nuttx-mirror/drivers/mtd/mx35.c
Xiang Xiao cde88cabcc Run codespell -w with the latest dictonary again
Signed-off-by: Xiang Xiao <xiaoxiang@xiaomi.com>
2020-02-23 22:27:46 +01:00

953 lines
32 KiB
C

/************************************************************************************
* drivers/mtd/mx35.c
* Driver for SPI-based MX35LFxGE4AB parts of 1 or 2GBit.
*
* Copyright (C) 2016, 2019 Gregory Nutt. All rights reserved.
* Author: Ekaterina Kovylova <fomalhaut.hm@gmail.com>
*
* Copied from / based on mx25lx.c driver written by
* Aleksandr Vyhovanec <www.desh@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
/* Per the data sheet, MX35 parts can be driven with either SPI mode 0 (CPOL=0 and
* CPHA=0) or mode 3 (CPOL=1 and CPHA=1). If CONFIG_MX35_SPIMODE is not defined,
* mode 0 will be used.
*/
#ifndef CONFIG_MX35_SPIMODE
# define CONFIG_MX35_SPIMODE SPIDEV_MODE0
#endif
#ifndef CONFIG_MX35_SPIFREQUENCY
# define CONFIG_MX35_SPIFREQUENCY 104000000
#endif
#ifndef CONFIG_MX35_MANUFACTURER
# define CONFIG_MX35_MANUFACTURER 0xC2
#endif
/* Debug ****************************************************************************/
#ifdef CONFIG_MX35_DEBUG
# define mx35err(format, ...) _err(format, ##__VA_ARGS__)
# define mx35info(format, ...) _info(format, ##__VA_ARGS__)
#else
# define mx35err(x...)
# define mx35info(x...)
#endif
/* Identification register values **************************************************/
#define MX35_MANUFACTURER CONFIG_MX35_MANUFACTURER
#define MX35_MX35LF1GE4AB_CAPACITY 0x12 /* 1 Gb */
#define MX35_MX35LF2GE4AB_CAPACITY 0x22 /* 2 Gb */
/* Chip Geometries ******************************************************************/
/* MX35LF1GE4AB capacity is 1 G-bit */
#define MX35_MX35LF1GE4AB_SECTOR_SHIFT 17 /* Sector size 1 << 17 = 128 Kb */
#define MX35_MX35LF1GE4AB_NSECTORS 1024
#define MX35_MX35LF1GE4AB_PAGE_SHIFT 11 /* Page size 1 << 11 = 2 Kb */
/* MX35LF2GE4AB capacity is 2 G-bit */
#define MX35_MX35LF2GE4AB_SECTOR_SHIFT 17 /* Sector size 1 << 17 = 128 Kb */
#define MX35_MX35LF2GE4AB_NSECTORS 2048
#define MX35_MX35LF2GE4AB_PAGE_SHIFT 11 /* Page size 1 << 11 = 2 Kb */
/* MX35 Instructions ****************************************************************/
/* Command Value Description Addr Data */
/* Dummy */
#define MX35_GET_FEATURE 0x0F /* Get features 1 0 1 */
#define MX35_SET_FEATURE 0x1F /* Set features 1 0 1 */
#define MX35_PAGE_READ 0x13 /* Array read 3 0 0 */
#define MX35_READ_FROM_CACHE 0x03 /* Output cache data
on SO 2 1 1-2112 */
#define MX35_READ_FROM_CACHE_X1 0x0B /* Output cache data
on SO 2 1 1-2112 */
#define MX35_READ_FROM_CACHE_X2 0x3B /* Output cache data
on SI and SO 2 1 1-2112 */
#define MX35_READ_FROM_CACHE_X4 0x6B /* Output cache data
on SI, SO, WP, HOLD 2 1 1-2112 */
#define MX35_READ_ID 0x9F /* Read device ID 0 1 2 */
#define MX35_ECC_STATUS_READ 0x7C /* Internal ECC status
output 0 1 1 */
#define MX35_BLOCK_ERASE 0xD8 /* Block erase 3 0 0 */
#define MX35_PROGRAM_EXECUTE 0x10 /* Enter block/page
address, execute 3 0 0 */
#define MX35_PROGRAM_LOAD 0x02 /* Load program data with
cache reset first 2 0 1-2112 */
#define MX35_PROGRAM_LOAD_RANDOM 0x84 /* Load program data
without cache reset 2 0 1-2112 */
#define MX35_PROGRAM_LOAD_X4 0x32 /* Program load operation
with x4 data input 2 0 1-2112 */
#define MX35_PROGRAM_LOAD_RANDOM_X4 0x34 /* Load random operation
with x4 data input 2 0 1-2112 */
#define MX35_WRITE_ENABLE 0x06 /* 0 0 0 */
#define MX35_WRITE_DISABLE 0x04 /* 0 0 0 */
#define MX35_RESET 0xFF /* Reset the device 0 0 0 */
#define MX35_DUMMY 0x00 /* No Operation 0 0 0 */
/* Feature register *****************************************************************/
/* Register address */
#define MX35_SECURE_OTP 0xB0
#define MX35_STATUS 0xC0
#define MX35_BLOCK_PROTECTION 0xA0
/* Bit definitions */
/* Secure OTP (On-Time-Programmable) register*/
#define MX35_SOTP_QE (1 << 0) /* Bit 0: Quad Enable */
#define MX35_SOTP_ECC (1 << 4) /* Bit 4: ECC enabled */
#define MX35_SOTP_SOTP_EN (1 << 6) /* Bit 6: Secure OTP Enable */
#define MX35_SOTP_SOTP_PROT (1 << 7) /* Bit 7: Secure OTP Protect */
/* Status register */
#define MX35_SR_OIP (1 << 0) /* Bit 0: Operation in progress */
#define MX35_SR_WEL (1 << 1) /* Bit 1: Write enable latch */
#define MX35_SR_E_FAIL (1 << 2) /* Bit 2: Erase fail */
#define MX35_SR_P_FAIL (1 << 3) /* Bit 3: Program Fail */
#define MX35_SR_ECC_S0 (1 << 4) /* Bit 4-5: ECC Status */
#define MX35_SR_ECC_S1 (1 << 5)
/* Block Protection register*/
#define MX35_BP_SP (1 << 0) /* Bit 0: Solid-protection (1Gb only) */
#define MX35_BP_COMPL (1 << 1) /* Bit 1: Complementary (1Gb only) */
#define MX35_BP_INV (1 << 2) /* Bit 2: Invert (1Gb only) */
#define MX35_BP_BP0 (1 << 3) /* Bit 3: Block Protection 0 */
#define MX35_BP_BP1 (1 << 4) /* Bit 4: Block Protection 1 */
#define MX35_BP_BP2 (1 << 5) /* Bit 5: Block Protection 2 */
#define MX35_BP_BPRWD (1 << 7) /* Bit 7: Block Protection Register
* Write Disable */
/* ECC Status register */
#define MX35_FEATURE_ECC_MASK (0x03 << 4)
#define MX35_FEATURE_ECC_INCORRECTABLE (0x02 << 4)
#define MX35_FEATURE_ECC_OFFSET 4
#define MX35_ECC_STATUS_MASK 0x0F
#define MX35_ECC_INCORRECTABLE 0x0F
/************************************************************************************
* Private Types
************************************************************************************/
/* This type represents the state of the MTD device. The struct mtd_dev_s
* must appear at the beginning of the definition so that you can freely
* cast between pointers to struct mtd_dev_s and struct m25p_dev_s.
*/
struct mx35_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
uint8_t highCapacity;
uint8_t sectorshift; /* 17 */
uint16_t nsectors; /* 1024 or 2048 */
uint8_t pageshift; /* 11 */
uint8_t eccstatus; /* Internal ECC status */
};
/************************************************************************************
* Private Function Prototypes
************************************************************************************/
static inline void mx35_lock(FAR struct spi_dev_s *dev);
static inline void mx35_unlock(FAR struct spi_dev_s *dev);
static int mx35_readid(FAR struct mx35_dev_s *priv);
static bool mx35_waitstatus(FAR struct mx35_dev_s *priv, uint8_t mask,
bool successif);
static inline void mx35_writeenable(struct mx35_dev_s *priv);
static inline void mx35_writedisable(struct mx35_dev_s *priv);
static inline uint32_t mx35_addresstorow(FAR struct mx35_dev_s *priv,
uint32_t address);
static inline uint32_t mx35_addresstocolumn(FAR struct mx35_dev_s *priv,
uint32_t address);
static bool mx35_sectorerase(FAR struct mx35_dev_s *priv, off_t startsector);
static int mx35_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks);
static void mx35_readbuffer(FAR struct mx35_dev_s *priv, uint32_t address,
uint8_t *buffer, size_t length);
static bool mx35_read_page(FAR struct mx35_dev_s *priv, uint32_t position);
static ssize_t mx35_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR uint8_t *buffer);
static void mx35_write_to_cache(FAR struct mx35_dev_s *priv, uint32_t address,
const uint8_t *buffer, size_t length);
static bool mx35_execute_write(FAR struct mx35_dev_s *priv, uint32_t position);
static ssize_t mx35_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR const uint8_t *buffer);
static int mx35_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg);
static inline void mx35_eccstatusread(struct mx35_dev_s *priv);
static inline void mx35_enableECC(struct mx35_dev_s *priv);
static inline void mx35_unlockblocks(struct mx35_dev_s *priv);
/************************************************************************************
* Private Functions
************************************************************************************/
/************************************************************************************
* Name: mx35_lock
************************************************************************************/
static inline void mx35_lock(FAR struct spi_dev_s *dev)
{
/* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive access to
* the SPI bus. We will retain that exclusive access until the bus is unlocked.
*/
SPI_LOCK(dev, true);
/* After locking the SPI bus, the we also need call the setfrequency, setbits, and
* setmode methods to make sure that the SPI is properly configured for the device.
* If the SPI bus is being shared, then it may have been left in an incompatible
* state.
*/
SPI_SETMODE(dev, CONFIG_MX35_SPIMODE);
SPI_SETBITS(dev, 8);
SPI_HWFEATURES(dev, 0);
SPI_SETFREQUENCY(dev, CONFIG_MX35_SPIFREQUENCY);
}
/************************************************************************************
* Name: mx35_unlock
************************************************************************************/
static inline void mx35_unlock(FAR struct spi_dev_s *dev)
{
SPI_LOCK(dev, false);
}
/************************************************************************************
* Name: m25p_readid
************************************************************************************/
static int mx35_readid(struct mx35_dev_s *priv)
{
uint16_t manufacturer;
uint16_t capacity;
mx35info("priv: %p\n", priv);
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
mx35_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Read ID" command and read two ID bytes */
SPI_SEND(priv->dev, MX35_READ_ID);
SPI_SEND(priv->dev, MX35_DUMMY);
manufacturer = SPI_SEND(priv->dev, MX35_DUMMY);
capacity = SPI_SEND(priv->dev, MX35_DUMMY);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_unlock(priv->dev);
mx35info("manufacturer: %02x capacity: %02x\n",
manufacturer, capacity);
/* Check for a valid manufacturer */
if (manufacturer == MX35_MANUFACTURER)
{
/* Okay.. is it a FLASH capacity that we understand? */
if (capacity == MX35_MX35LF1GE4AB_CAPACITY)
{
/* Save the FLASH geometry */
priv->highCapacity = 0;
priv->sectorshift = MX35_MX35LF1GE4AB_SECTOR_SHIFT;
priv->nsectors = MX35_MX35LF1GE4AB_NSECTORS;
priv->pageshift = MX35_MX35LF1GE4AB_PAGE_SHIFT;
return OK;
}
else if (capacity == MX35_MX35LF2GE4AB_CAPACITY)
{
/* Save the FLASH geometry */
priv->highCapacity = 1;
priv->sectorshift = MX35_MX35LF2GE4AB_SECTOR_SHIFT;
priv->nsectors = MX35_MX35LF2GE4AB_NSECTORS;
priv->pageshift = MX35_MX35LF2GE4AB_PAGE_SHIFT;
return OK;
}
}
return -ENODEV;
}
/************************************************************************************
* Name: mx35_waitstatus
************************************************************************************/
static bool mx35_waitstatus(FAR struct mx35_dev_s *priv, uint8_t mask, bool successif)
{
uint8_t status;
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Get feature command */
SPI_SEND(priv->dev, MX35_GET_FEATURE);
SPI_SEND(priv->dev, MX35_STATUS);
status = SPI_SEND(priv->dev, MX35_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Given that writing could take up to few tens of milliseconds, and erasing
* could take more. The following short delay in the "busy" case will allow
* other peripherals to access the SPI bus.
*/
}
while (((status & MX35_SR_OIP) != 0) && (!nxsig_usleep(1000)));
mx35info("Complete\n");
return successif ? ((status & mask) != 0) : ((status & mask) == 0);
}
/************************************************************************************
* Name: mx35_writeenable
************************************************************************************/
static inline void mx35_writeenable(struct mx35_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send Write Enable command */
SPI_SEND(priv->dev, MX35_WRITE_ENABLE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/************************************************************************************
* Name: mx35_writedisable
************************************************************************************/
static inline void mx35_writedisable(struct mx35_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send Write Enable command */
SPI_SEND(priv->dev, MX35_WRITE_DISABLE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/************************************************************************************
* Name: mx35_addresstorow
************************************************************************************/
static inline uint32_t mx35_addresstorow(FAR struct mx35_dev_s *priv,
uint32_t address)
{
/* Convert to page */
uint32_t row = address >> priv->pageshift;
if (priv->highCapacity)
{
const uint32_t plane = (row >> (16 - 6)) & 0x40;
/* Shift block address */
row = ((row & ~0x3F) << 1) | (row & 0x3F);
/* Insert plane select bit */
row = row | plane;
}
return row;
}
/************************************************************************************
* Name: mx35_addresstocolumn
************************************************************************************/
static inline uint32_t mx35_addresstocolumn(FAR struct mx35_dev_s *priv,
uint32_t address)
{
uint32_t column = address % (1 << priv->pageshift);
if (priv->highCapacity)
{
/* Convert to page */
const uint32_t row = address >> priv->pageshift;
const uint32_t plane = (row >> (16 - 12)) & 0x1000;
/* Insert plane select bit */
column = column | plane;
}
else
{
uint16_t wraplength = 0x00;
column |= (wraplength & 0xC000);
}
return column;
}
/************************************************************************************
* Name: mx35_sectorerase (128K)
************************************************************************************/
static bool mx35_sectorerase(FAR struct mx35_dev_s *priv, off_t startsector)
{
off_t address = (off_t)startsector << priv->sectorshift;
const uint32_t block = mx35_addresstorow(priv, address);
mx35info("sector: %08lx\n", (long)startsector);
/* Send write enable instruction */
mx35_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Block Erase instruction */
SPI_SEND(priv->dev, MX35_BLOCK_ERASE);
SPI_SEND(priv->dev, (block >> 16) & 0xff);
SPI_SEND(priv->dev, (block >> 8) & 0xff);
SPI_SEND(priv->dev, block & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35info("Erased\n");
return mx35_waitstatus(priv, MX35_SR_E_FAIL, false);
}
/************************************************************************************
* Name: mx35_erase
************************************************************************************/
static int mx35_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
size_t blocksleft = nblocks;
mx35info("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
mx35_lock(priv->dev);
/* Wait all operations complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
while (blocksleft-- > 0)
{
mx35_sectorerase(priv, startblock);
startblock++;
}
mx35_unlock(priv->dev);
return (int)nblocks;
}
/************************************************************************************
* Name: mx35_readbuffer
************************************************************************************/
static void mx35_readbuffer(FAR struct mx35_dev_s *priv, uint32_t address,
uint8_t *buffer, size_t length)
{
const uint16_t offset = mx35_addresstocolumn(priv, address);
/* Select the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_READ_FROM_CACHE);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, (offset) & 0xff);
/* Send a dummy byte */
SPI_SEND(priv->dev, MX35_DUMMY);
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->dev, buffer, length);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/************************************************************************************
* Name: mx35_read_page
************************************************************************************/
static bool mx35_read_page(FAR struct mx35_dev_s *priv, uint32_t pageaddress)
{
const uint32_t row = mx35_addresstorow(priv, pageaddress);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Read Page instruction */
SPI_SEND(priv->dev, MX35_PAGE_READ);
SPI_SEND(priv->dev, (row >> 16) & 0xff);
SPI_SEND(priv->dev, (row >> 8) & 0xff);
SPI_SEND(priv->dev, row & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_waitstatus(priv, MX35_SR_OIP, false);
mx35_eccstatusread(priv);
if ((priv->eccstatus & MX35_FEATURE_ECC_MASK) == MX35_FEATURE_ECC_INCORRECTABLE)
{
return false;
}
return true;
}
/************************************************************************************
* Name: mx35_read
************************************************************************************/
static ssize_t mx35_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
size_t bytesleft = nbytes;
uint32_t position = offset;
mx35info("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus and select this FLASH part */
mx35_lock(priv->dev);
/* Wait all operations complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
while (bytesleft)
{
const uint32_t pageaddress = (position >> priv->pageshift) << priv->pageshift;
const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) - position;
const size_t chunklength = bytesleft < spaceleft ? bytesleft : spaceleft;
if (!mx35_read_page(priv, pageaddress))
{
break;
}
mx35_readbuffer(priv, position, buffer, chunklength);
position += chunklength;
buffer += chunklength;
bytesleft -= chunklength;
}
mx35_unlock(priv->dev);
mx35info("return nbytes: %d\n", (int)(nbytes - bytesleft));
return nbytes - bytesleft;
}
/************************************************************************************
* Name: mx35_write_to_cache
************************************************************************************/
static void mx35_write_to_cache(FAR struct mx35_dev_s *priv, uint32_t address,
const uint8_t *buffer, size_t length)
{
const uint16_t offset = mx35_addresstocolumn(priv, address);
/* Select the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Program Load command */
SPI_SEND(priv->dev, MX35_PROGRAM_LOAD);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, (offset) & 0xff);
/* Send block of bytes */
SPI_SNDBLOCK(priv->dev, buffer, length);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/************************************************************************************
* Name: mx35_write_to_cache
************************************************************************************/
static bool mx35_execute_write(FAR struct mx35_dev_s *priv, uint32_t pageaddress)
{
const uint32_t row = mx35_addresstorow(priv, pageaddress);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the Pragram Execute instruction */
SPI_SEND(priv->dev, MX35_PROGRAM_EXECUTE);
SPI_SEND(priv->dev, (row >> 16) & 0xff);
SPI_SEND(priv->dev, (row >> 8) & 0xff);
SPI_SEND(priv->dev, row & 0xff);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
return mx35_waitstatus(priv, MX35_SR_P_FAIL, false);
}
/************************************************************************************
* Name: mx35_write
************************************************************************************/
static ssize_t mx35_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes,
FAR const uint8_t *buffer)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
size_t bytesleft = nbytes;
uint32_t position = offset;
mx35_lock(priv->dev);
/* Wait all operations complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
while (bytesleft)
{
const uint32_t pageaddress = (position >> priv->pageshift) << priv->pageshift;
const uint32_t spaceleft = pageaddress + (1 << priv->pageshift) - position;
const size_t chunklength = bytesleft < spaceleft ? bytesleft : spaceleft;
mx35_writeenable(priv);
mx35_write_to_cache(priv, position, buffer, chunklength);
if (!mx35_execute_write(priv, pageaddress))
{
continue;
}
position += chunklength;
buffer += chunklength;
bytesleft -= chunklength;
}
mx35_unlock(priv->dev);
return nbytes - bytesleft;
}
/************************************************************************************
* Name: mx25l_ioctl
************************************************************************************/
static int mx35_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct mx35_dev_s *priv = (FAR struct mx35_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
mx35info("cmd: %d \n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
/* Populate the geometry structure with information need to know
* the capacity and how to access the device.
*
* NOTE: that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but the client
* will expect the device logic to do whatever is necessary to make it
* appear so.
*/
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
ret = OK;
mx35info("blocksize: %d erasesize: %d neraseblocks: %d\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
ret = mx35_erase(dev, 0, priv->nsectors);
}
break;
case MTDIOC_ECCSTATUS:
{
uint8_t *result = (uint8_t *)arg;
*result =
(priv->eccstatus & MX35_FEATURE_ECC_MASK) >> MX35_FEATURE_ECC_OFFSET;
ret = OK;
}
break;
default:
ret = -ENOTTY; /* Bad command */
break;
}
mx35info("return %d\n", ret);
return ret;
}
/************************************************************************************
* Name: mx35_eccstatusread
************************************************************************************/
static inline void mx35_eccstatusread(struct mx35_dev_s *priv)
{
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_GET_FEATURE);
SPI_SEND(priv->dev, MX35_STATUS);
priv->eccstatus = SPI_SEND(priv->dev, MX35_DUMMY);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/************************************************************************************
* Name: mx35_enableECC
************************************************************************************/
static inline void mx35_enableECC(struct mx35_dev_s *priv)
{
uint8_t secureOTP = MX35_SOTP_ECC;
mx35_lock(priv->dev);
mx35_writeenable(priv);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_SET_FEATURE);
SPI_SEND(priv->dev, MX35_SECURE_OTP);
SPI_SEND(priv->dev, secureOTP);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_writedisable(priv);
mx35_unlock(priv->dev);
}
/************************************************************************************
* Name: mx35_unlockblocks
************************************************************************************/
static inline void mx35_unlockblocks(struct mx35_dev_s *priv)
{
uint8_t blockprotection = 0x00;
mx35_lock(priv->dev);
mx35_writeenable(priv);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_SET_FEATURE);
SPI_SEND(priv->dev, MX35_BLOCK_PROTECTION);
SPI_SEND(priv->dev, blockprotection);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx35_writedisable(priv);
mx35_unlock(priv->dev);
}
/************************************************************************************
* Public Functions
************************************************************************************/
/************************************************************************************
* Name: mx35_initialize
*
* Description:
* Create an initialize MTD device instance. MTD devices are not registered
* in the file system, but are created as instances that can be bound to
* other functions (such as a block or character driver front end).
*
************************************************************************************/
FAR struct mtd_dev_s *mx35_initialize(FAR struct spi_dev_s *dev)
{
FAR struct mx35_dev_s *priv;
int ret;
mx35info("dev: %p\n", dev);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per SPI
* device (only because of the SPIDEV_FLASH(0) definition) and so would have
* to be extended to handle multiple FLASH parts on the same SPI bus.
*/
priv = (FAR struct mx35_dev_s *)kmm_zalloc(sizeof(struct mx35_dev_s));
if (priv)
{
/* Initialize the allocated structure. (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = mx35_erase;
priv->mtd.read = mx35_read;
priv->mtd.write = mx35_write;
priv->mtd.ioctl = mx35_ioctl;
priv->mtd.name = "mx35";
priv->dev = dev;
/* Deselect the FLASH */
SPI_SELECT(dev, SPIDEV_FLASH(0), false);
/* Reset the flash */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
SPI_SEND(priv->dev, MX35_RESET);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Wait reset complete */
mx35_waitstatus(priv, MX35_SR_OIP, false);
/* Identify the FLASH chip and get its capacity */
ret = mx35_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and return NULL */
mx35err("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
mx35_enableECC(priv);
mx35_unlockblocks(priv);
}
/* Return the implementation-specific state structure as the MTD device */
mx35info("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}