
return OK;
}
#ifdef CONFIG_MMCSD_MMCSUPPORT
/****************************************************************************
* Name: mmcsd_decode_extcsd
*
* Description:
* Get all partitions size in block numbers
*
****************************************************************************/
static void mmcsd_decode_extcsd(FAR struct mmcsd_state_s *priv,
FAR const uint8_t *extcsd)
{
uint8_t hc_erase_grp_sz;
uint8_t hc_wp_grp_sz;
int idx;
/* User data partition size = SEC_COUNT x 512B for densities greater
* than 2 GB
*/
priv->part[0].nblocks = (extcsd[215] << 24) | (extcsd[214] << 16) |
(extcsd[213] << 8) | extcsd[212];
finfo("MMC ext CSD read succsesfully, number of block %" PRIuOFF "\n",
priv->part[0].nblocks);
if (extcsd[MMCSD_EXTCSD_PARTITION_SUPPORT] & MMCSD_PART_SUPPORT_PART_EN)
{
/* Boot partition size = 128KB byte x BOOT_SIZE_MULT */
priv->part[MMCSD_PART_BOOT0].nblocks =
extcsd[MMCSD_EXTCSD_BOOT_SIZE_MULT] * MCSD_SZ_128K / MCSD_SZ_512;
priv->part[MMCSD_PART_BOOT1].nblocks =
extcsd[MMCSD_EXTCSD_BOOT_SIZE_MULT] * MCSD_SZ_128K / MCSD_SZ_512;
/* RPMB partition size = 128KB byte x RPMB_SIZE_MULT */
priv->part[MMCSD_PART_RPMB].nblocks =
extcsd[MMCSD_EXTCSD_RPMB_SIZE_MULT] * MCSD_SZ_128K / MCSD_SZ_512;
hc_erase_grp_sz = extcsd[MMCSD_EXTCSD_HC_ERASE_GRP_SIZE];
hc_wp_grp_sz = extcsd[MMCSD_EXTCSD_HC_WP_GRP_SIZE];
for (idx = 0; idx < 4; idx++)
{
if (!extcsd[MMCSD_EXTCSD_GP_SIZE_MULT + idx * 3] &&
!extcsd[MMCSD_EXTCSD_GP_SIZE_MULT + idx * 3 + 1] &&
!extcsd[MMCSD_EXTCSD_GP_SIZE_MULT + idx * 3 + 2])
{
continue;
}
if (extcsd[MMCSD_EXTCSD_PARTITION_SETTING_COMPLETED] == 0)
{
finfo("Partition size defined without setting complete!\n");
break;
}
/* General purpose partition size = (GP_SIZE_MULT_X_2 << 16 +
* GP_SIZE_MULT_X_1 << 8 + GP_SIZE_MULT_X_0) x HC_WP_GRP_SIZE x
* HC_ERASE_GRP_SIZE x 512kBytes
*/
priv->part[MMCSD_PART_GENP0 + idx].nblocks =
((extcsd[MMCSD_EXTCSD_GP_SIZE_MULT + idx * 3 + 2] << 16) +
(extcsd[MMCSD_EXTCSD_GP_SIZE_MULT + idx * 3 + 1] << 8) +
extcsd[MMCSD_EXTCSD_GP_SIZE_MULT + idx * 3]) *
hc_erase_grp_sz * hc_wp_grp_sz * MCSD_SZ_512K / MCSD_SZ_512;
}
}
}
/****************************************************************************
* Name: mmcsd_mmcinitialize
*
* Description:
* We believe that there is an MMC card in the slot. Attempt to initialize
* and configure the MMC card. This is called only from mmcsd_probe().
*
****************************************************************************/
static int mmcsd_mmcinitialize(FAR struct mmcsd_state_s *priv)
{
uint8_t extcsd[512] aligned_data(16);
int ret;
/* At this point, slow, ID mode clocking has been supplied to the card
* and CMD0 has been sent successfully. CMD1 succeeded and ACMD41 failed
* so there is good evidence that we have an MMC card inserted into the
* slot.
*
* Send CMD2, ALL_SEND_CID. This implementation supports only one MMC
* slot. If multiple cards were installed, each card would respond to
* CMD2 by sending its CID (only one card completes the response at a
* time). The driver should send CMD2 and assign an RCAs until no
* response to ALL_SEND_CID is received. CMD2 causes transition to
* identification state / card-identification mode.
*/
finfo("Initialising MMC card.\n");
mmcsd_sendcmdpoll(priv, MMCSD_CMD2, 0);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD2, priv->cid);
if (ret != OK)
{
ferr("ERROR: SDIO_RECVR2 for MMC CID failed: %d\n", ret);
return ret;
}
mmcsd_decode_cid(priv, priv->cid);
/* Send CMD3, SET_RELATIVE_ADDR. This command is used to assign a logical
* address to the card. For MMC, the host assigns the address. CMD3 causes
* transition to standby state/data-transfer mode
*/
priv->rca = 1; /* There is only one card */
mmcsd_sendcmdpoll(priv, MMC_CMD3, (uint32_t)priv->rca << 16);
ret = mmcsd_recv_r1(priv, MMC_CMD3);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1(CMD3) failed: %d\n", ret);
return ret;
}
/* This should have caused a transition to standby state. However, this
* will not be reflected in the present R1/6 status. R1/6 contains the
* state of the card when the command was received, not when it
* completed execution.
*
* Verify that we are in standby state/data-transfer mode
*/
ret = mmcsd_verifystate(priv, MMCSD_R1_STATE_STBY);
if (ret != OK)
{
ferr("ERROR: Failed to enter standby state\n");
return ret;
}
/* Send CMD9, SEND_CSD in standby state/data-transfer mode to obtain the
* Card Specific Data (CSD) register, e.g., block length, card storage
* capacity, etc. (Stays in standby state/data-transfer mode).
* NOTE in v2.0 high capacity cards, the following values are always
* returned:
* - write block length = 9 = 2^9 = 512
* - read block length = 9 = 512
* - rw2 factor = 0x2 (010b)
* - size_mult = 0
* We can't decode the CSD register yet as we also need to read the
* extended CSD register.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD9, (uint32_t)priv->rca << 16);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD9, priv->csd);
if (ret != OK)
{
ferr("ERROR: Could not get SD CSD register: %d\n", ret);
return ret;
}
/* Decode the CSD register to obtain version. We will need to
* decode further if card is v4.0 or higher as it supports
* ext_csd commands.
*/
mmcsd_decode_csd(priv, priv->csd);
/* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been
* provided and (2) the card supports a DSR register. If no DSR value
* the card default value (0x0404) will be used.
*/
mmcsd_sendcmd4(priv);
/* Select the card.
* Send CMD7 with the argument == RCA in order to select the card
* and send it in data-trasfer mode. Since we are supporting
* only a single card, we just leave the card selected all of the time.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD7S, (uint32_t)priv->rca << 16);
ret = mmcsd_recv_r1(priv, MMCSD_CMD7S);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD7 failed: %d\n", ret);
return ret;
}
/* If the hardware only supports 4-bit transfer mode then we forced to
* attempt to setup the card in this mode before checking the ext CSD
* register.
*/
if ((priv->caps & SDIO_CAPS_4BIT_ONLY) != 0)
{
/* Select width (4-bit) bus operation */
priv->buswidth = MMCSD_SCR_BUSWIDTH_4BIT;
ret = mmcsd_widebus(priv);
if (ret != OK)
{
ferr("ERROR: Failed to set wide bus operation: %d\n", ret);
}
}
/* CSD Decoding for MMC should be done after entering in data-transfer mode
* because if the card has block addressing then extended CSD register
* must be read in order to get the right number of blocks and capacity,
* and BUS width but it has to be done in data-transfer mode.
*/
if (IS_BLOCK(priv->type))
{
finfo("Card supports eMMC spec 4.0 (or greater). Reading ext_csd.\n");
ret = mmcsd_read_extcsd(priv, extcsd);
if (ret != OK)
{
ferr("ERROR: Failed to determinate number of blocks: %d\n", ret);
return ret;
}
mmcsd_decode_extcsd(priv, extcsd);
}
mmcsd_decode_csd(priv, priv->csd);
/* It's up to the driver to act on the widebus request. mmcsd_widebus()
* enables the CLOCK_MMC_TRANSFER, so call it here always.
*/
ret = mmcsd_widebus(priv);
if (ret != OK)
{
ferr("ERROR: Failed to set wide bus operation: %d\n", ret);
}
return OK;
}
/****************************************************************************
* Name: mmcsd_read_extcsd
*
* Description:
* MMC card is detected with block addressing and this function will read
* the correct number of blocks and capacity. Returns OK if ext CSD is read
* correctly or error in not.
*
* Note: For some MCU architectures, buffer[] must be aligned.
*
****************************************************************************/
static int mmcsd_read_extcsd(FAR struct mmcsd_state_s *priv,
FAR uint8_t *extcsd)
{
int ret;
DEBUGASSERT(priv != NULL);
/* Check if the card is locked */
if (priv->locked)
{
ferr("ERROR: Card is locked\n");
return -EPERM;
}
memset(extcsd, 0, 512);
#if defined(CONFIG_SDIO_DMA) && defined(CONFIG_ARCH_HAVE_SDIO_PREFLIGHT)
/* If we think we are going to perform a DMA transfer, make sure that we
* will be able to before we commit the card to the operation.
*/
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMAPREFLIGHT(priv->dev, extcsd, priv->blocksize);
if (ret != OK)
{
return ret;
}
}
#endif
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* Select the block size for the card (CMD16) */
ret = mmcsd_setblocklen(priv, 512);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the read transfer */
SDIO_BLOCKSETUP(priv->dev, 512, 1);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
MMCSD_BLOCK_RDATADELAY);
#ifdef CONFIG_SDIO_DMA
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
finfo("Setting up for DMA transfer.\n");
ret = SDIO_DMARECVSETUP(priv->dev, extcsd, 512);
if (ret != OK)
{
ferr("SDIO_DMARECVSETUP: error %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
else
#endif
{
SDIO_RECVSETUP(priv->dev, extcsd, 512);
}
/* Send CMD8 in data-transfer mode to obtain the
* extended Card Specific Data (CSD) register, e.g., block length, card
* storage capacity, etc.
*/
mmcsd_sendcmdpoll(priv, MMC_CMD8, 0);
ret = mmcsd_recv_r1(priv, MMC_CMD8);
if (ret != OK)
{
ferr("ERROR: Could not get MMC extended CSD register: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Then wait for the data transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: CMD17 transfer failed: %d\n", ret);
return ret;
}
SDIO_GOTEXTCSD(priv->dev, extcsd);
/* Return value: One sector read */
return OK;
}
#endif
#ifdef CONFIG_MMCSD_IOCSUPPORT
/****************************************************************************
* Name: mmcsd_general_cmd_write
*
* Description:
* Send cmd56 data, one sector size
*
****************************************************************************/
static int mmcsd_general_cmd_write(FAR struct mmcsd_state_s *priv,
FAR const uint8_t *buffer,
off_t startblock)
{
int ret;
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked or write protected (either via software or
* via the mechanical write protect on the card)
*/
if (mmcsd_wrprotected(priv))
{
ferr("ERROR: Card is locked or write protected\n");
return -EPERM;
}
#if defined(CONFIG_SDIO_DMA) && defined(CONFIG_ARCH_HAVE_SDIO_PREFLIGHT)
/* If we think we are going to perform a DMA transfer, make sure that we
* will be able to before we commit the card to the operation.
*/
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMAPREFLIGHT(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
return ret;
}
}
#endif
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* If Controller does not need DMA setup before the write then send CMD56
* now.
*/
if ((priv->caps & SDIO_CAPS_DMABEFOREWRITE) == 0)
{
/* Send CMD56, WRITE_BLOCK, and verify good R1 status is returned */
mmcsd_sendcmdpoll(priv, MMCSD_CMD56WR, startblock);
ret = mmcsd_recv_r1(priv, MMCSD_CMD56WR);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD56 failed: %d\n", ret);
return ret;
}
}
/* Configure SDIO controller hardware for the write transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
MMCSD_BLOCK_WDATADELAY);
#ifdef CONFIG_SDIO_DMA
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMASENDSETUP(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
finfo("SDIO_DMASENDSETUP: error %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
else
#endif
{
SDIO_SENDSETUP(priv->dev, buffer, priv->blocksize);
}
/* If Controller needs DMA setup before write then only send CMD24 now. */
if ((priv->caps & SDIO_CAPS_DMABEFOREWRITE) != 0)
{
/* Send CMD56, WRITE_BLOCK, and verify good R1 status is returned */
mmcsd_sendcmdpoll(priv, MMCSD_CMD56WR, startblock);
ret = mmcsd_recv_r1(priv, MMCSD_CMD56WR);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD56 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
/* Wait for the transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: CMD56 transfer failed: %d\n", ret);
return ret;
}
/* Flag that a write transfer is pending that we will have to check for
* write complete at the beginning of the next transfer.
*/
priv->wrbusy = true;
#if defined(CONFIG_MMCSD_SDIOWAIT_WRCOMPLETE)
/* Arm the write complete detection with timeout */
SDIO_WAITENABLE(priv->dev, SDIOWAIT_WRCOMPLETE | SDIOWAIT_TIMEOUT,
MMCSD_BLOCK_WDATADELAY);
#endif
/* On success, return OK */
return OK;
}
/****************************************************************************
* Name: mmcsd_general_cmd_read
*
* Description:
* Read cmd56 data, one sector size
*
****************************************************************************/
static int mmcsd_general_cmd_read(FAR struct mmcsd_state_s *priv,
FAR uint8_t *buffer, off_t startblock)
{
int ret;
DEBUGASSERT(priv != NULL && buffer != NULL);
/* Check if the card is locked */
if (priv->locked)
{
ferr("ERROR: Card is locked\n");
return -EPERM;
}
#if defined(CONFIG_SDIO_DMA) && defined(CONFIG_ARCH_HAVE_SDIO_PREFLIGHT)
/* If we think we are going to perform a DMA transfer, make sure that we
* will be able to before we commit the card to the operation.
*/
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMAPREFLIGHT(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
return ret;
}
}
#endif
/* Verify that the card is ready for the transfer. The card may still be
* busy from the preceding write transfer. It would be simpler to check
* for write busy at the end of each write, rather than at the beginning of
* each read AND write, but putting the busy-wait at the beginning of the
* transfer allows for more overlap and, hopefully, better performance
*/
ret = mmcsd_transferready(priv);
if (ret != OK)
{
ferr("ERROR: Card not ready: %d\n", ret);
return ret;
}
/* Select the block size for the card */
ret = mmcsd_setblocklen(priv, priv->blocksize);
if (ret != OK)
{
ferr("ERROR: mmcsd_setblocklen failed: %d\n", ret);
return ret;
}
/* Configure SDIO controller hardware for the read transfer */
SDIO_BLOCKSETUP(priv->dev, priv->blocksize, 1);
SDIO_WAITENABLE(priv->dev,
SDIOWAIT_TRANSFERDONE | SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR,
MMCSD_BLOCK_RDATADELAY);
#ifdef CONFIG_SDIO_DMA
if ((priv->caps & SDIO_CAPS_DMASUPPORTED) != 0)
{
ret = SDIO_DMARECVSETUP(priv->dev, buffer, priv->blocksize);
if (ret != OK)
{
finfo("SDIO_DMARECVSETUP: error %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
}
else
#endif
{
SDIO_RECVSETUP(priv->dev, buffer, priv->blocksize);
}
/* Send CMD56: Read a sector size data and verify that good R1
* status is returned.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD56RD, startblock);
ret = mmcsd_recv_r1(priv, MMCSD_CMD56RD);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD56 failed: %d\n", ret);
SDIO_CANCEL(priv->dev);
return ret;
}
/* Then wait for the data transfer to complete */
ret = mmcsd_eventwait(priv, SDIOWAIT_TIMEOUT | SDIOWAIT_ERROR);
if (ret != OK)
{
ferr("ERROR: CMD56 transfer failed: %d\n", ret);
return ret;
}
/* Return value: OK */
return OK;
}
/****************************************************************************
* Name: mmcsd_iocmd
*
* Description:
* MMCSD device ioctl commands.
*
****************************************************************************/
static int mmcsd_iocmd(FAR struct mmcsd_part_s *part,
FAR struct mmc_ioc_cmd *ic_ptr)
{
FAR struct mmcsd_state_s *priv = part->priv;
uint32_t opcode;
int ret = OK;
DEBUGASSERT(priv != NULL && ic_ptr != NULL);
opcode = ic_ptr->opcode & MMCSD_CMDIDX_MASK;
switch (opcode)
{
case MMCSD_CMDIDX0: /* Reset card to idle state */
{
mmcsd_sendcmdpoll(priv, MMCSD_CMD0, ic_ptr->arg);
MMCSD_USLEEP(MMCSD_IDLE_DELAY);
}
break;
case MMCSD_CMDIDX2: /* Get cid reg data */
{
memcpy((FAR void *)(uintptr_t)ic_ptr->data_ptr,
priv->cid, sizeof(priv->cid));
}
break;
case MMCSD_CMDIDX6: /* Switch commands */
{
ret = mmcsd_switch(priv, ic_ptr->arg);
if (ret != OK)
{
ferr("ERROR: mmcsd_switch failed: %d\n", ret);
}
}
break;
#ifdef CONFIG_MMCSD_MMCSUPPORT
case MMC_CMDIDX8: /* Get extended csd reg data */
{
ret = mmcsd_read_extcsd(priv,
(FAR uint8_t *)(uintptr_t)ic_ptr->data_ptr);
}
break;
#endif
case MMCSD_CMDIDX13: /* Send status commands */
{
ret = mmcsd_get_r1(priv, ic_ptr->response);
if (ret != OK)
{
ferr("ERROR: mmcsd_get_r1 failed: %d\n", ret);
}
}
break;
#if MMCSD_MULTIBLOCK_LIMIT != 1
case MMCSD_CMDIDX18: /* Read multi blocks commands */
{
if (ic_ptr->blocks > 0)
{
/* Address argument in CMD18, 25 will be ignored in rpmb case */
ret = mmcsd_readmultiple(part,
(FAR uint8_t *)(uintptr_t)ic_ptr->data_ptr,
ic_ptr->arg, ic_ptr->blocks);
if (ret != ic_ptr->blocks)
{
ferr("ERROR: mmcsd_readmultiple failed: %d\n", ret);
}
else
{
ret = OK;
}
}
}
break;
case MMCSD_CMDIDX23: /* Set transfer block counts */
{
ret = mmcsd_setblockcount(priv,
ic_ptr->blocks ? ic_ptr->blocks : ic_ptr->arg);
}
break;
case MMCSD_CMDIDX25: /* Write multi blocks commands */
{
if (ic_ptr->blocks > 0)
{
/* Address argument in CMD18, 25 will be ignored in rpmb case */
ret = mmcsd_writemultiple(part,
(const FAR uint8_t *)(uintptr_t)ic_ptr->data_ptr,
ic_ptr->arg, ic_ptr->blocks);
if (ret != ic_ptr->blocks)
{
ferr("ERROR: mmcsd_writemultiple failed: %d\n", ret);
}
else
{
ret = OK;
}
}
}
break;
#endif
case MMCSD_CMDIDX56: /* General commands */
{
if (ic_ptr->write_flag)
{
ret = mmcsd_general_cmd_write(priv,
(FAR uint8_t *)(uintptr_t)(ic_ptr->data_ptr),
ic_ptr->arg);
if (ret != OK)
{
ferr("mmcsd_iocmd MMCSD_CMDIDX56 write failed.\n");
}
}
else
{
ret = mmcsd_general_cmd_read(priv,
(FAR uint8_t *)(uintptr_t)(ic_ptr->data_ptr),
ic_ptr->arg);
if (ret != OK)
{
ferr("mmcsd_iocmd MMCSD_CMDIDX56 read failed.\n");
}
}
}
break;
default:
{
ferr("mmcsd_iocmd opcode unsupported.\n");
ret = -EINVAL;
}
break;
}
return ret;
}
/****************************************************************************
* Name: mmcsd_multi_iocmd
*
* Description:
* MMCSD device ioctl multi commands.
*
****************************************************************************/
static int mmcsd_multi_iocmd(FAR struct mmcsd_part_s *part,
FAR struct mmc_ioc_multi_cmd *imc_ptr)
{
FAR struct mmcsd_state_s *priv = part->priv;
int ret;
int i;
DEBUGASSERT(priv != NULL && imc_ptr != NULL);
if (imc_ptr->num_of_cmds > MMC_IOC_MAX_CMDS)
{
ferr("mmcsd_multi_iocmd too many cmds.\n");
return -EINVAL;
}
for (i = 0; i < imc_ptr->num_of_cmds; ++i)
{
ret = mmcsd_iocmd(part, &imc_ptr->cmds[i]);
if (ret != OK)
{
ferr("cmds %d failed.\n", i);
return ret;
}
}
return OK;
}
#endif
/****************************************************************************
* Name: mmcsd_sdinitialize
*
* Description:
* We believe that there is an SD card in the slot. Attempt to initialize
* and configure the SD card. This is called only from mmcsd_probe().
*
****************************************************************************/
static int mmcsd_sdinitialize(FAR struct mmcsd_state_s *priv)
{
uint32_t cid[4];
uint32_t scr[2];
int ret;
/* At this point, clocking has been supplied to the card, both CMD0 and
* ACMD41 (with OCR=0) have been sent successfully, the card is no longer
* busy and (presumably) in the IDLE state so there is good evidence
* that we have an SD card inserted into the slot.
*
* Send CMD2, ALL_SEND_CID. The SD CMD2 is similar to the MMC CMD2 except
* that the buffer type used to transmit to response of the card (SD Memory
* Card: Push-Pull, MMC: Open-Drain). This implementation supports only a
* single SD card. If multiple cards were installed in the slot, each card
* would respond to CMD2 by sending its CID (only one card completes the
* response at a time). The driver should send CMD2 and obtain RCAs until
* no response to ALL_SEND_CID is received.
*
* When an SD card receives the CMD2 command it should transition to the
* identification state/card-identification mode
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD2, 0);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD2, cid);
if (ret != OK)
{
ferr("ERROR: SDIO_RECVR2 for SD CID failed: %d\n", ret);
return ret;
}
mmcsd_decode_cid(priv, cid);
/* Send CMD3, SEND_RELATIVE_ADDR. In both protocols, this command is used
* to assign a logical address to the card. For MMC, the host assigns the
* address; for SD, the memory card has this responsibility. CMD3 causes
* transition to standby state/data-transfer mode
*
* Send CMD3 with argument 0, SD card publishes its RCA in the response.
*/
mmcsd_sendcmdpoll(priv, SD_CMD3, 0);
ret = mmcsd_recv_r6(priv, SD_CMD3);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r6 for SD RCA failed: %d\n", ret);
return ret;
}
finfo("RCA: %04x\n", priv->rca);
/* This should have caused a transition to standby state. However, this
* will not be reflected in the present R1/6 status. R1/6 contains the
* state of the card when the command was received, not when it
* completed execution.
*
* Verify that we are in standby state/data-transfer mode
*/
ret = mmcsd_verifystate(priv, MMCSD_R1_STATE_STBY);
if (ret != OK)
{
ferr("ERROR: Failed to enter standby state\n");
return ret;
}
/* Send CMD9, SEND_CSD, in standby state/data-transfer mode to obtain the
* Card Specific Data (CSD) register. The argument is the RCA that we
* just obtained from CMD3. The card stays in standby state/data-transfer
* mode.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD9, (uint32_t)priv->rca << 16);
ret = SDIO_RECVR2(priv->dev, MMCSD_CMD9, priv->csd);
if (ret != OK)
{
ferr("ERROR: Could not get SD CSD register(%d)\n", ret);
return ret;
}
mmcsd_decode_csd(priv, priv->csd);
/* Send CMD7 with the argument == RCA in order to select the card.
* Since we are supporting only a single card, we just leave the
* card selected all of the time.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD7S, (uint32_t)priv->rca << 16);
ret = mmcsd_recv_r1(priv, MMCSD_CMD7S);
if (ret != OK)
{
ferr("ERROR: mmcsd_recv_r1 for CMD7 failed: %d\n", ret);
return ret;
}
/* Set the Driver Stage Register (DSR) if (1) a CONFIG_MMCSD_DSR has been
* provided and (2) the card supports a DSR register. If no DSR value
* the card default value (0x0404) will be used.
*/
mmcsd_sendcmd4(priv);
/* Select high speed SD clocking (which may depend on the DSR setting) */
SDIO_CLOCK(priv->dev, CLOCK_SD_TRANSFER_1BIT);
MMCSD_USLEEP(MMCSD_CLK_DELAY);
/* If the hardware only supports 4-bit transfer mode then we forced to
* attempt to setup the card in this mode before checking the SCR register.
*/
if ((priv->caps & SDIO_CAPS_4BIT_ONLY) != 0)
{
/* Select width (4-bit) bus operation */
priv->buswidth = MMCSD_SCR_BUSWIDTH_4BIT;
ret = mmcsd_widebus(priv);
if (ret != OK)
{
ferr("ERROR: Failed to set wide bus operation: %d\n", ret);
}
}
/* Get the SD card Configuration Register (SCR). We need this now because
* that configuration register contains the indication whether or not
* this card supports wide bus operation.
*/
ret = mmcsd_get_scr(priv, scr);
if (ret != OK)
{
ferr("ERROR: Could not get SD SCR register(%d)\n", ret);
return ret;
}
mmcsd_decode_scr(priv, scr);
if ((priv->caps & SDIO_CAPS_4BIT) != 0)
{
/* Select width (4-bit) bus operation (if the card supports it) */
ret = mmcsd_widebus(priv);
if (ret != OK)
{
ferr("ERROR: Failed to set wide bus operation: %d\n", ret);
}
}
/* TODO: If wide-bus selected, then send CMD6 to see if the card supports
* high speed mode. A new SDIO method will be needed to set high speed
* mode.
*/
return OK;
}
/****************************************************************************
* Name: mmcsd_cardidentify
*
* Description:
* We believe that there is media in the slot. Attempt to initialize and
* configure the card. This is called only from mmcsd_probe().
*
****************************************************************************/
static int mmcsd_cardidentify(FAR struct mmcsd_state_s *priv)
{
uint32_t response;
uint32_t sdcapacity = MMCSD_ACMD41_STDCAPACITY;
#ifdef CONFIG_MMCSD_MMCSUPPORT
uint32_t mmccapacity = MMCSD_R3_HIGHCAPACITY;
#endif
clock_t start;
clock_t elapsed;
int ret;
finfo("Identifying card...\n");
/* Assume failure to identify the card */
priv->type = MMCSD_CARDTYPE_UNKNOWN;
/* Check if there is a card present in the slot. This is normally a
* matter is of GPIO sensing.
*/
if (!SDIO_PRESENT(priv->dev))
{
finfo("No card present\n");
return -ENODEV;
}
/* Set ID mode clocking (<400KHz) */
SDIO_CLOCK(priv->dev, CLOCK_IDMODE);
/* For eMMC, Send CMD0 with argument 0xf0f0f0f0 as per JEDEC v4.41
* for pre-idle. No effect for SD.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD0, 0xf0f0f0f0);
MMCSD_USLEEP(MMCSD_IDLE_DELAY);
/* After power up at least 74 clock cycles are required prior to starting
* bus communication
*/
up_udelay(MMCSD_POWERUP_DELAY);
/* Then send CMD0 just once is standard procedure */
mmcsd_sendcmdpoll(priv, MMCSD_CMD0, 0);
MMCSD_USLEEP(MMCSD_IDLE_DELAY);
#ifdef CONFIG_MMCSD_MMCSUPPORT
/* Send CMD1 which is supported only by MMC. if there is valid response
* then the card is definitely of MMC type
*/
mmcsd_sendcmdpoll(priv, MMC_CMD1, MMCSD_VDD_33_34 | mmccapacity);
ret = SDIO_RECVR3(priv->dev, MMC_CMD1, &response);
/* Was the operating range set successfully */
if (ret != OK)
{
fwarn("WARNING: CMD1 RECVR3: %d. "
"NOTE: This is expected for SD cards.\n", ret);
/* CMD1 did not succeed, card is not MMC. Return to idle
* to allow the communication to recover before another send.
*/
mmcsd_sendcmdpoll(priv, MMCSD_CMD0, 0);
MMCSD_USLEEP(MMCSD_IDLE_DELAY);
}
else
{
/* CMD1 succeeded... this must be an MMC card */
finfo("MMC card detected\n");
priv->type = MMCSD_CARDTYPE_MMC;
if ((priv->caps & SDIO_CAPS_4BIT_ONLY) != 0)
{
priv->buswidth |= MMCSD_SCR_BUSWIDTH_4BIT;
}
/* Now, check if this is a MMC card/chip that supports block
* addressing
*/
if ((response & MMCSD_R3_HIGHCAPACITY) != 0)
{
finfo("MMC card/chip with block addressing\n");
mmccapacity = MMCSD_R3_HIGHCAPACITY;
priv->type |= MMCSD_CARDTYPE_BLOCK;
}
else
{
mmccapacity = MMCSD_R3_STDCAPACITY;
}
/* Check if the card is busy. Very confusing, BUSY is set LOW
* if the card has not finished its initialization, so it really
* means NOT busy.
*/
if ((response & MMCSD_CARD_BUSY) != 0)
{
/* NO.. We really should check the current state to see if the
* MMC successfully made it to the IDLE state, but at least for
* now, we will simply assume that that is the case.
*
* Then break out of the look with an MMC card identified
*/
finfo("MMC card/chip ready!\n");
return OK;
}
}
if (!IS_MMC(priv->type))
#endif
{
/* Check for SDHC Version 2.x. Send CMD8 to verify SD card interface
* operating condition. CMD 8 is reserved on SD version 1.0 and MMC.
*
* CMD8 Argument:
* [31:12]: Reserved (shall be set to '0')
* [11:8]: Supply Voltage (VHS) 0x1 (Range: 2.7-3.6 V)
* [7:0]: Check Pattern (recommended 0xaa)
* CMD8 Response: R7
*/
ret = mmcsd_sendcmdpoll(priv, SD_CMD8,
MMCSD_CMD8CHECKPATTERN | MMCSD_CMD8VOLTAGE_27);
if (ret == OK)
{
/* CMD8 was sent successfully... Get the R7 response */
ret = SDIO_RECVR7(priv->dev, SD_CMD8, &response);
}
/* Were both the command sent and response received correctly? */
if (ret == OK)
{
/* CMD8 succeeded this is probably a SDHC card. Verify the
* operating voltage and that the check pattern was correctly
* echoed
*/
if (((response & MMCSD_R7VOLTAGE_MASK) == MMCSD_R7VOLTAGE_27) &&
((response & MMCSD_R7ECHO_MASK) == MMCSD_R7CHECKPATTERN))
{
finfo("SD V2.x card\n");
priv->type = MMCSD_CARDTYPE_SDV2;
sdcapacity = MMCSD_ACMD41_HIGHCAPACITY;
}
else
{
ferr("ERROR: R7: %08" PRIx32 "\n", response);
return -EIO;
}
}
}
/* At this point, type is either UNKNOWN, eMMC or SDV2. Try sending
* CMD55 and (maybe) ACMD41 for up to 1 second or until the card
* exits the IDLE state. CMD55 is supported by SD V1.x and SD V2.x,
* but not MMC
*/
start = clock_systime_ticks();
elapsed = 0;
do
{
/* We may have already determined that this card is an MMC card from
* an earlier pass through this loop. In that case, we should
* skip the SD-specific commands.
*/
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (!IS_MMC(priv->type))
#endif
{
/* Send CMD55 with argument = 0 */
mmcsd_sendcmdpoll(priv, SD_CMD55, 0);
ret = mmcsd_recv_r1(priv, SD_CMD55);
if (ret != OK)
{
/* I am a little confused.. I think both SD and MMC cards
* support CMD55 (but maybe only SD cards support CMD55).
* We'll make the the MMC vs. SD decision based on CMD1 and
* ACMD41.
*/
ferr("ERROR: mmcsd_recv_r1(CMD55) failed: %d\n", ret);
}
else
{
/* Send ACMD41 */
mmcsd_sendcmdpoll(priv, SD_ACMD41,
MMCSD_ACMD41_VOLTAGEWINDOW_33_32 |
sdcapacity);
ret = SDIO_RECVR3(priv->dev, SD_ACMD41, &response);
if (ret != OK)
{
/* If the error is a timeout, then it is probably an MMC
* card, but we will make the decision based on CMD1
* below.
*/
ferr("ERROR: ACMD41 RECVR3: %d\n", ret);
}
else
{
/* ACMD41 succeeded. ACMD41 is supported by SD V1.x and
* SD V2.x, but not MMC. If we did not previously
* determine that this is an SD V2.x (via CMD8), then this
* must be SD V1.x
*/
finfo("R3: %08" PRIx32 "\n", response);
if (priv->type == MMCSD_CARDTYPE_UNKNOWN)
{
finfo("SD V1.x card\n");
priv->type = MMCSD_CARDTYPE_SDV1;
}
/* Check if the card is busy. Very confusing, BUSY is set
* LOW if the card has not finished its initialization,
* so it really means NOT busy.
*/
if ((response & MMCSD_CARD_BUSY) != 0)
{
/* No.. We really should check the current state to
* see if the SD card successfully made it to the IDLE
* state, but at least for now, we will simply assume
* that that is the case.
*
* Now, check if this is a SD V2.x card that supports
* block addressing
*/
if ((response & MMCSD_R3_HIGHCAPACITY) != 0)
{
finfo("SD V2.x card with block addressing\n");
DEBUGASSERT(priv->type == MMCSD_CARDTYPE_SDV2);
priv->type |= MMCSD_CARDTYPE_BLOCK;
}
/* And break out of the loop with an card identified */
break;
}
}
}
}
/* If we get here then either (1) CMD55 failed, (2) CMD41 failed, or
* (3) and SD or MMC card has been identified, but it is not yet in
* the IDLE state. If SD card has not been identified, then we might
* be looking at an MMC card. We can send the CMD1 to find out for
* sure. CMD1 is supported by MMC cards, but not by SD cards.
*/
#ifdef CONFIG_MMCSD_MMCSUPPORT
if (IS_MMC(priv->type))
{
/* Send the MMC CMD1 to specify the operating voltage. CMD1 causes
* transition to ready state/ card-identification mode. NOTE: If
* the card does not support this voltage range, it will go the
* inactive state.
*
* NOTE: An MMC card will only respond once to CMD1 (unless it is
* busy). This is part of the logic used to determine how many
* MMC cards are connected (This implementation supports only a
* single MMC card). So we cannot re-send CMD1 without first
* placing the card back into stand-by state (if the card is busy,
* it will automatically go back to the standby state).
*/
mmcsd_sendcmdpoll(priv, MMC_CMD1, MMCSD_VDD_33_34 | mmccapacity);
ret = SDIO_RECVR3(priv->dev, MMC_CMD1, &response);
/* Was the operating range set successfully */
if (ret != OK)
{
ferr("ERROR: CMD1 RECVR3: %d\n", ret);
}
else
{
/* CMD1 succeeded... this must be an MMC card */
finfo("Confirmed MMC card present.\n");
priv->type = MMCSD_CARDTYPE_MMC;
/* Now, check if this is a MMC card/chip that supports block
* addressing
*/
if ((response & MMCSD_R3_HIGHCAPACITY) != 0)
{
mmccapacity = MMCSD_R3_HIGHCAPACITY;
priv->type |= MMCSD_CARDTYPE_BLOCK;
}
else
{
mmccapacity = MMCSD_R3_STDCAPACITY;
}
/* Check if the card is busy. Very confusing, BUSY is set LOW
* if the card has not finished its initialization, so it
* really means NOT busy.
*/
if ((response & MMCSD_CARD_BUSY) != 0)
{
/* NO.. We really should check the current state to see if
* the MMC successfully made it to the IDLE state, but at
* least for now we will simply assume that that is the
* case.
*
* Then break out of the look with an MMC card identified
*/
finfo("MMC card/chip is ready!\n");
break;
}
else
{
finfo("MMC card/chip is busy. Waiting for reply...\n");
}
}
}
#endif
/* Check the elapsed time. We won't keep trying this forever! */
elapsed = clock_systime_ticks() - start;
}
while (elapsed < TICK_PER_SEC); /* On successful reception while 'breaks', see above. */
/* We get here when the above loop completes, either (1) we could not
* communicate properly with the card due to errors (and the loop times
* out), or (2) it is an MMC or SD card that has successfully transitioned
* to the IDLE state (well, at least, it provided its OCR saying that it
* it is no longer busy).
*/
if (elapsed >= TICK_PER_SEC || priv->type == MMCSD_CARDTYPE_UNKNOWN)
{
priv->type = MMCSD_CARDTYPE_UNKNOWN;
ferr("ERROR: Failed to identify card\n");
return -EIO;
}
return OK;
}
/****************************************************************************
* Name: mmcsd_probe
*
* Description:
* Check for media inserted in a slot. Called (1) during initialization to
* see if there was a card in the slot at power up, (2) when/if a media
* insertion event occurs, or (3) if the BIOC_PROBE ioctl command is
* received.
*
****************************************************************************/
static int mmcsd_probe(FAR struct mmcsd_state_s *priv)
{
char devname[32];
int ret;
int i;
finfo("type: %d probed: %d\n", priv->type, priv->probed);
/* If we have reliable card detection events and if we have
* already probed the card, then we don't need to do anything
* else
*/
#ifdef CONFIG_MMCSD_HAVE_CARDDETECT
if (priv->probed && SDIO_PRESENT(priv->dev))
{
return OK;
}
#endif
/* Otherwise, we are going to probe the card. There are lots of
* possibilities here: We may think that there is a card in the slot,
* or not. There may be a card in the slot, or not. If there is
* card in the slot, perhaps it is a different card than we one we
* think is there? The safest thing to do is to process the card
* removal first and start from known place.
*/
mmcsd_removed(priv);
/* Now.. is there a card in the slot? */
if (SDIO_PRESENT(priv->dev))
{
/* Yes.. probe it. First, what kind of card was inserted? */
finfo("Card present. Probing....\n");
ret = mmcsd_cardidentify(priv);
if (ret != OK)
{
ferr("ERROR: Failed to initialize card: %d\n", ret);
}
else
{
/* Then initialize the driver according to the card type */
switch (priv->type)
{
/* Bit 1: SD version 1.x */
case MMCSD_CARDTYPE_SDV1:
finfo("SD version 1.x .\n");
ret = mmcsd_sdinitialize(priv);
break;
/* SD version 2.x with byte addressing */
case MMCSD_CARDTYPE_SDV2:
finfo("SD version 2.x with byte addressing.\n");
ret = mmcsd_sdinitialize(priv);
break;
/* SD version 2.x with block addressing */
case MMCSD_CARDTYPE_SDV2 | MMCSD_CARDTYPE_BLOCK:
finfo("SD version 2.x with block addressing.\n");
ret = mmcsd_sdinitialize(priv);
break;
/* MMC card with byte addressing */
case MMCSD_CARDTYPE_MMC:
finfo("MMC card with byte addressing.\n");
/* MMC card with block addressing */
case MMCSD_CARDTYPE_MMC | MMCSD_CARDTYPE_BLOCK:
finfo("MMC card with block addressing.\n");
#ifdef CONFIG_MMCSD_MMCSUPPORT
ret = mmcsd_mmcinitialize(priv);
break;
#endif
/* Unknown card type */
case MMCSD_CARDTYPE_UNKNOWN:
default:
ferr("ERROR: Internal confusion: %d\n", priv->type);
ret = -EPERM;
break;
}
/* Was the card configured successfully? */
if (ret == OK)
{
/* Yes... */
finfo("Capacity: %" PRIuOFF " Kbytes\n",
MMCSD_CAPACITY(priv->part[0].nblocks,
priv->blockshift));
priv->mediachanged = true;
}
/* When the card is identified, we have probed this card */
priv->probed = true;
for (i = 0; i < MMCSD_PART_COUNT; i++)
{
priv->part[i].priv = priv;
if (priv->part[i].nblocks != 0)
{
snprintf(devname, sizeof(devname), "/dev/mmcsd%d%s",
priv->minor, g_partname[i]);
register_blockdriver(devname, &g_bops, 0666,
&priv->part[i]);
}
}
}
/* Regardless of whether or not a card was successfully initialized,
* there is apparently a card inserted. If it wasn't successfully
* initialized, there's nothing we can do about it now. Perhaps it's
* a bad card? The best we can do is wait for the card to be ejected
* and re-inserted. Then we can try to initialize again.
*/
#ifdef CONFIG_MMCSD_HAVE_CARDDETECT
/* Set up to receive asynchronous, media removal events */
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_EJECTED);
#endif
}
else
{
/* There is no card in the slot */
finfo("No card\n");
#ifdef CONFIG_MMCSD_HAVE_CARDDETECT
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
#endif
ret = -ENODEV;
}
return ret;
}
/****************************************************************************
* Name: mmcsd_removed
*
* Description:
* Disable support for media in the slot. Called (1) when/if a media
* removal event occurs, or (2) if the BIOC_EJECT ioctl command is
* received.
*
****************************************************************************/
static int mmcsd_removed(FAR struct mmcsd_state_s *priv)
{
char devname[32];
int i;
finfo("type: %d present: %d\n", priv->type, SDIO_PRESENT(priv->dev));
for (i = 0; i < MMCSD_PART_COUNT; i++)
{
snprintf(devname, sizeof(devname), "/dev/mmcsd%d%s",
priv->minor, g_partname[i]);
unregister_blockdriver(devname);
}
/* Forget the card geometry, pretend the slot is empty (it might not
* be), and that the card has never been initialized.
*/
priv->blocksize = 0;
priv->probed = false;
priv->mediachanged = false;
priv->wrbusy = false;
priv->type = MMCSD_CARDTYPE_UNKNOWN;
priv->rca = 0;
priv->selblocklen = 0;
/* Go back to the default 1-bit data bus. */
priv->buswidth = MMCSD_SCR_BUSWIDTH_1BIT;
SDIO_WIDEBUS(priv->dev, false);
priv->widebus = false;
if (mmcsd_widebus(priv) != OK)
{
ferr("ERROR: Failed to set wide bus operation\n");
}
/* Disable clocking to the card */
SDIO_CLOCK(priv->dev, CLOCK_SDIO_DISABLED);
return OK;
}
/****************************************************************************
* Name: mmcsd_hwinitialize
*
* Description:
* One-time hardware initialization. Called only from sdio_slotinitialize.
*
****************************************************************************/
static int mmcsd_hwinitialize(FAR struct mmcsd_state_s *priv)
{
int ret;
ret = mmcsd_lock(priv);
if (ret < 0)
{
return ret;
}
/* Get the capabilities of the SDIO driver */
priv->caps = SDIO_CAPABILITIES(priv->dev);
finfo("DMA supported: %d\n", (priv->caps & SDIO_CAPS_DMASUPPORTED) != 0);
/* Attach and prepare MMC/SD interrupts */
if (SDIO_ATTACH(priv->dev))
{
ferr("ERROR: Unable to attach MMC/SD interrupts\n");
mmcsd_unlock(priv);
return -EBUSY;
}
finfo("Attached MMC/SD interrupts\n");
/* Register a callback so that we get informed if media is inserted or
* removed from the slot (Initially all callbacks are disabled).
*/
SDIO_REGISTERCALLBACK(priv->dev, mmcsd_mediachange, (FAR void *)priv);
/* Is there a card in the slot now? For an MMC/SD card, there are three
* possible card detect mechanisms:
*
* 1. Mechanical insertion that can be detected using the WP switch
* that is closed when a card is inserted into then SD slot (SD
* "hot insertion capable" card connector only)
* 2. Electrical insertion that can be sensed using the pull-up resistor
* on CD/DAT3 (both SD/MMC),
* 3. Or by periodic attempts to initialize the card from software.
*
* The behavior of SDIO_PRESENT() is to use whatever information is
* available on the particular platform. If no card insertion information
* is available (polling only), then SDIO_PRESENT() will always return
* true and we will try to initialize the card.
*/
if (SDIO_PRESENT(priv->dev))
{
/* Yes... probe for a card in the slot */
ret = mmcsd_probe(priv);
if (ret != OK)
{
ferr("Slot not empty, but initialization failed: %d\n", ret);
/* NOTE: The failure to initialize a card does not mean that
* initialization has failed! A card could be installed in the slot
* at a later time. ENODEV is return in this case,
* sdio_slotinitialize will use this return value to set up the
* card inserted callback event.
*/
ret = -ENODEV;
}
}
else
{
/* ENODEV is returned to indicate that no card is inserted in the slot.
* sdio_slotinitialize will use this return value to set up the card
* inserted callback event.
*/
ret = -ENODEV;
}
/* OK is returned only if the slot initialized correctly AND the card in
* the slot was successfully configured.
*/
mmcsd_unlock(priv);
return ret;
}
static FAR const char *mmc_get_mode_name(uint8_t mode)
{
switch (mode)
{
case EXT_CSD_HS_TIMING_BC:
return "backwards compatibility";
case EXT_CSD_HS_TIMING_HS:
return "high speed";
case EXT_CSD_HS_TIMING_HS200:
return "HS200";
case EXT_CSD_HS_TIMING_HS400:
return "HS400";
default:
ferr("Unknown mode: %u\n", mode);
return "Unknown";
}
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mmcsd_slotinitialize
*
* Description:
* Initialize one slot for operation using the MMC/SD interface
*
* Input Parameters:
* minor - The MMC/SD minor device number. The MMC/SD device will be
* registered as /dev/mmcsdN where N is the minor number
* dev - And instance of an MMC/SD interface. The MMC/SD hardware should
* be initialized and ready to use.
*
****************************************************************************/
int mmcsd_slotinitialize(int minor, FAR struct sdio_dev_s *dev)
{
FAR struct mmcsd_state_s *priv;
char devname[16];
int ret = -ENOMEM;
finfo("minor: %d\n", minor);
/* Sanity check */
#ifdef CONFIG_DEBUG_FEATURES
if (minor < 0 || minor > 255 || !dev)
{
return -EINVAL;
}
#endif
/* Allocate a MMC/SD state structure */
priv = (FAR struct mmcsd_state_s *)
kmm_malloc(sizeof(struct mmcsd_state_s));
if (priv == NULL)
{
return -ENOMEM;
}
/* Initialize the MMC/SD state structure */
memset(priv, 0, sizeof(struct mmcsd_state_s));
nxmutex_init(&priv->lock);
/* Bind the MMCSD driver to the MMCSD state structure */
priv->dev = dev;
priv->minor = minor;
/* Initialize the hardware associated with the slot */
ret = mmcsd_hwinitialize(priv);
/* Was the slot initialized successfully? */
if (ret != OK)
{
/* No... But the error ENODEV is returned if hardware
* initialization succeeded but no card is inserted in the slot.
* In this case, the no error occurred, but the driver is still
* not ready.
*/
if (ret == -ENODEV)
{
/* No card in the slot (or if there is, we could not recognize
* it).. Setup to receive the media inserted event
*/
SDIO_CALLBACKENABLE(priv->dev, SDIOMEDIA_INSERTED);
finfo("MMC/SD slot is empty\n");
}
else
{
/* Some other non-recoverable bad thing happened */
ferr("ERROR: Failed to initialize MMC/SD slot: %d\n", ret);
goto errout_with_alloc;
}
}
#ifdef CONFIG_MMCSD_PROCFS
mmcsd_initialize_procfs();
#endif
/* Create a MMCSD device name */
snprintf(devname, sizeof(devname), "/dev/mmcsd%d", minor);
finfo("MMC: %s %" PRIu64 "KB %s %s mode\n", devname,
((uint64_t)priv->part[0].nblocks << priv->blockshift) >> 10,
priv->widebus ? "4-bits" : "1-bit",
mmc_get_mode_name(priv->mode));
return OK;
errout_with_alloc:
nxmutex_destroy(&priv->lock);
kmm_free(priv);
return ret;
}
#endif /* defined (CONFIG_MMCSD) && defined (CONFIG_MMCSD_SDIO) */